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Introduction
Eyelid tumors accounts for 5–10% of skin tumors [1, 2], which can be divided into benign 
and malignant lesions, according to their tissue or cell of origin. In general, 80–90% eye-
lid lesions appear as benign tumors [3–6]. However, malignant eyelid lesions can be life 
threatening, with up to 30% 5-year mortality in sebaceous cell carcinoma patients [7]. 
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Malignant cases include basal cell carcinoma (80–90%), squamous cell carcinoma (5%), 
sebaceous cell carcinoma (1.0–5.5%), and melanoma (< 1%) [8]. The prevalence and out-
comes of various eyelid tumor subtypes vary significantly, due to the different geographic 
location, genetic background, socio-economic status, and healthcare policies [9]. A com-
plete surgical excision with intraoperative margin control is the standard treatment for 
malignant lesions, which can reduce the rate of recurrence [8]. Therefore, it is neces-
sary to accurately differentiate malignant lesions from benign at treatment onset for the 
reduction in the mortality and complications. The diagnosis of eyelid lesions requires a 
specific expertise and biological or pathological process, which is laborious, time con-
suming and subject to the experience of the pathologists. There is also a concern that the 
lack of access to pathology expertise may result in foregoing intraoperative frozen sec-
tion diagnosis and gross anatomical features for lesion identification. Thus, new efficient 
approaches are needed to address current limitations.

Over the past few years, artificial intelligence (AI), especially deep learning (DL) [10], 
has played a major role in the field of medicine, including image recognition [11], auxil-
iary diagnosis [12], drug development [13], and health care management [14]. In fact, DL 
based systems have been developed to detect eyelid melanoma and basal cell carcinoma 
using dermoscopic images [15, 16] or pathological images [17, 18]. However, they still 
require pathological examination or dermatoscopical process which are not convenient 
for screening malignancies among non-experts. Pathological examination is invasive and 
dermatoscopical process need professional equipment.

Digital photograph is the most commonly used approach to analyze facial data due to 
the conveniency and intuition. The application of DL based on digital photograph has 
achieved physician-equivalent classification accuracy in lid position [19–22] and skin 
cancer [23, 24]. Moreover, importing photograph into a smartphone can achieve port-
able and convenient telemedicine-technology [25] to determine whether an emergency 
medical treatment is required. We meant to provide a noninvasive identification in dif-
ferentiate malignant eyelid tumors from benign ones without pathological or dermato-
scopical process, makes it possible for patients to monitor eyelid tumors and identify 
malignant ones at early stage. The present study aimed to establish DL models to auto-
matically differentiate benign and malignant eyelid tumors using common digital photo-
graphs. Then we compared the performance between DL system with different levels of 
ophthalmologists.

Methods
Study design and participants

This study was a single centre, diagnostic research with prospective validation. From 1 
to 2017 to 30 September 2020, eyelid tumors patients who underwent basic ophthal-
mic examinations in Beijing Tongren Hospital (Beijing, China) were retrospectively col-
lected. The pictures of eyelid tumor were captured using a digital camera (DSC-F828, 
Sony, Japan) at the first visit. Patients were asked to look horizontally, and camera 
positioned in the frontal plane at pupil height, one meter away from the patients. For 
tumors that cannot expose completely in primary position, we used a medical cotton 
swab for auxiliary exposure. Photographs were taken in outpatient clinics and inpatient 
wards, hence the lighting and background of the images were not uniform, indicating 
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the richness and diversity of our datasets. Those who finally underwent tumor resection 
surgery and had histopathological diagnosis were included in this study. These data were 
used as developmental dataset, and were randomly divided into two independent data-
sets with four-fold cross-validation as subject independent manner, and the best model 
can be chosen with repeated four rounds of training with a development dataset and 
testing with a validation dataset [26–28]. The tumors’ images of a patient will not be split 
into training and testing datasets at the same time.

To further validate the performance of the DL system, another group of patients were 
prospectively collected in Beijing Tongren Hospital between 1 and 2020 and 30 June 
2021 as the prospective validation dataset. All patients underwent surgical resection 
and received histopathological diagnosis. The pictures of those eyelid tumors were also 
captured using the same digital camera. The flow chart of data selection was showed in 
Fig. 1.

In this study, all procedures were conducted in accordance with the Declaration of 
Helsinki.  The Ethics Committee of Beijing Tongren Hospital approved the study.  Writ-
ten informed consent was obtained from each subject.

Image preprocessing and quality control

To improve the DL analysis, we resized the images to a resolution of 256 × 256 pixels 
before developing the algorithm. In the quality control process, we assessed the image 
quality and filtered out unqualified images after mask removal. The pixel values of the 
selected images applied to a linear mapping with a pixel value ranging from (0, 255) to 
(0, 1). Based on several arguments, such as the readable region ratio, illumination, blur-
riness, and image contents, pictures with poor quality were also excluded. The tumors 
on patients’ faces were encircled using polygon tool and annotated based on histopatho-
logical diagnosis, and then the regions of tumors were cropped for training the algo-
rithms. The annotation tool is LabelMe (https:// github. com/ wkent aro/ label me).

Fig. 1 Schematic diagram of this study

https://github.com/wkentaro/labelme
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Algorithm development

We applied several convolutional neural networks to automatically detect whether the 
eyelid tumor was benign or malignant. Histopathological diagnosis was used as ground 
truth. We first compared the performance of some architectures including ResNet-50, 
ResNet-101, InceptionV3, and InceptionResnetV2 [29–31]. Based on the GPU (Graph-
ical Processing Unit) memory and generalization ability, we chose these four types of 
CNNs mentioned above. We adopted four-fold cross-validation to develop the models 
and selected the optimal one. To further test the performance of the DL models, we 
then used the prospective validation datasets. The overview of the deep convolutional 
neural network-based model training pipeline was illustrated in Fig. 2. All models were 
developed with Tensorflow 1.10.0 and Keras 2.2.4 on the server with three NVIDIA 1080 
GPUs, and were pretrained with imagenet dataset [32]. We fine-tuned the weight of 
CNNs from the pretrained models which were trained with imagenet dataset, instead of 
training from scratch. We used several data augmentation methods to enrich the data-
set in the training stage, including horizonal flipping, vertical flipping and rotation up 
to 90°, which could reduce the possibility of overfitting. Because we thought the colour 
and shape features were the most important characteristics, some other data augmenta-
tion methods which might modify the pixel values and appearance were not adopted. 
The appearance images of eyes were used as the input to discern whether this tumor 
was benign or malignant. The samples were shown in Fig. 3. The optimization algorithm 
was SGD (Stochastic Gradient Descent) [33], the default hyperparameters in Keras 2.2.4 
were used, at the same time, batch size was 15. Besides, class weight was used to trade 
off the effect of imbalanced distribution of two classes. Based on the repeated experi-
ments, different epochs were also applied to train the models without underfitting. Early 
stopping was applied, and if the validation loss did not improve over 10 consecutive 
epochs [34].

Comparison between human and DL system

Three senior ophthalmologists (with more than 15 years clinical experience), two junior 
ophthalmologists (with more than 5 years clinical experience), and two medical students 

Fig. 2 Overview of the deep learning-based system to automatically predict eyelid tumors from digital 
clinical images
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were invited to independently diagnose the tumors in the prospective validation dataset. 
The results of the DL system and histopathological information were not available to any 
human doctors. We compared the performance between these human ophthalmologists 
with the DL system.

Statistical analyses

All statistical analyses were performed using Python 3.7.3 (Wilmington, DE, USA) and 
MATLAB R2016a (https:// www. mathw orks. com/). We used the accuracy, sensitiv-
ity, specificity, and receiver-operating characteristic curve to assess the performance 
of the DL model. The area under curve (AUC) with 95% confidence interval (CI) was 
calculated.

Results
A total of 309 pictures from 229 patients with eyelid tumors were retrospectively gath-
ered for the training, tuning, and internal validation of the DL system (Table  1). The 
mean age (standard deviation, SD) was 49.3 ± 17.5 years old, and 63.76% patients were 
female. 157 subjects were histopathologically diagnosed with benign tumors, while 72 
patients were diagnosed with malignant tumors. The most common malignant eyelid 
tumor in our datasets is basal cell carcinoma (60/122, 49.18%), followed by sebaceous 
adenocarcinoma eyelid (32/122, 26.23%), squamous cell carcinoma (12/122, 9.84%), 
and eyelid melanoma (9/122, 7.38%). The most common benign eyelid tumor is nevus 
(149/223, 66.82%), followed by cyst (14/223, 6.28%), seborrheic keratosis (13/223, 
5.83%), and xanthelasma (10/223, 4.48%). The top two malignant eyelid tumors in our 
prospective validation datasets are basal cell carcinoma (5/15, 33.33%) and eyelid mela-
noma (3/15, 20%). The top two malignant eyelid tumors are nevus (7/21, 33.33%) and 
seborrheic keratosis (2/21, 9.52%). Patients with malignant eyelid tumors were older 
than those with benign tumors. Seven tumors existed in bilateral eyelids, and twenty-
five tumors were located in both upper and lower eyelids. Another thirty sixty pictures 
of eyelid tumors images from 36 patients were prospectively collected as the prospective 
validation dataset. Similar age, sex distribution, and tumor location were recognised in 
the two datasets.

Fig. 3 Input samples of benign and malignant tumors

https://www.mathworks.com/
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Table  2 showed the performance of different DL models for the detection of eyelid 
tumors. All eight models reached an average accuracy greater than 0.958 in the inter-
nal cross-validation. The average sensitivity and specificity were greater than 0.795 and 
0.965, respectively, and the mean AUCs were greater than 0.960. Table 3 showed the per-
formance of these models in prospective validation dataset, the best model reached the 
accuracy, sensitivity, specificity, and AUC of 0.889 (95% CI 0.747–0.956), 0.933 (95% CI 
0.702–0.988), 0.857 (95% CI 0.654–0.950), and 0.966 (95% CI 0.850–0.993), respectively. 
The ROC and PR curves of these eight models were shown in Fig. 4.

When comparing the performance between human ophthalmologists and the DL sys-
tem, we found that DL system reached a similar, and even better diagnostic performance 

Table 1 Components of the developmental dataset and the prospective validation set

SD standard deviation

Developmental set Prospective validation set

Malignant 
tumor

Benign tumor Total Malignant 
tumor

Benign tumor Total

Patients 72 157 229 15 21 36

Photographs 107 202 309 15 21 36

Age (SD) 61.5 (12.3) 43.6 (16.6) 49.3 (17.5) 64.9 (7.0) 39.6 (18.0) 50.1 (19.1)

Female (%) 58.33 66.24 63.76 46.67 80.95 66.67

Laterality

 Right eye 61 100 161 6 11 17

 Left eye 46 95 141 9 10 19

 Both 0 7 7 0 0 0

Location of tumor

 Upper eyelid 33 97 130 4 10 14

 Lower eyelid 62 92 154 11 10 21

 Both 12 13 25 0 1 1

Table 2 Performance of models in the internal validation dataset

CI confidence interval, AUC  area under curve

Model 
number

Parameters Architecture Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

AUC (95% CI)

1 Class weight = 
[0.1, 25]
Epoch = 80

ResNet101 0.961 (0.930–
0.991)

0.793 (0.607–
0.978)

0.968 (0.946–
0.991)

0.969 
(0.942–0.995)

2 ResNet50 0.962 (0.950–
0.974)

0.779 (0.674–
0.884)

0.973 (0.954–
0.991)

0.973 
(0.957–0.990)

3 Inception-
ResNetV2

0.960 (0.942–
0.978)

0.769 (0.494-
1.000)

0.970 (0.941-
1.000)

0.946 (0.879-
1.000)

4 InceptionV3 0.954 (0.933–
0.976)

0.756 (0.664–
0.848)

0.966 (0.948–
0.985)

0.958 
(0.931–0.986)

5 Class weight = 
[0.1, 30]
Epoch = 60

ResNet101 0.956 (0.923–
0.989)

0.769 (0.692–
0.846)

0.967 (0.939–
0.994)

0.958 
(0.952–0.965)

6 ResNet50 0.963 (0.925-
1.000)

0.883 (0.777–
0.988)

0.965 (0.912-
1.000)

0.972 
(0.952–0.992)

7 Inception-
ResNetV2

0.967 (0.942–
0.992)

0.809 (0.686–
0.933)

0.967 (0.919-
1.000)

0.963 
(0.941–0.986)

8 InceptionV3 0.939 (0.865-
1.000)

0.833 (0.581-
1.000)

0.945 (0.853-
1.000)

0.944 (0.900-
0.988)
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Table 3 Performance of models in the prospective validation dataset

CI confidence interval, AUC  area under curve

Model 
number

Parameters Architecture Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

AUC (95% CI)

1 Class weight = 
[0.1, 25]
Epoch = 80

ResNet101 0.718 (0.556–
0.838)

0.800 (0.548–
0.930)

0.667 (0.454–
0.828)

0.880 
(0.736–0.951)

2 ResNet50 0.833 (0.681–
0.921)

0.733 (0.481–
0.891)

0.905 (0.711–
0.974)

0.930 
(0.799–0.978)

3 Inception-
ResNetV2

0.806 (0.650–
0.903)

0.933 (0.702–
0.988)

0.714 (0.500-
0.862)

0.867 
(0.720–0.943)

4 InceptionV3 0.778 (0.619–
0.883)

0.800 (0.548–
0.930)

0.762 (0.549–
0.894)

0.903 
(0.765–0.964)

5 Class weight = 
[0.1, 30]
Epoch = 60

ResNet101 0.889 (0.747–
0.956)

0.933 (0.702–
0.988)

0.857 (0.654–
0.950)

0.966 
(0.850–0.993)

6 ResNet50 0.750 (0.589–
0.863)

0.867 (0.621–
0.963)

0.667 (0.454–
0.828)

0.872 
(0.726–0.946)

7 Inception-
ResNetV2

0.833 (0.681–
0.921)

0.933 (0.702–
0.988)

0.762 (0.549–
0.894)

0.954 
(0.832–0.989)

8 InceptionV3 0.778 (0.619–
0.883)

1.000 (0.796-
1.000)

0.619 (0.409–
0.793)

0.871 
(0.726–0.946)

Fig. 4 Performance of models in cross validation. A, B Epoch = 80. C, D: Epoch = 60. Model 1: ResNet101; 
Model 2: ResNet50; Model 3: InceptionResNetV2; Model 4: InceptionV3; Model 5: ResNet101; Model 6: 
ResNet50; Model 7: InceptionResNetV2; Model 8: InceptionV3
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than senior ophthalmologists. In general, DL system performed much better than junior 
ophthalmologists and medical students (Fig. 5). The features maps of four types of CNNs 
were shown in Fig. 6, which showed the contour and pixel values were more important.

Fig. 5 Performance of models in prospective validation dataset and comparison with human 
ophthalmologists. A, B Epoch = 80. C, D Epoch = 60. Model 1: ResNet101; Model 2: ResNet50; Model 
3: InceptionResNetV2; Model 4: InceptionV3; Model 5: ResNet101; Model 6: ResNet50; Model 7: 
InceptionResNetV2; Model 8: InceptionV3. Red filled rhombus: Senior Ophthalmologist 1, blue filled rhombus: 
Senior Ophthalmologist 2, red filled circle: Junior Ophthalmologist 1, blue filled circle: Junior Ophthalmologist 
2, pink filled circle: Junior Ophthalmologist 3, red filled triangle: Medical student 1, blue filled triangle: Medical 
student 2

Fig. 6 The feature maps in four types of CNNs
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Discussion
In this study, we successfully trained DL models that could automatically identify benign 
and malignant eyelid tumors from clinical images. Even with a rather small database in 
the training set, our CNN algorithms had more accurate diagnosis than junior ophthal-
mologists and medical students, reaching an 88.89% accuracy, 85.71% sensitivity, and 
93.33% specificity in the detection of eyelid tumors. The DL system showed a compara-
ble performance with senior experts.

Eyelid tumor is common seen, but it is important but difficult to distinguish benign 
and malignant tumors, as they sometimes have overlapping features of irregular shapes, 
irregular pigmentation, and telangiectasia to malignant ones. Benign tumor is most 
commonly described as a well-demarcated, waxy, pigmented lesion, and developed at 
a younger age. Malignant tumor may diffuse infiltration to surrounding tissues, dam-
age the orbit and intraorbital tissues, result in loss of lashes, central ulceration and/or 
destruction of eyelid architecture, distant metastasis may also occur. Our model com-
bines with smartphone may help patients to monitor the malignant eyelid tumors them-
selves and assist in doctors’ clinical decision making. Lord et al. [35] first proposed the 
novel use of smartphone in ophthalmic imaging. Detailed use of smartphone-based 
image applications in ophthalmology was described later by various researchers [36–38]. 
Smartphone-based ophthalmic imaging techniques can be adopted by any clinician to 
obtain opinions from experts, and portable image documenting.

There are numerous imaging devices in ophthalmic examination, most of which are 
sophisticated and specialized for specific regions of the eye, which requires close inter-
action of the patient and the clinician. Therefore, a simple, portable alternative high-
quality imaging tool for routine examination is needed. Clinical images are of more 
convenient, and intuitive compared to dermoscopic images [17, 39] or histopathological 
images [18, 40, 41] reported previously. Clinical images have been used to evaluate eye-
lid disorders [22, 25, 42, 43], ocular motility and strabismus [44–47].

Recently, Adamopoulos et al. [48] and Li et al. [49] also developed AI system to detect 
eyelid tumors. The details of comparison with these studies have been listed in Table 4. 
In brief, Adamopoulos et  al. [48] used photographic images with small sample size to 
distinguish basal cell carcinoma. However, basal cell carcinoma is not the only malig-
nant eyelid tumor so that this model may fail to identify other malignant mass. In addi-
tion, this study did not provide some important evaluation metrics including sensitivity, 
specificity, and AUC. Li [49] et al. also developed DL model to identify malignant eyelid 
tumors from benign ones with bigger sample size. Before identifying the characteristics 
of the tumors, they trained model to locate the tumor first with an average precision 
of 76.2%, which meant about a quarter of mass was wrongly located. Therefore, human 
ophthalmologists in our study were assigned to precisely delineate the tumors before the 
implementation of DL in the development stage and real deployment scenario, so that 
our model showed better performance and this approach might be more appropriate for 
decision-making in clinic. Also, as an attempt, we used another prospectively collected 
dataset to compare the performance between model and human ophthalmologists, 
which proved the model has surpassed most ophthalmologists.

High accuracy and efficiency rates are the main advantages in the application of DL 
system in medical diagnosis, since the developed algorithms can capture and integrate 
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information in ways in a fraction of time that the human brain cannot perform. Different 
diagnosis can be found for the same eyelid tumor, due to the dependence of patients’ col-
laboration and clinician’s experience. DL system enable automatic risk stratification of 
tumors and can be used as a triaging tool before clinician assessment, which may reduce 
unnecessary biopsies [50]. Its successful implementation could reduce human error, pro-
viding early diagnosis and consequent cost reduction in eyelid tumor treatments [51].

The majority of eyelid tumors represent as benign proliferative ones. Skin tumors 
involve the eyelid region in up to 10% of cases, with BCCs being the most prevalent 
among Chinese population [6]. Various factors affecting the incidence of benign and 
malignant eyelid tumors, including race, geography, and genetics. Suspicions of malig-
nancy should be aroused when clinical signs arise, such as loss of lashes, central ulcera-
tion, infiltration, gradual enlargement, loss of sensation, induration, irregular or ‘pearly’ 
borders, destruction of eyelid structure, telangiectasia. Risk factors such as smoking, 
history of previous skin cancer, excessive sun exposure, previous radiation and immuno-
suppression also contribute to the occurrence of eyelid tumors [52–54].

In our study, 35.36% eyelid tumors are malignant tumors. According to epidemiologi-
cal investigations, Sendul et al. [54] found that 87.1% were benign tumor, the left (12.9%) 
composed of malignant tumors. Xu et al. [55] revealed that 86.2% were benign tumors 
with data from a same medical center. The difference may be due to the different sample 
size and that difficult cases are more likely to visit our medical center. Supporting the 
literatures, malignant eyelid tumors developed at an elder age than the benign tumors 
[2, 54, 55]. Similar to some previous studies, we also observed a lower eyelid predomi-
nance for the malignant eyelid tumors [9, 56]. Prolonged exposure to sunlight seems to 
be an important predisposing factor of this predominance [57]. No preference of benign 
tumors in the upper eyelid was observed as described before [6, 53]. Of seven patients 
with bilateral eyelid tumors in our study, six of them were xanthoma. The similarities 
and differences in the incidence rates of benign tumors among studies describing eyelid 
tumors can mainly be attributed to racial and regional factors rather than data bias.

This application available to general public can be used for patient self-examination 
and in community outreach programs when applying on smartphones, and it also pro-
vides support for junior clinicians while documenting cases and following up in a better 
way. Thereby, it can help to reduce unnecessary biopsies, minimize over diagnosis and 
other potential harms associated with screening, as well as to improve clinician work-
load and timely access to specialist care for people requiring urgent attention.

Although the performance of DL system in date analysis is promising, and several 
studies have also reported CNN algorithms have surpassed the classification efficacy of 
physician, the real performance of DL system still remains unclear. Future work could 
focus on the differentiation on subtypes of eyelid tumors, assuring the best classification 
outcome. Rigorously tests should be performed before implementation, and monitored 
after the utilization of this technology.

There are some limitations in our study. First, in comparison with skin tumors, eye-
lashes, eyebrows, and the background color of pupil, sclera, and iris could be the pos-
sible confounding factors associated with bias. Second, the classification in this study 
included only benign and malignant tumors, rather than specific types of tumors. We 
intend to enrich our dataset of each subtype tumors in order to develop a system with 
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better outcome employed to make specific diagnosis. Third, lesions were identified 
only from 2-dimensional photographs without any additional clinical information. 
Combining available data with the algorithm for classification such as clinical images, 
dermoscopic images or pathological images was proved to have a higher accuracy 
than single CNN model.

Conclusions
This study proves DL system is a convenient way that can be used in the identification 
of benign and malignant tumors through common clinical images. Our system has 
achieved a medical application of AI, with a better performance than most ophthal-
mologists. Compared with related researches, our study avoids the object detection 
procedure and reached better classification performance, which is appropriate for 
clinical use. In the future, combining DL system with smartphone may further enable 
patients’ self-monitoring for malignancy in eyelid tumors and assist in doctors’ clini-
cal decision making.
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