Atwan J, Mohd M, Rashaideh H, Kanaan G. Semantically enhanced pseudo relevance feedback for arabic information retrieval. J Inf Sci. 2016;42(2):246–60.
Article
Google Scholar
Sadowski C, Stolee KT, Elbaum S. How developers search for code: a case study. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering. 2015. p. 191–201.
Jung Y, Park H, Du D-Z. An effective term-weighting scheme for information retrieval. Computer Science Technical Report TR008. Department of Computer Science, University of Minnesota, Minneapolis, Minnesota. 2000. p. 1–15.
Lau T, Horvitz E. Patterns of search: analyzing and modeling web query refinement. In: UM99 user modeling. Springer; 1999. p. 119–28.
Carpineto C, Romano G. A survey of automatic query expansion in information retrieval. ACM Comput Surv. 2012;44(1):1–50.
Article
Google Scholar
Furnas GW, Landauer TK, Gomez LM, Dumais ST. The vocabulary problem in human–system communication. Commun ACM. 1987;30(11):964–71.
Article
Google Scholar
Robertson S, Zaragoza H, Taylor M. Simple bm25 extension to multiple weighted fields. In: Proceedings of the thirteenth ACM international conference on information and knowledge management. 2004. p. 42–9.
Beil F, Ester M, Xu X. Frequent term-based text clustering. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. 2002. p. 436–42.
Shaalan K, Al-Sheikh S, Oroumchian F. Query expansion based-on similarity of terms for improving Arabic information retrieval. In: International conference on intelligent information processing. Springer; 2012. p. 167–76.
Luhn HP. The automatic creation of literature abstracts. IBM J Res Dev. 1958;2(2):159–65.
Article
MathSciNet
Google Scholar
He B, Ounis I. Term frequency normalisation tuning for bm25 and dfr models. In: European conference on information retrieval. Springer; 2005. p. 200–14.
ElKateb S, Black W, Rodríguez H, Alkhalifa M, Vossen P, Pease A, Fellbaum C. Building a wordnet for arabic. In: LREC. 2006. p. 29–34.
Gonzalo J. Sense proximity versus sense relations. GWC. 2004;2004:5.
Google Scholar
Fellbaum C. A semantic network of english verbs. WordNet Electron Lex Database. 1998;3:153–78.
Google Scholar
Voorhees EM. Query expansion using lexical-semantic relations. In: SIGIR’94. Springer; 1994. p. 61–9.
Gong Z, Cheang CW, Hou UL. Web query expansion by wordnet. In: International conference on database and expert systems applications. Springer; 2005. p. 166–75.
Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993–1022.
MATH
Google Scholar
Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf Sci. 1990;41(6):391–407.
Article
Google Scholar
Sergienko R, Gasanova T, Semenkin E, Minker W. Collectives of term weighting methods for natural language call routing. In: Informatics in control, automation and robotics. Springer; 2016. p. 99–110.
Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems. 2013. p. 3111–9.
Pennington J, Socher R, Manning CD. Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. p. 1532–43.
Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. 2002;6(1):58–73.
Article
Google Scholar
Kadri Y, Nie J-Y. Effective stemming for arabic information retrieval. In: Proceedings of the challenge of arabic for NLP/MT conference, Londres, Royaume-Uni. 2006. p. 68–74.
Boudchiche M, Mazroui A, Bebah MOAO, Lakhouaja A, Boudlal A. Alkhalil morpho sys 2: a robust arabic morpho-syntactic analyzer. J King Saud Univ Comput Inf Sci. 2017;29(2):141–6.
Google Scholar
Pasha A, Al-Badrashiny M, Diab MT, El Kholy A, Eskander R, Habash N, Pooleery M, Rambow O, Roth R. Madamira: a fast, comprehensive tool for morphological analysis and disambiguation of arabic. LREC. 2014;14:1094–101.
Google Scholar
Al-Serhan H, Ayesh A. A triliteral word roots extraction using neural network for arabic. In: 2006 International conference on computer engineering and systems. IEEE; 2006. p. 436–40.
Elayeb B, Bounhas I. Arabic cross-language information retrieval: a review. ACM Trans Asian Low-Resour Lang Inf Process. 2016;15(3):1–44.
Article
Google Scholar
Bai J, Nie J-Y, Cao G, Bouchard H. Using query contexts in information retrieval. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval. 2007. p. 15–22.
Shen X, Xu Y, Yu J, Zhang K. Intelligent search engine based on formal concept analysis. In: 2007 IEEE international conference on granular computing (GRC 2007). IEEE; 2007. p. 669
Froud H, Lachkar A, Ouatik SA. Stemming versus light stemming for measuring the similarity between arabic words with latent semantic analysis model. In: 2012 colloquium in information science and technology. IEEE; 2012. p. 69–73.
Yokoyama A, Klyuev V. Search engine query expansion using Japanese wordnet. In: 2010 3rd international conference on human-centric computing. IEEE; 2010. p. 1–5.
Alzahrani SM, Salim N. On the use of fuzzy information retrieval for gauging similarity of Arabic documents. In: 2009 second international conference on the applications of digital information and web technologies. IEEE; 2009. p. 539–44.
Chauhan R, Goudar R, Sharma R, Chauhan A. Domain ontology based semantic search for efficient information retrieval through automatic query expansion. In: 2013 international conference on intelligent systems and signal processing (ISSP). IEEE; 2013. p. 397–402.
Zhai J, Zhou K. Semantic retrieval for sports information based on ontology and sparql. In: 2010 international conference of information science and management engineering, vol. 1. IEEE; 2010. p. 395–8.
Khan HU, Saqlain SM, Shoaib M, Sher M. Ontology based semantic search in holy quran. Int J Fut Comput Commun. 2013;2(6):570.
Article
Google Scholar
Hong L. A tutorial on probabilistic latent semantic analysis. 2012. arXiv preprint arXiv:1212.3900.
Zhou G, He T, Zhao J, Hu P. Learning continuous word embedding with metadata for question retrieval in community question answering. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Vol. 1: Long Papers). 2015. p. 250–9.
Zhang M, Liu Y, Luan H, Sun M, Izuha T, Hao J. Building earth mover’s distance on bilingual word embeddings for machine translation. In: Thirtieth AAAI conference on artificial intelligence. 2016.
Diaz F, Mitra B, Craswell N. Query expansion with locally-trained word embeddings. 2016. arXiv preprint arXiv:1605.07891.
Roy D, Paul D, Mitra M, Garain U. Using word embeddings for automatic query expansion. 2016. arXiv preprint arXiv:1606.07608.
Liu Q, Huang H, Lut J, Gao Y, Zhang G. Enhanced word embedding similarity measures using fuzzy rules for query expansion. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE; 2017. p. 1–6.
Khoja S. Stemming arabic text. Lancaster: Computing Department, Lancaster University; 1999.
Google Scholar
Jansen BJ, Booth DL, Spink A. Determining the informational, navigational, and transactional intent of web queries. Inf Process Manage. 2008;44(3):1251–66.
Article
Google Scholar