Skip to main content

Table 1 Related work summary of various ML techniques

From: Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction

SL. NO.

ML Technique

Algorithm

Author

Dataset

Accuracy (In %)

     

Binary

Multi-class

1

ML

RF

[29]

UNSW-NB15

98.67

97.37

2

 

ELM

[25]

  

98.43

3

 

DT

[26]

 

90.85

67.57

  

ANN

  

84.4

77.51

  

LR

  

77.64

65.29

  

KNN

  

84.46

72.30

  

SVM

  

60.89

53.95

4

 

C5

[28]

  

99.3

5

 

PART

[30]

CIC-IDS2017

 

99.95

    

KDDCUP’99

 

99.32

6

 

MapReduce+RF

[31]

  

93.9

7

 

PSO+NB

[32]

  

99.12

8

 

HFS+LightGBM

[33]

CIC-IDS2018

 

97.73

9

 

IG+GR+JRip

[27]

KDDCUP’99

 

99.57

    

BOT-IOT

 

99.99

10

 

t-SNERF

[34]

UNSW-NB15

 

100

    

CIC-IDS2017

 

99.78

    

Phishing

 

99.70

11

 

DT

[35]

NSL-KDD

99.42

    

CIC-IDS2017

98.80

12

 

IG+RF

[36]

 

99.86

  

IG+J48

  

99.87

 

13

Deep Learning

DNN

[37]

UNSW-NB15

99.92

95.9

  

RNN

  

85.42

85.4

  

ANN

  

99.26

97.89

14

 

DNN

[38]

KDDCUP’99

91.50

    

NSL-KDD

 
    

UNSW-NB15

 

15

 

LSTM+CNN

[39]

CICIDS-001

 

99.83

    

UNSW-NB15

99.17

 

16

 

CNN

[45]

KDDCUP’99

 

99

    

CIC-IDS2018

 

91.50

17

Hybrid Learning

DNN+ACO

[42]

CIC-IDS2017

 

98.25

18

 

CNN+RNN

[43]

CIC-IDS2018

 

97.75

19

 

WFEU+FFDN

[44]

AWID

99.66

99.77

    

UNSW-NB15

87.10

77.16

20

 

SGM+CNN

[22]

 

99.74

96.54

    

CIC-IDS2017

 

99.85

21

 

WDLSTM+CNN

[45]

UNSW-NB15

97.17

98.43