Cook BE, Bartley GB. Treatment options and future prospects for the management of eyelid malignancies: an evidence-based update. Ophthalmology. 2001;108:2088–98.
Article
Google Scholar
Depressed M, Uffer S. Clinicopathological features of eyelid skin tumors. A retrospective study of 5504 cases and review of literature. Am J Dermatopathol. 2009;31:256–62.
Article
Google Scholar
Welch RB, Duke JR. Lesions of the lids: a statistical note. Am J Ophthalmol. 1958;45:415–6.
Article
Google Scholar
Aurora AL, Blodi FC. Lesions of the eyelids: clinicopathological study. Surv Ophthalmol. 1970;15:94–104.
Google Scholar
Tesluk GC. Eyelid lesions: incidence and comparison of benign and malignant lesions. Ann Ophthalmol. 1985;17:704–7.
Google Scholar
Wang L, Shan Y, Dai X, You N, Shao J, Pan X, et al. Clinicopathological analysis of 5146 eyelid tumors and tumor-like lesions in an eye centre in South China, 2000–2018: a retrospective cohort study. BMJ Open. 2021;11:e041854.
Article
Google Scholar
Shields JA, Demirci H, Marr BP, Eagle RC, Shields CL. Sebaceous carcinoma of the ocular region: a review. Surv Ophthalmol. 2005;50:103–22.
Article
Google Scholar
Sun MT, Huang S, Huilgol SC, Selva D. Eyelid lesions in general practice. Aust J Gen Pract. 2019;48:509–14.
Article
Google Scholar
Yu SS, Zhao Y, Zhao H, Lin JY, Tang X. A retrospective study of 2228 cases with eyelid tumors. Int J Ophthalmol. 2018;11:1835–41.
Google Scholar
Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Farhan L, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:53.
Article
Google Scholar
Lin C, Song X, Li L, Jiang M, Sun R, et al. Detection of active and inactive phases of thyroid-associated ophthalmopathy using deep convolutional neural network. BMC Ophthalmol. 2021;21:39.
Article
Google Scholar
Bi S, Chen R, Zhang K, Xiang Y, Wang R, Lin H, et al. Differentiate cavernous hemangioma from schwannoma with artificial intelligence (AI). Ann Transl Med. 2020;8:710.
Article
Google Scholar
Liang G, Fan W, Luo H, Zhu X. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother. 2020;128:110255.
Article
Google Scholar
Gunasekeran DV, Ting DSW, Tan GSW, Wong TY. Artificial intelligence for diabetic retinopathy screening, prediction and management. Curr Opin Ophthalmol. 2020;31:357–65.
Article
Google Scholar
Cui X, Wei R, Gong L, Qi R, Zhao Z, Chen H, et al. Assessing the effectiveness of artificial intelligence methods for melanoma: a retrospective review. J Am Acad Dermatol. 2019;81:1176–80.
Article
Google Scholar
Maron RC, Utikal JS, Hekler A, Hauschild A, Sattler E, Sondermann W, et al. Artificial Intelligence and its effect on dermatologists’ accuracy in dermoscopic melanoma image classification: web-based survey study. J Med Internet Res. 2020;22:e18091.
Article
Google Scholar
Wang L, Ding L, Liu Z, Sun L, Chen L, Jia R, et al. Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br J Ophthalmol. 2020;104:318–23.
Article
Google Scholar
Jiang YQ, Xiong JH, Li HY, Yang XH, Yu WT, GAO M, et al. Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network. Br J Dermatol. 2020;182:754–62.
Article
Google Scholar
Hung JY, Perera C, Chen KW, Myung D, Chiu HK, Fuh CS, et al. A deep learning approach to identify blepharoptosis by convolutional neural networks. Int J Med Inform. 2021;148:104402.
Article
Google Scholar
Thomas PBM, Gunasekera CD, Kang S, Baltrusaitis T. An artificial intelligence approach to the assessment of abnormal lid position. Plast Reconstr Surg Glob Open. 2020;8:e3089.
Article
Google Scholar
Chen HC, Tzeng SS, Hsiao YC, Chen RF, Hung EC, Lee OK, et al. Smartphone-based artificial intelligence-assisted prediction for eyelid measurements: algorithm development and observational validation study. JMIR Mhealth Uhealth. 2021;9:e32444.
Article
Google Scholar
Lou L, Cao J, Wang Y, Gao Z, Jin K, Xu Z, et al. Deep learning-based image analysis for automated measurement of eyelid morphology before and after blepharoptosis surgery. Ann Med. 2021;53:2278–85.
Article
Google Scholar
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.
Article
Google Scholar
Maintz L, Welchowski T, Herrmann N, Brauer J, Kläschen AS, Fimmers R, et al. Machine learning-based deep phenotyping of atopic dermatitis: severity-associated factors in adolescent and adult patients. JAMA Dermatol. 2021;157:1414–24.
Article
Google Scholar
Ahuja AA, Kohli P, Lomte S. Novel technique of smartphone-based high magnification imaging of the eyelid lesions. Indian J Ophthalmol. 2017;65:1015–16.
Article
Google Scholar
Zhang K, Li X, He L, Guo C, Yang Y, Dong Z, et al. A human-in-the-loop deep learning paradigm for synergic visual evaluation in children. Neural Netw. 2020;122:163–73.
Article
Google Scholar
Yang J, Zhang K, Fan H, Huang Z, Xiang Y, Yang J, et al. Development and validation of deep learning algorithms for scoliosis screening using back images. Commun Biol. 2019;2:390.
Article
Google Scholar
Zhang K, Liu X, Jiang J, Li W, Wang S, Liu L, et al. Prediction of postoperative complications of pediatric cataract patients using data mining. J Transl Med. 2019;17:2.
Article
Google Scholar
Pan Q, Zhang K, He L, Dong Z, Zhang L, Wu X, et al. Automatically diagnosing disk bulge and disk herniation with lumbar magnetic resonance images by using deep convolutional neural networks: method development study. JMIR Med Inform. 2021;9:e14755.
Article
Google Scholar
Zhang K, Liu X, Liu F, He L, Zhang L, Yang Y, et al. An interpretable and expandable deep learning diagnostic system for multiple ocular diseases: qualitative study. J Med Internet Res. 2018;20:e11144.
Article
Google Scholar
Li Z, Guo C, Nie D, Lin D, Zhu Y, Chen C, et al. Deep learning from “passive feeding” to “selective eating” of real-world data. NPJ Digit Med. 2020;3:143.
Article
Google Scholar
Deng J, Dong W, Socher R, Li L, Li K, Li F. Imagenet: a large-scale hierarchical image database. IEEE Conf Comput Vis Pattern Recognit. 2009. https://doi.org/10.1109/CVPR.2009.5206848.
Article
Google Scholar
Bottou L. Stochastic gradient descent tricks BT—neural networks: tricks of the trade. Berlin: Springer; 2012. p. 421–36.
Book
Google Scholar
Li Z, Guo C, Nie D, Lin D, Zhu Y, Chen C, et al. Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images. Commun Biol. 2020;3:15.
Article
Google Scholar
Lord RK, Shah VA, San Filippo AN, Krishna R. Novel uses of smartphones in ophthalmology. Ophthalmology. 2010;117:1274–1274.e3.
Article
Google Scholar
Hogarty DT, Hogarty JP, Hewitt AW. Smartphone use in ophthalmology: what is their place in clinical practice? Surv Ophthalmol. 2020;65:250–62.
Article
Google Scholar
Chhablani J, Kaja S, Shah VA. Smartphones in ophthalmology. Indian J Ophthalmol. 2012;60:127–31.
Article
Google Scholar
Zvornicanin E, Zvornicanin J, Hadziefendic B. The use of smart phones in ophthalmology. Acta Inform Med. 2014;22:206–9.
Article
Google Scholar
Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. 2019;119:11–7.
Article
Google Scholar
Hekler A, Utikal JS, Enk AH, Solass W, Schmitt M, Klode J, et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer. 2019;118:91–6.
Article
Google Scholar
Hekler A, Utikal JS, Enk AH, Berking C, Klode J, Schadendorf D, et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer. 2019;115:79–83.
Article
Google Scholar
Sinha KR, Yeganeh A, Goldberg RA, Rootman DB. Assessing the accuracy of eyelid measurements utilizing the volk eye check system and clinical measurements. Ophthalmic Plast Reconstr Surg. 2018;34:346–50.
Article
Google Scholar
Godfrey KJ, Wilsen C, Satterfield K, Korn BS, Kikkawa DO. Analysis of spontaneous eyelid blink dynamics using a 240 frames per second smartphone camera. Ophthalmic Plast Reconstr Surg. 2019;35:503–5.
Article
Google Scholar
Pundlik S, Tomasi M, Liu R, Houston K, Luo G. Development and preliminary evaluation of a smartphone app for measuring eye alignment. Transl Vis Sci Technol. 2019;8:19.
Article
Google Scholar
Phanphruk W, Liu Y, Morley K, Gavin J, Shah AS, Hunter DG. Validation of StrabisPIX, a mobile application for home measurement of ocular alignment. Transl Vis Sci Technol. 2019;8:9.
Article
Google Scholar
Gupta R, Agrawal S, Srivastava RM, Singh V, Katiyar V. Smartphone photography for screening amblyogenic conditions in children. Indian J Ophthalmol. 2019;67:1560–3.
Article
Google Scholar
Arnold RW, O’Neil JW, Cooper KL, Silbert DI, Donahue SP. Evaluation of a smartphone photoscreening app to detect refractive amblyopia risk factors in children aged 1–6 years. Clin Ophthalmol. 2018;12:1533–7.
Article
Google Scholar
Adamopoulos A, Chatzopoulos EG, Anastassopoulos G, Detorakis E. Eyelid basal cell carcinoma classification using shallow and deep learning artificial neural networks. Evolving Systems. 2021;12: 583–90.
Article
Google Scholar
Li Z, Qiang W, Chen H, Pei M, Yu X, Wang L, et al. Artificial intelligence to detect malignant eyelid tumors from photographic images. NPJ Digit Med. 2022;5:23.
Article
Google Scholar
Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, et al. Human–computer collaboration for skin cancer recognition. Nat Med. 2020;26:1229–34.
Article
Google Scholar
Gui C, Chan V. Machine learning in medicine. Univ West Ont Med J. 2017;86:77–8.
Google Scholar
Lear JT, Tan BB, Smith AG, Bowers W, Jones PW, Heagerty AH, et al. Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients. J R Soc Med. 1997;90:371–4.
Article
Google Scholar
Leung C, Johnson D, Pang R, Kratky V. Identifying predictive morphologic features of malignancy in eyelid lesions. Can Fam Physician. 2015;61:e43-9.
Google Scholar
Sendul SY, Akpolat C, Yilmaz Z, Eryilmaz OT, Guven D, Kabukcuoglu F. Clinical and pathological diagnosis and comparison of benign and malignant eyelid tumors. J Fr Ophtalmol. 2021;44:537–43.
Article
Google Scholar
Xu XL, Li B, Sun XL, Li LQ, Ren RJ, Gao F, et al. Eyelid neoplasms in the Beijing Tongren Eye Centre between 1997 and 2006. Ophthalmic Surg Lasers Imaging. 2008;39:367–72.
Article
Google Scholar
Burgic M, Iljazovic E, Vodencarevic AN, Burgic M, Rifatbegovic A, Mujkanovic A, et al. Clinical characteristics and outcome of malignant eyelid tumors: a five-year retrospective study. Med Arch. 2019;73:209–12.
Article
Google Scholar
Pieh S, Kuchar A, Novak P, Kunstfeld R, Nagel G, Steinkogler FJ. Long-term results after surgical basal cell carcinoma excision in the eyelid region. Br J Ophthalmol. 1999;83:85–8.
Article
Google Scholar