Hao L, Lei X, Yan Z, ChunLi Y. The application and implementation research of smart city in china. In: 2012 international conference on system science and engineering (ICSSE). New York: IEEE; 2012. p. 288–92.
Dameri RP. Searching for smart city definition: a comprehensive proposal. Int J Comput Technol. 2013;11(5):2544–51.
Article
Google Scholar
Van den Bergh J, Viaene S. Unveiling smart city implementation challenges: the case of Ghent. Inf Polity. 2016;21(1):5–19.
Article
Google Scholar
Muchtar K, Rahman F, Cenggoro TW, Budiarto A, Pardamean B. An improved version of texture-based foreground segmentation: block-based adaptive segmenter. Procedia Comput Sci. 2018;135(September):579–86.
Article
Google Scholar
Minoli D, Sohraby K, Occhiogrosso B. Iot considerations, requirements, and architectures for smart buildings-energy optimization and next-generation building management systems. IEEE Internet Things J. 2017;4(1):269–83.
Google Scholar
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. p. 1097–105.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv:1409.1556.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1–9.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8.
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence. 2017.
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 4700–8.
Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. 2017. p. 2980–8.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137–49.
Article
Google Scholar
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016. p. 779–88.
He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: 2017 IEEE international conference on computer vision (ICCV). 2017. p. 2980–8.
Li Y, Zhang X, Chen D. Csrnet: dilated convolutional neural networks for understanding the highly congested scenes. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR). 2018.
Liu L, Wang H, Li G, Ouyang W, Lin L. Crowd counting using deep recurrent spatial-aware network. In: Proceedings of international joint conferences on artificial intelligence organization (IJCAI). 2018.
Shi Z, Zhang L, Liu Y, Cao X, Ye Y, Cheng M-M, Zheng G. Crowd counting with deep negative correlation learning. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), 2018. p. 5382–90.
Cenggoro TW, Aslamiah AH, Yunanto A. Feature pyramid networks for crowd counting. In: To appear: 2019 international conference of computer science and computational intelligence. 2019.
Article
Google Scholar
Chen X, Bin Y, Sang N, Gao C. Scale pyramid network for crowd counting. In: 2019 IEEE winter conference on applications of computer vision (WACV). New York: IEEE; 2019. p. 1941–50.
Liu N, Long Y, Zou C, Niu Q, Pan L, Wu H. Adcrowdnet: an attention-injective deformable convolutional network for crowd understanding. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR). 2019.
Liu W, Salzmann M, Fua P. Context-aware crowd counting. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR). 2019.
Shi M, Yang Z, Xu C, Chen Q. Revisiting perspective information for efficient crowd counting. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR). 2019.
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. New York: IEEE; 2009. p. 248–55.
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.
Article
MathSciNet
Google Scholar
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–51.
Article
Google Scholar
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. p. 580–7.
Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Advances in neural information processing systems. 2014. p. 3320–8.
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft coco: common objects in context. In: European conference on computer vision. Berlin: Springer; 2014. p. 740–55.
Chapter
Google Scholar
Zhang Y, Zhou D, Chen S, Gao S, Ma Y. Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 589–97.
Zhang C, Li H, Wang X, Yang X. Cross-scene crowd counting via deep convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 833–41.
Idrees H, Saleemi I, Seibert C, Shah M. Multi-source multi-scale counting in extremely dense crowd images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2013. p. 2547–54.
Wang Q, Gao J, Lin W, Yuan Y. Learning from synthetic data for crowd counting in the wild. 2019. arXiv preprint arXiv:1903.03303.
Johnsirani Venkatesan N, Nam C, Shin DR. Deep learning frameworks on apache spark: a review. IETE Tech Rev. 2019;36(2):164–77.
Article
Google Scholar
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016. p. 265–83.
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia. New York: ACM; 2014. p. 675–8.
Cenggoro TW, Tanzil F, Aslamiah AH, Karuppiah EK, Pardamean B. Crowdsourcing annotation system of object counting dataset for deep learning algorithm. In: IOP conference series: earth and environmental science, vol. 195. Bristol: IOP Publishing. 2018. p. 012063.
Article
Google Scholar
Pardamean B, Cenggoro TW, Chandra BJ. Rahutomo: a user interface for rapid data annotation of room activity level detection system. In: To appear: 2019 international conference on eco engineering development (ICEED). Bristol: IOP Publishing; 2019.
Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J Big Data. 2019;6(1):27.
Article
Google Scholar
Cenggoro TW, Isa SM, Kusuma GP, Pardamean B. Classification of imbalanced land-use/land-cover data using variational semi-supervised learning. In: 2017 international conference on innovative and creative information technology (ICITech). New York: IEEE; 2017. p. 1–6.
Cenggoro TW. Deep learning for imbalance data classification using class expert generative adversarial network. Procedia Comput Sci. 2018;135:60–7.
Article
Google Scholar
Kingma DP. Ba J. Adam: a method for stochastic optimization. In: The international conference on learning representations 2015, San Diego, CA. 2015.