Ekman R. What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS). USA: Oxford University Press; 1997.
Google Scholar
Song S, Jaiswal S, Shen L, Valstar M. Spectral representation of behaviour primitives for depression analysis. IEEE Transactions on Affective Computing. 2020.
Ricciardi L, Visco-Comandini F, Erro R, Morgante F, Bologna M, Fasano A, Ricciardi D, Edwards MJ, Kilner J. Facial emotion recognition and expression in Parkinsons disease: an emotional mirror mechanism? PLoS ONE. 2017;12(1):0169110.
Article
Google Scholar
Chowanda A, Blanchfield P, Flintham M, Valstar M. Erisa: Building emotionally realistic social game-agents companions. In: International Conference on Intelligent Virtual Agents, pp. 134–143 (2014). Springer.
Akbar MT, Ilmi MN, Rumayar IV, Moniaga J, Chen T-K, Chowanda A. Enhancing game experience with facial expression recognition as dynamic balancing. Proc Comput Sci. 2019;157:388–95.
Article
Google Scholar
Mascarenhas S, Guimarães M, Santos PA, Dias J, Prada R, Paiva A. Fatima toolkit–toward an effective and accessible tool for the development of intelligent virtual agents and social robots. arXiv preprint arXiv:2103.03020 (2021).
Sutoyo R, Chowanda A, Kurniati A, Wongso R. Designing an emotionally realistic chatbot framework to enhance its believability with aiml and information states. Proc Comput Sci. 2019;157:621–8.
Article
Google Scholar
Szeliski R. Computer vision: algorithms and applications. USA: Springer; 2010.
MATH
Google Scholar
Lin M, Chen Q, Yan S. Network in network. arXiv preprint arXiv:1312.4400 (2013).
Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017).
Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016).
Picard RW. Affective computing. USA: MIT press; 2000.
Book
Google Scholar
Vinciarelli A, Pantic M, Bourlard H. Social signal processing: survey of an emerging domain. Image Vis Comput. 2009;27(12):1743–59.
Article
Google Scholar
Zhu W, Chowanda A, Valstar M. Topic switch models for dialogue management in virtual humans. In: International Conference on Intelligent Virtual Agents, pp. 407–411 (2016). Springer.
Alarcao SM, Fonseca MJ. Emotions recognition using EEG signals: a survey. IEEE Trans Affect Comput. 2017;10(3):374–93.
Article
Google Scholar
Valenza G, Citi L, Lanatá A, Scilingo EP, Barbieri R. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci Rep. 2014;4(1):1–13.
Google Scholar
Zhao Z, Li Q, Zhang Z, Cummins N, Wang H, Tao J, Schuller BW. Combining a parallel 2d cnn with a self-attention dilated residual network for ctc-based discrete speech emotion recognition. Neural Netw. 2021;141:52–60.
Article
Google Scholar
Valstar M, Zafeiriou S, Pantic M. 11 facial actions as social signals. Social signal processing. 2017;123.
Chowanda A, Sutoyo R. Convolutional neural network for face recognition in mobile phones. ICIC Express Lett. 2019;13(7):569–74.
Google Scholar
Piana S, Stagliano A, Odone F, Verri A, Camurri A. Real-time automatic emotion recognition from body gestures. arXiv preprint arXiv:1402.5047 (2014).
Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-workshops, pp. 94–101 (2010). IEEE.
Goodfellow IJ, Erhan D, Carrier PL, Courville A, Mirza M, Hamner B, Cukierski W, Tang Y, Thaler D, Lee D-H. Challenges in representation learning: a report on three machine learning contests. In: International Conference on Neural Information Processing, pp. 117–124 (2013). Springer
Pantic M, Valstar M, Rademaker R, Maat L. Web-based database for facial expression analysis. In: 2005 IEEE International Conference on Multimedia and Expo, p. 5 (2005). IEEE.
McKeown G, Valstar M, Cowie R, Pantic M, Schroder M. The semaine database: annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans Affect Comput. 2012;3(1):5–17. https://doi.org/10.1109/T-AFFC.2011.20.
Article
Google Scholar
Lyons M, Akamatsu S, Kamachi M, Gyoba J. Coding facial expressions with gabor wavelets. In: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998). IEEE.
Suryani D, Ekaputra V, Chowanda A. Multi-modal Asian conversation mobile video dataset for recognition task. Int J Electr Comput Eng (IJECE). 2018;8(5):4042–6.
Article
Google Scholar
Liliana DY, Basaruddin T, Oriza IID. The indonesian mixed emotion dataset (imed) a facial expression dataset for mixed emotion recognition. In: Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality, pp. 56–60 (2018).
Li S, Deng W. Deep facial expression recognition: a survey. IEEE Transactions on Affective Computing. 2020.
Zhu X, Ye S, Zhao L, Dai Z. Hybrid attention cascade network for facial expression recognition. Sensors. 2021;21(6):2003.
Article
Google Scholar
Liu M, Li S, Shan S, Chen X. Au-inspired deep networks for facial expression feature learning. Neurocomputing. 2015;159:126–36.
Article
Google Scholar
Pham L, Vu TH, Tran TA. Facial expression recognition using residual masking network. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4513–4519 (2021). IEEE.
Daihong J, Lei D, Jin P, et al. Facial expression recognition based on attention mechanism. Scientific Programming. 2021;2021.
Liang X, Xu L, Liu J, Liu Z, Cheng G, Xu J, Liu L. Patch attention layer of embedding handcrafted features in cnn for facial expression recognition. Sensors. 2021;21(3):833.
Article
Google Scholar
Reddy SPT, Karri ST, Dubey SR, Mukherjee S. Spontaneous facial micro-expression recognition using 3d spatiotemporal convolutional neural networks. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019). IEEE.
Pan X. Fusing hog and convolutional neural network spatial-temporal features for video-based facial expression recognition. IET Image Proc. 2020;14(1):176–82.
Article
Google Scholar
Kim Y, Yoo B, Kwak Y, Choi C, Kim J. Deep generative-contrastive networks for facial expression recognition. 2019; 1703:07140.
Cai J, Meng Z, Khan AS, Li Z, O’Reilly J, Tong Y. Island loss for learning discriminative features in facial expression recognition. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 302–309 (2018). IEEE.
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016).
Ding H, Zhou SK, Chellappa R. Facenet2expnet: Regularizing a deep face recognition net for expression recognition. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126 (2017). IEEE.
Zhang Z, Luo P, Loy CC, Tang X. From facial expression recognition to interpersonal relation prediction. Int J Comput Vis. 2018;126(5):550–69.
Article
MathSciNet
Google Scholar