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Introduction
The knowledge of a schema, i.e., the structure of the data, is critical for its efficient pro-
cessing. We can distinguish schema-full, schema-less, and schema-mixed database man-
agement systems (DBMSs), where the schema definition is required, ignored, or can be 
only partial. However, despite the specification of a schema when storing the data (i.e., 
the so-called schema-on-write approach) is not required in some systems, the knowledge 
of the structure of the data is needed when the data is to be processed, i.e., the so-called 
schema-on-read approach is still essential. Hence, when the user does not define the 
schema, it needs to be extracted from the data.

The problem of inference of a schema for a given data has been studied for several 
years, mainly for XML [1] and JSON [2], i.e., the document model, which has the richest 
structure among the current common models. For XML documents, where the order of 
elements is significant, the respective schemas involve regular expressions that describe 
the structure of the data. According to the Gold’s theorem [3] regular languages are not 
identifiable only from positive examples (i.e., sample XML documents), so either heuris-
tics [4, 5] or a restriction to an identifiable subclass of regular languages [6] is applied. 
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Newer approaches for currently popular JSON format, where the order is not captured 
in the schemas and, thus, the inference process is in this manner less complex, focus 
mainly on schema inference for Big Data [7, 8]. However, the volume of Big Data is not 
its only challenge. The variety feature represented by the multi-model data adds a new 
dimension of complexity—the need to process a set of distinct but interlinked data 
models.

Example 1.1  Figure 1 provides an example of a scenario inspired by the multi-model 
benchmark UniBench1. It depicts an ER model where we omit attributes, identifiers, and 
cardinalities for the sake of simplicity2. The colors denote the particular logical models in 
which the respective part of the ER model is represented—blue graph, violet relational, 
yellow key/value, and two document models, green JSON and gray XML. The example 
represents an e-shop where customers, members of a social network capturing mutual 
acquaintance, order products from various vendors.

At the logical level, the transition between two models can be expressed either via (1) 
inter-model references or by (2) embedding one model into another (such as, e.g., col-
umns of type JSONB in relational tables of PostgreSQL3). Another possible combination 
of models is via (3) cross-model redundancy, i.e., storing the same data fragment in mul-
tiple models.

In the case of multi-model data, the problem of schema inference is further compli-
cated by contradictory features of the combined models (such as structured vs semi-
structured, aggregate-oriented vs aggregate-ignorant, order-preserving vs order ignoring 
etc.), inter-model references and cross-model integrity constraints (ICs) in general, the 
existence of a (partial) schema in schema-full/schema-mixed systems preserving the 
data, or cross-modal redundancy. Besides, there are verified single-model approaches 
that, however, naturally target only specifics of the particular data model. And, last 

Fig. 1  Extended UniBench multi-model scenario

1  http://​udbms.​cs.​helsi​nki.​fi/?​proje​cts/​ubench.
2  The full model will be provided in the following examples.
3  https://​www.​postg​resql.​org/.

http://udbms.cs.helsinki.fi/?projects/ubench
https://www.postgresql.org/
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but not least, the question is how to represent the resulting multi-model schema, i.e., 
whether to choose one of the models (and which one) or whether a more abstract repre-
sentation, such as UML [9], is a better choice.

To address the key indicated problems, we extend our previous research results both 
in the area of inference of an XML schema [4, 5] and unified management of multi-
model data [10, 11]. We propose a novel approach capable of inference of a schema for a 
given set of multi-model data. The main contributions are as follows:

•	 In the proposed approach, we support all popular data models (relational, array, key/
value, document, column, graph, and RDF) and all three types of their combination 
(embedding, references, and redundancy).

•	 We can cover schema-less, schema-mixed, and schema-full systems, i.e., if needed, 
we can re-use an existing schema both user-defined or inferred using a verified sin-
gle-model approach.

•	 We support both local integrity constraints (e.g., unique or primary key) and global 
integrity constraints, i.e., intra-model and inter-model references.

•	 We introduce two versions of the approach–record-based and property-based–and 
experimentally verify their appropriateness for structurally different data.

•	 Following the current trends, the approach is designed to be parallelizable and, thus, 
scalable for Big Data.

•	 The proposed approach was implemented as a tool called MM-infer4 [12], i.e., the 
proof of the proposed concept.

Outline The rest of the paper is structured as follows: In "Related work" section, we over-
view related work and motivate the proposed approach. In "Data models and their uni-
fication" section, we discuss the currently popular data models, their specifics, and the 
respective influence on schema inference. In "Multi-model schema inference" section, 
we describe in detail the proposed approach. "Architecture and implementation" section, 
describes the architecture and implementation details of MM-infer and  "Experiments" 
section, introduces results of experiments. In "Conclusion and future work" section, we 
conclude and outline future work.

Related work
Several papers currently deal with the inference of a schema for a given set of sample 
data. We can divide them into approaches inferring (1) structural and (2) semantic 
schema. The approaches focus mainly on the document model expressed using XML or 
JSON in the former case. The critical difference is whether the order of child properties 
is significant or not. And in addition, since the JSON documents are closely related to 
NoSQL databases and Big Data, the approaches often support scalable processing, i.e., 
they can be parallelized. In the latter case of inference of a semantic schema, the aim is 
different. The approaches focus on the inference of a schema describing the semantics 
of the information stored in the data, usually expressed in RDF [13], but not its logical 
structure within a selected data model. Since this is not our current main target, we refer 
an interested reader to a recent extensive survey in Ref. [14].

4  https://​www.​ksi.​mff.​cuni.​cz/​~koupil/​mm-​infer/.

https://www.ksi.mff.cuni.cz/%7ekoupil/mm-infer/
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XML schema inference An extensive comparison of XML schema inference approaches 
can be found in [15]. The approaches are older, reflecting the decreasing popularity of 
XML with the arrival of Big Data and JSON. They can be classified according to various 
criteria such as, e.g., the type of the result (i.e., the language used), the way it is con-
structed, the inputs used, etc.

Heuristic approaches [16–21] are based on experience with manual construction of 
schemas. Their results do not belong to any specific class of XML grammars, and they 
are based on the generalization of a trivial schema using a set of predefined heuristic 
rules, such as, e.g., “if there are more than three occurrences of an element, it is probable 
that it can occur arbitrary times”. These techniques can be further divided into methods 
that generalize the trivial schema until a satisfactory solution is reached [17, 18, 20] and 
methods that generate a considerable number of candidates and then choose the best 
one [19]. While in the first case, the methods are threatened by a wrong step which can 
cause the generation of a suboptimal schema. In the latter case, they have to cope with 
space overhead and specify a proper function for the evaluation quality of the candi-
dates. A special type of heuristic methods are so-called merging state algorithms [18, 20]. 
They are based on the idea of searching a space of all possible generalizations, i.e., XML 
schemas, of the given XML documents represented using a prefix tree automaton. By 
merging its states and thus generalizing the automaton, they construct the sub-optimal 
solution. Since the space is theoretically infinite, only a proper subspace of possible solu-
tions is searched using various heuristics.

On the other hand, methods based on inferring of a grammar [22–28] exploit the 
theory of languages and grammars and thus ensure a certain degree of quality of the 
result. We can view an XML schema as grammar and an XML document valid against 
the schema as a word generated by the grammar. Although grammars accepting XML 
documents are, in general, context-free [29], the problem can be reduced to inferring 
a set of regular expressions, each for a single element (and its subelements). But, since, 
according to Gold’s theorem [3] regular languages are not identifiable only from positive 
examples (i.e., sample XML documents which should conform to the resulting schema), 
the existing methods exploit various other information such as, e.g., the predefined max-
imum number of nodes of the target automaton, restriction to an identifiable subclass of 
regular languages, etc.

JSON schema inference The current popular JSON schema inference approaches are 
described and compared in Ref. [30]. Paper [31] statically compares several schema 
extraction algorithms over multiple NoSQL stores.

Paper [32] presents an approach for inferring versioned schemas from document 
NoSQL databases based on the Model-Driven Engineering (MDE) along with sample 
applications created from such inferred schemas. This research is furthered by disser-
tation thesis [31] and by paper [33] who tackle the issues of visualization of schemas 
of aggregate-oriented NoSQL databases and propose desired features that should be 
supported in visualization tools. Most recently, Fernandez et al. expand upon the meta-
model from paper [32] by introducing a unified meta-model capable of modeling both 
NoSQL and relational data [34].

Authors of Ref. [35] propose an approach to extract a schema from JSON data stores, 
measuring the degree of heterogeneity in the data and detecting structural outliers. They 
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also introduce an approach for reconstructing schema evolution history of data lakes 
[36]. Additionally, jHound [37], a JSON data profiling tool is presented, which can be 
used to report key characteristics of a dataset, find structural outliers, or detect docu-
ments violating best practices of data modelling. Finally, Josch [38] is a tool that ena-
bles NoSQL database maintainers to extract a schema from JSON data more efficiently, 
refactor it, and then validate it against the original dataset.

Authors of Ref. [39] propose a distributed approach for parameterized schema infer-
ence of massive JSON datasets and introduce a simple but expressive JSON type lan-
guage to represent the schema.

Paper [40] provides an MDE-based approach for discovering schema of multiple JSON 
web-based services. Later its authors put it into practice as a web-based application 
along with a visualization tool [41].

Last but not least, Frozza et al. introduce a graph-based approach for schema extrac-
tion of JSON and BSON5 document collections [42] and another inference process for 
columnar NoSQL databases [43], specifically HBase6.

Summary As we can see, the amount of related work is significant, and there exist 
approaches focusing on many specifics of schema inference. However, to the best of our 
knowledge, currently, there exists no approach that deals with the inference of a multi-
model schema. At first sight, the single-model approaches can be reused. However, this 
idea is not that straightforward. As we will show in the following sections, the particular 
models have distinct, even contradictory features, so first, a way to unify them must be 
found. Another complication is the mutual references and redundancy that need to be 
considered.

Data models and their unification
In the rest of our work, we consider the following currently popular data models: rela-
tional, array, key/value, document, column, graph, and RDF, i.e., we support all currently 
popular structured and semi-structured data to cover all combinations of models used 
in the existing popular multi-model systems7. First, we provide a brief overview of their 
features. Next, we discuss their unification to simplify and clarify the further explanation 
of the proposal.

Overview of models

From the structural point of view, which is our main target, the core classification is 
based on the complexity of the supported data structures. Aggregate-oriented models 
(key/value, document, and column) primarily support the data structure of an aggre-
gate, i.e., a collection of closely related (semi-)structured objects we want to treat as a 
unit. In the traditional relational world, we would speak about data de-normalization. 
On the contrary, aggregate-ignorant models (relational, array, graph, and RDF) are not 
primarily oriented to the support of aggregates. The relational world strongly empha-
sizes the normalization of structured data, whereas the graph model is, in principle, a 
set of flat objects mutually linked by any number of edges.

5  https://​bsons​pec.​org.
6  http://​hbase.​apache.​org.
7  https://​db-​engin​es.​com/​en/​ranki​ng.

https://bsonspec.org
http://hbase.apache.org
https://db-engines.com/en/ranking
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Relational model Relational model is based on the mathematical term relation, i.e. a 
subset of Cartesian product. The data are logically represented as tuples forming rela-
tions. Each tuple in a relation is uniquely identified by a key. A part of the Structured 
Query Language (SQL) [44], called Data Definition Language (DDL), is denoted for 
the definition of a relational schema, i.e., the names of relation, names of attributes, 
their domains (simple data types), and integrity constraints (i.e., keys, foreign keys 
etc.).

Example 3.1  In Fig. 2 we can see an example of data from the relational model, namely 
the one implemented in PostgreSQL as reflected by the particular data types. On the 
left we can the respective part of ER model from Fig. 1 and its transformation to three 
respective tables (relations) Vendor, Product, and Manufactured with the respective 
columns.

Array model The array model works with the notion of multi-dimensional array 
being represented as a mapping from a set of dimensions to a set of attributes. In 
this sense, the relational model represents the case of one dimension, i.e., the identi-
fier (index) of a particular tuple of a relation, or two dimensions corresponding to an 
identifier of a tuple and a particular attribute. Also, in this case, the DDL specifies 
the structure of the arrays, i.e., their names, the domains, ranges, and steps of dimen-
sions, the names and domains of attributes, and respective integrity constraints.

Fig. 2  An example of relational data

Fig. 3  An example of array data
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Example 3.2  In Fig. 3 we can see how the the same part of ER schema used in Fig. 2 
would be transformed to the array model. While one-dimensional arrays Vendor and 
Product have the same structure, two-dimensional array Manufactures occupies much 
more space.

Key/value model The key/value model is the simplest aggregate-oriented data 
model. It corresponds to associative arrays, dictionaries, or hashes. Each record in the 
key/value model consists of an arbitrary schema-less value and its unique key, ena-
bling storing, retrieving, or modifying the value.

Example 3.3  In Fig. 4 we can see an example of key/value data. Both the ER model on 
the left and visualization of the data on the right depict the simplicity of the model—
the identifier ProductID and respective unstructured (binary) data content denoted as 
Content.

Column model The (wide) column model can be interpreted as a two-dimensional key/
value model. It consists of the notions of a column family (table), a row, and a column. 
However, unlike the relational model, each row of a column family (table) can have dif-
ferent columns (having different names and/or data types). In other words, each row is 
a set of key/value pairs independent of other rows of the same column family. In some 
wide column systems, such as Cassandra8, it is possible to specify (a part of ) a schema 
of column families. Usually, a set of optional/compulsory columns is common for rows 
of the column family, whereas others can be arbitrary. If only a part of the schema can be 
specified, we speak about schema-mixed systems.

Example 3.4  In Fig. 5, we can see sample column data, namely the approach used in 
Cassandra, corresponding to the respective part of ER model on the left. Each row in 
the column family on the right is identified using column id and further contains three 

Fig. 4  An example of key/value data

Fig. 5  An example of column data

8  https://​cassa​ndra.​apache.​org/_/​index.​html.

https://cassandra.apache.org/_/index.html
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columns name, country, and cdf of type String. Next, it contains column Industry of 
complex type Set<String> (i.e., a set of strings) and column Contact of type Map which 
is supported by Cassandra. Since the column Industry is not compulsory, the respective 
value is missing in some rows.

Document model The document (semi-structured) model is based on the idea of rep-
resenting the data without an explicit and separate definition of its schema. Instead, the 
particular pieces of information are interleaved with structural/semantic tags that define 
their structure, nesting etc.

The XML is a human-readable and machine-readable markup language. The data 
are expressed using elements delimited by tags containing simple text, subelements, or 
their combination. Additional information can be stored in the attributes of an element. 
Standard languages like Document Type Definition (DTD) [1] or XML Schema [45, 46] 
enable to specify the structure of XML documents using regular expressions.

Example 3.5  Figure 6 represents an example of document data expressed in XML. As 
we can see, the structure of invoices can differ depending on whether the invoice is for 
a customer or for a vendor. The XML document with root element invoice identified by 
attribute invoiceNo contains identification of the respective customer (element custom-
erId) or vendor (element vendorID), date of creation (element creationDate), due date 
(optional element dueDate present if the invoice is not paid yet), list of ordered items 
(subelements product of element items), total price of the order (element totalPrice), and 
an indication whether it was already paid (optional element paid). So, there can exist 
several structurally different version of an invoice in the document collection depending 
on their status.

The JSON is a human-readable open-standard format. It is based on the idea of an 
arbitrary combination of three basic data types used in most programming languages 
– key/value pairs, arrays, and objects. Contrary to XML, the specific order of items in 
a JSON document is not essential. JSON Schema [47] language enables to specify the 
structure of JSON documents.

Fig. 6  An example of document data expressed in the XML format



Page 9 of 46Koupil et al. Journal of Big Data            (2022) 9:97 	

Example 3.6  In Fig. 7 we can see an example of document data expressed in JSON. 
Again, we can see two structurally different documents belonging to the same collection, 
this time describing orders. The order is identified using a simple property _id and fur-
ther contains embedded documents customer, contact, and Items. Note that some infor-
mation about customers and products may be stored redundantly in each order where 
the customer or product appears. In addition, since the property contact represents a 
map which is not supported in JSON, it corresponds to a set of optional properties.

Graph model The graph data model is based on the mathematical definition of a graph, 
i.e., a set of vertices (nodes) V and edges E corresponding to pairs of vertices from V. 
Nodes and edges are assigned with attributes, each having a name and domain (simple 
type). In addition, both nodes and edges have their type, enabling to group nodes/edges 
that represent the same piece of reality. However, the schema of nodes/edges does not 
(or even is not expected to) be defined.

Fig. 7  An example of document data expressed in the JSON format

Fig. 8  An example of graph data
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Example 3.7  Figure  8 provides an example of graph data. As we can see, from the 
structural aspect, the model contains only nodes, edges, and attributes with simple 
types. In this example, the nodes correspond to ER entities (i.e., Post, Tag, Person, and 
Customer) and edges to respective ER relationships.

RDF model The RDF model corresponds to a directed graph composed of triple state-
ments. The statement is represented by a node for the subject, a node for the object, and 
an edge that goes from the subject to the object representing their mutual relationship. 
Each of the three parts of the statement can be identified by a URI.

The RDF schema (RDFS) [48] or the Web Ontology Language (OWL) [49] enable to 
define a schema of RDF data. However, it does not express the structure of the data, but 
the semantics, i.e., classes to which the represented entities of the real word belong, their 
features and mutual relationships etc.

Multi-model data Multi-model data are in general data which are logically represented 
in more than one model. The currently existing multi-model DBMSs [50] differ in the 
strategy used to extend the original model to other models or to combine multiple mod-
els. The new models can be supported by adopting an entirely new storage strategy, an 
extension of the original storage strategy, a new interface, or even no change in the origi-
nal storage strategy (used for trivial cases). From the logical level, the transition between 
two models can be expressed either via: 

1.	 Inter-model references,
2.	 Embedding one model into another (e.g., columns of type JSON in tables of the rela-

tional model of PostgreSQL9), or
3.	 Multi-model redundancy, i.e., storing the same data fragment in two or more distinct 

models, usually for efficient query evaluation.

Fig. 9  An example of multi-model data

9  https://​www.​postg​resql.​org/.

https://www.postgresql.org/
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Example 3.8  For the sake of clarity, the complete set of sample multi-model data cor-
responding to the ER model in Fig. 1 is provided in Fig. 9. The Fig. illustrates the need 
for a multi-model schema inference approach. As we can see, even this simple example 
depicts how hard it is to manage multi-model data and discover the overall structure, 
references, redundancy etc., within distinct models and their specifics.

Regarding the definition of a schema, currently there exists no standard language for 
expressing the structure of multi-model data. More abstract approaches, such as the Uni-
fied Modeling Language (UML) [9] or the Entity-Relationship (ER) model [51, 52], or our 
proposal [11] based on category theory [53] can be used.

Unification of models

Since the terminology within the considered models differs, we provide a unification used 
throughout the text in Table 1.

As we can see, the terminology is apparent in most cases, but some comments might be 
needed in specific cases. A kind represents a single logical class of items represented in each 
of the models. For instance, in the relational model, a kind corresponds to the notion of a 
table, whereas in the graph model, a kind corresponds to a class of nodes/labels specified 
by a label. A record then represents one particular item of a kind, e.g., a row of a table or a 
graph node/edge with a particular label.

A record consists of properties which can be either simple, i.e., having a simple scalar 
value, or complex, i.e., containing other properties. The complex properties enable hierar-
chically nested structure in the case of the document model and also the column model 
in some cases (e.g., in Cassandra, where super-columns, i.e., a two-level hierarchy of the 

Table 1  Unification of terms in popular models

Unifying 
term

Relational Array Graph RDF Key/Value Document Column

Kind Table Matrix Label Set of triples Bucket Collection Column 
family

Record Tuple Cell Node/edge Triple Pair (key, 
value)

Document Row

Property Attribute Attribute Property Predicate Value JSON Field/
XML ele-
ment or 
attribute

Column

Domain Data type Data type Data type IRI/iteral/
blank node

– Data type Data type

Value Value Value Value Object Value Value Value

Identifier Key Coordi-
nates/
dimensions

Identifier Subject Key JSON identi-
fier/XML ID 
or key

Row key

Reference Foreign key – – – – JSON refer-
ence/XML 
keyref

–

Array – – Array – Array JSON array/
repeating 
XML ele-
ments

Array

Structure – – – – Set/ZSet / 
Hash

Nested 
document

Super column
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columns, are supported). With this view, the whole kind can be treated as a single complex 
top-level property, whose name is the name of the kind and its child properties correspond 
to the properties of the kind. For example, in the case of the document model, there is only 
one such child property—the root element of the XML document or an anonymous root of 
the JSON document. Or, in the case of the relational model, the child properties of the top-
level property correspond to the particular columns. We will use this view to simplify the 
inference algorithms.

Domains and values correspond to data types and selected values in all the models. Iden-
tifiers correspond to the notion unambiguously identifying particular records. References 
from one kind to another are allowed only in the relational and document model.

Last but not least, considering more complex data types, some models support arrays or 
structures. We distinguish between homogeneous and heterogeneous arrays. In the former 
case, an array should contain fields of the same type. In the latter case, which is allowed only 
in the document model, an array can contain fields of multiple types. Only in the case of 
the document model the type of an array item can be complex (i.e., represent nested docu-
ments); in all other cases, only arrays of simple (scalar) types are allowed.

Multi‑model schema inference
We have to assume that the input data may be stored either in one multi-model 
DBMS or in a polystore, i.e., a set of single-model or multi-model systems. To infer a 
multi-model schema, we first need to process all types of input data. In addition, for 
some systems, a (partial) user-defined schema may exist. Or, for some models, a veri-
fied single-model inference approach may exist. These results can be integrated into 
the multi-model result.

First, in "Basic building blocks" section, we introduce two basic building blocks of 
the proposed approach: 

1	 A type hierarchy used for inference of data types and
2	 A unifying representation of a single record or a possibly existing schema called 

Record Schema Description.

Next, we provide an overview of the general workflow of the algorithm in "Schema 
inference workflow" section. Then, we introduce in detail the inference approach, 
namely its record-based ("Record-based local inference algorithm" section) and prop-
erty-based ("Property-based local inference algorithm" section) version. Finally, we 
discuss the process of inference of integrity constraints ("Gathering candidates for 
ICs and redundancy" section).

Basic building blocks

To be able to process all the considered data models using a single unified approach, 
we propose two auxiliary structures – the type hierarchy (see Type hierarchy" sec-
tion) and the record schema description (see "Record Schema Description" section). 
The type hierarchy enables us to cope with the problem of distinct sets of simple types 
used in the models (or their system-specific implementations). The record schema 
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description enables one to describe a schema of one kind (including the case of a 
schema of a single record) regardless of its model(s).

Type hierarchy

The type hierarchy is a simple tree-based representation of basic data types that can 
occur in the input models and their mutual relationships. It enables us to quickly find 
a common supertype that covers a set of data types even though not all of them are 
supported in each model.

The data types supported across the data models, forming the set T′ , are repre-
sented as vertices vi and the natural hierarchy between the types is represented as 
edges e : vj → vi , when values of vj involve also values of vi . For example, the fact that 
String is a generalization of Integer is represented as String → Integer. 
Additionally, we assign a unique prime pi or number 1 to each vertex vi . The numbers 
are assigned using the BFS algorithm, starting from 1 assigned to the root of the hier-
archy and ensuring that pi < pj if e : vi → vj . The integer representation of node vi is 

then computed as Ti =
∏i

j=0 pj , where p0, . . . , pi are prime numbers (or 1 assigned to 
the root) assigned to vertices v0, . . . , vi on the path from root node v0 to vi . The con-
cept of union type UT, is recursively defined as a union (denoted using operator ⊕ ) of 
types Ti, i = 0, ..., n , i.e., UT := ⊕n

i=0Ti , where Ti is a simple type or a union type. We 
will denote the set of all types, i.e., both basic and union types as T.

Next, we can introduce an associative and distributive operator bestGeneralType, 
defined as Ti ⊔ Tj := gcd(Ti,Tj) , where gcd is the greatest common divisor of prime 
products Ti and Tj representing the best general type of Ti and Tj.

In addition, we introduce additional associative and distributive operator typeMerge, 
denoted as ⋄ , defined as:

•	 Ti ⋄ Tj := Ti ⊕ Tj if Ti  = Tj

•	 UT ⋄ T := UT ⊕ T  if T � UT

•	 UT ⋄ T := UT  if T ⊆ UT

•	 UT1 ⋄ UT2 := UT1 ⊕UT2 if UT1 � UT2

•	 UT1 ⋄ UT2 := UT1 if UT2 ⊆ UT1

Fig. 10  An example of Type Hierarchy
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Example 4.1  Let us illustrate an example of the type hierarchy of data types used in 
Fig. 1. The hierarchy illustrated in Fig. 10 is represented as a tree having an artificial root 
AnyType10 and then the natural type hierarchy. As we can see, we do not consider the 
hierarchy typical for programming languages, i.e., an object being a supertype. Instead, 
we consider representation hierarchy, i.e., natural conversions between data types. For 
example, since anything can be represented as a String, it is the root of the tree. Addi-
tionally, String is assigned with 1, i.e., String is a supertype of all types.

As we can also see, each node is assigned with prime (in the BFS order), whereas the data 
type itself is represented as a product (corresponding to the path from String to the data 
type). For example, String := 1 , Tuple := 1× 2× 19× 43 , and Double := 1× 11× 31.

Additionally, in the example we also represent any ComplexType as an even number, 
because Collection := 1× 2 is a supertype of all complex types. This allows us to quickly 
distinguish simple and complex types using binary operations (lowest bit value test).

Example 4.2  Having the data type hierarchy from Fig. 10, we can represent a union 
type as a union of data types represented as products. For example:

•	 A union type UTs := Double⊕ Long of two simple types is computed as a simple 
union of products, i.e., UTs := (1× 11× 31)⊕ (1× 11× 37)11.

•	 A union of two complex types UTc := Tuple⊕Map is represented as 
UTc := 2× 19× 43⊕ 2× 23.

•	 Finally, a union of two union types UTu := UTs ⊕UTc is represented as a union 
UTu := 11× 31⊕ 11× 37⊕ 2× 19× 43⊕ 2× 23.

Example 4.3  Computing the best general type can be done as follows:

•	 Having a union type of simple types UTs := 11× 31⊕ 11× 37 , the best best general 
type is computed as gcd(11× 31, 11× 37) = 11 ∼= Number.

•	 Having UTc := 2× 19× 43⊕ 2× 23 , the best general type is computed as 
gcd(2× 19× 43, 2× 23) = 2 ∼= Collection.

•	 Finally, the best general type of UTu := 11× 31⊕ 11× 37⊕ 2× 19× 43⊕ 2× 23 
is gcd(11× 31, 11× 37, 2× 19× 43, 2× 23) = 1 ∼= String.

Note that the implementation of finding the best general type may follow the hierar-
chical structure of the tree. Therefore it is not needed to compute gcd() in an explicit way 
(with the exponential complexity of the algorithm). Instead, we traverse the tree from its 
root, and we try to divide all the type representations by a prime assigned to the node. If 
it returns an integer, we traverse deeper. Otherwise, we try the sibling nodes. Having all 
the siblings processed and no subtree to traverse, the gcd is found.

11  Note that parentheses can be omitted with regards to the order of operations × and ⊕ . Also String := 1 can be omitted 
in the product.

10  In usual implementations, we consider String as a supertype of all data types, therefore the numbering of nodes starts 
from String instead of AnyType (i.e., AnyType is ignored).
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Record schema description

The Record Schema Description (RSD) enables us to describe a schema of one kind 
regardless of its model(s). It naturally covers also the case of a trivial schema of a single 
record. So, in the proposed multi-model inference process it serves for representation 
of: 

1.	 All types of input schemas, i.e., 

(a)	 an existing user-defined schema,
(b)	 a single-model schema inferred using a single-model approach, and
(c)	 a basic schema inferred using the local schema inferrer in the remaining cases, 

i.e., for kinds without a schema,

2.	 Intermediate schemas created during the inference process by the global schema 
inferrer, and

3.	 The resulting multi-model schema that is transformed to a required output form.

The RSD has a tree structure, and it describes the structure of a property, a record, or 
a kind (i.e., a set of records) because all the three cases can be treated in the same way, 
as we have discussed above. The root of an RSD corresponds to a root property of the 
respective data model (e.g., the root XML element or the anonymous root of a JSON 
hierarchy), or it is an artificial root property with trivial settings encapsulating the prop-
erties (e.g., in the relational or graph model). An RSD describing a property (or a record 
or a kind) p is recursively defined as a tuple rsd = (name, unique, share, id, types, models, 
children, regexp, ref), where:

•	 name is the name of property p extracted from the data (e.g., _id, person) or it can 
be anonymous (e.g., in case of items of JSON arrays or an artificial root property).

•	 unique is the IC specifying uniqueness of values of p. Its values can be T (true), F 
(false), or U (unknown) for intermediate steps of the inference process.

•	 share = ( sharep , sharex ) is a tuple, where sharep is the number of all occurrences of 
property p and sharex is the number of parent properties containing p at least once. 
Note that sharep > sharex reflects so-called repeating property, i.e., property form-
ing an element of an array. Also note that if we combine p.sharex with pp.sharep 
(of any type), where pp is the parent property of p, we get the optionality of p, i.e., 
p.sharex = pp.sharep reflects a required property, while p.sharex < pp.sharep 
reflects an optional property.

•	 id is the IC specifying that the property is an identifier. Its values can also be T, F, or 
U with the same meaning.12

•	 types is a set of data types that cover the property. For a simple property it involves 
simple data types (i.e., String, Integer, ...). For a complex property it involves 
the following values:

12  For the sake of simplicity we currently do not support composite identifiers or respective composite references.
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–	 Array, i.e., ordered (un)named (not) unique child properties (e.g., child ele-
ments in XML or items of arrays in JSON),

–	 Set, i.e., unordered unnamed unique child properties (e.g., items of Set in col-
umn store Cassandra), and

–	 Map, i.e., unordered named unique child properties (e.g., attributes of a relational 
table).

	  As we will see later, in the final phase of the inference process, the set is reduced 
to a single resulting datatype.

•	 models is a (possibly empty) set of models (JSON = JSON document, XML = XML 
document, REL = relational, GRAPH = graph, COL = column, KV = key/value) that 
involve the property. If the set contains more than one item, it represents cross-
model redundancy. If the value of models within a child property changes, it corre-
sponds to embedding one model to another.

•	 children is a (possibly empty) set of recursively defined child properties.
•	 (Optional) regexp specifies a regular expression over the set children, or its subset 

(e.g., in case of schema-mixed systems or case of XML elements and attributes, 
forming together child properties).

•	 (Optional) ref specifies that the property references another property. Since we do 
not specify any restriction on the referencing and referenced property models, we 
also cover self-references and the third possible combination of multiple models, i.e., 
inter-model references.

Example 4.4  Figure 11 provides sample RSDs of kinds from Fig. 1 (having the respec-
tive colors) in their textual form. Each node is described as a tuple of values of its above-
listed components (in the given order) in curly brackets. If the set children is not empty, 
in curly brackets, there occur the child properties described in the same way.

Having the unifying representation of all possible types of input data having any of the 
supported models, we can propose a much more straightforward multi-model inference 
approach. It is based on an essential feature of RSDs – the fact that two RSDs can be 
merged to describe a common schema of the respective kinds. The merging strategy is a 
part of the proposed approach (see "Merging of RSDs—function merge()" section).

Schema inference workflow

The proposed inference process takes into account the following features and specifics of 
the multi-model environment:

•	 Various aspects of the combined models and their specifics known for popular multi-
model DBMSs [50] (such as sets/maps/arrays/tuples, (un)ordered properties, various 
treatments of missing values etc.),
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•	 Local ICs, various types of redundancy (both intra-model and inter-model), and 
intra/inter-model references,

•	 (Partial) schemas required/allowed in selected models or inferred single-model sche-
mas,

•	 Possible, but not compulsory user interaction involving modification of suggested 
candidates (for ICs, redundancy etc.) and specification of non-detected cases, and

•	 Processing of Big Data, i.e., maximum possible reduction of unnecessary information 
and parallel processing.

The input of the inference process is formed of the following: 

1.	 A non-empty set of single/multi-model DBMSs D1,D2, ... which together contain a 
set of kinds κ1, κ2, ..., κN . Each kind is associated with its model(s). For each model 

Fig. 11  An example of RSDs
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supported in a particular DBMS Di we also know whether it is schema-less/full/
mixed and whether the order of sibling properties of a kind must be preserved.

2.	 A (possibly empty) set of predefined schemas σ ′
1, σ

′
2, ..., σ

′
n , n ≤ N  , (partially) describ-

ing selected kinds.
3.	 A (possibly empty) set of user-specified input information which can be of the fol-

lowing types: 

(a)	 A redundancy set of kinds RK = {κ1, κ2, ..., κr}, r ≤ N  which describe the same 
part of reality, i.e., they will have a common schema σ . (Note that there is no 
restriction on the models the kinds in R can have. On the other hand, we do 
not know the schema of all kinds at this stage, so the redundancy cannot be 
specified at a higher level of granularity.)

(b)	 A simple data type assigned to a selected property.
(c)	 A local IC assigned to a selected property. The possible constraints involve 

identifier, unique, or (not) null.
(d)	 A reference represented by an ordered pair of properties where the first one is 

the referencing property and the second one is the referenced property.

In other words, the user specifies the data on which the inference process should be 
applied. Depending on the type of the database system where it is stored, i.e., its spe-
cific features, the inference process can re-use an existing user-defined schema, it knows 
whether the order of siblings should be preserved, etc. Eventually, at the beginning or 
during the inference process (see "Architecture and implementation" section), the user 
can provide a partial inferred schema, user-specified simple data types, ICs, and refer-
ences for selected properties, as well as redundantly stored kinds13.

The general workflow of the inference process has two main phases—local and global. 
In the local phase, the process assumes as the input a large set of data, and the task is to 
reduce the information in parallel efficiently, i.e., we infer basic local schemas for each 
kind. The aim of the global phase is to merge the local schemas and enrich them with 
additional information gathered from the input data (i.e., ICs and references). Since we 
can assume that the number of all kinds in the whole multi-model schema is several 
orders smaller than the amount of input data, this phase does not need to be parallelised.

The workflow consists of the following stages: 

1.	 Local schema inferrer For each kind κ we generate its local RSD as follows: 

(a)	 If κ has a predefined schema σ ′
κ , we transform it into RSD representation.

(b)	 Otherwise, we generate for κ a basic RSD using a parallel approach as follows: 

	 (i)	 We generate a trivial RSD for each record (or property, depending on the 
selected type of the algorithm—see "Record-based local inference algo-
rithm" section and "Property-based local inference algorithm" section) of 
κ.

13  Note that for the sake of simplicity we currently consider redundancy only for whole kinds.
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	(ii)	 We merge (see "Merging of RSDs—function merge()" and "Forest appender—func-
tion addToForest()" section) trivial RSDs of κ and eventually all kinds in its respec-
tive redundancy set  to RKκ a basic RSD.

2.	 Gathering of footprints Parallel to the local schema inference, for each kind κ we 
gather its auxiliary statistics, called footprints (see "Gathering candidates for ICs and 
redundancy" section), as follows: 

(a)	 Phase map We gather footprints for each value of each property pκi  of κ.
(b)	 Phase reduce We merge all footprints of values of each property pκi  , resulting in 

an aggregated footprint of property pκi .
(c)	 Candidate Set We apply a set of rules on the merged footprints of each prop-

erty to produce a set of candidates for redundancy, local ICs, and references. 
Note that when the structure of kinds is inferred, the redundancy can be 
specified at the level of (complex) properties. A redundancy set of properties 
RP = {π1,π2, ...,πs}, s ∈ N , where each property is a part of some kind regard-
less its model, describes the same part of reality.

(d)	 The user can confirm/refute the candidates at this stage or add new ones.

3.	 Global Schema Inferrer Having a unified RSD representation and footprints for each 
input kind κ , we generate the final multi-model schema as follows: 

(a)	 (Optionally), we perform the full check of candidates. It is not done if the user 
confirms the candidates.

(b)	 We merge all redundancy sets of properties, i.e., for each property πi ∈ RPj , 
i, j ∈ N we extend its schema by joining RSDs of all properties in RPj.

(c)	 We extend the RSDs with discovered references.
(d)	 We create the final multi-model schema formed by all inferred RSDs.

4.	 We transform the resulting set of RSDs and respective ICs to the user-required out-
put.

Next we introduce two versions of the local inference algorithm—record-based and 
property-based. The former follows the usual strategy in the existing works, i.e., “hori-
zontal” processing; the latter introduces a “vertical” optimisation for complex data.

Record‑based local inference algorithm

The more intuitive approach, so-called Record-Based Algorithm (RBA), considers a 
record, i.e., the root property including all its child properties, as a working unit. The 
input of Algorithm  1 consists of the particular database wrapper wD (implementing 
specific behaviour and features of the system D) and set ND of names of kinds whose 
schemas are to be inferred. Having initiated an empty schema S (i.e., a forest of RSDs), 
the algorithm infers the schema of each kind κ during three logically different steps:

•	 Preparation phase The data is first loaded using a particular database wrapper 
wD , and then each record is in parallel mapped into an RSD describing its trivial 
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schema. The result of the preparation phase is a collection R (possibly containing 
duplicities) of RSDs describing schemas of individual records within kind κ.

•	 Reduce phase Next, the collection R is merged using function merge() (see "Merg-
ing of RSDs—function merge()" section) in parallel into single rκ describing the 
basic RSD of kind κ.

•	 Collection phase The inferred schema rκ is added to set S.

Having all the kinds processed, the resulting schema S is returned.

Merging of RSDs—function merge()

During the merging process we merge the information, and we modify respectively 
the regular expression describing the data. In particular, having two RSDs rsd1 = 
( name1 , unique1 , share1 , id1 , types1 , models1 , children1 , regexp1 , ref1 ) and rsd2 = ( name2 , 
unique2 , share2 , id2 , types2 , models2 , children2 , regexp2 , ref2 ), the merging process cre-
ates the resulting RSD rsd = (name, unique, share, id, types, models, children, regexp, 
ref) as follows:

•	 Within local stage, names name1 , name2 are always equal, i.e., only properties hav-
ing the same name are merged, therefore name := name1.

•	 unique is set to minimum value of unique1 , unique2 , where F < U < T. In other 
words, the fact that a property is not unique (i.e., either unique1 or unique2 is set 
to F) cannot be changed. If neither unique1 nor unique2 is set to F but at least one 
is set to U, we have to wait to finish parallel checking of the data. Otherwise, hav-
ing unique1 and unique2 set to T, the resulting unique is set to T.

•	 share := ( sharep , sharex ), where sharep := sharep1 + sharep2 and 
sharex := sharex1 + sharex2.

•	 Similarly to unique, the same principle applies for id.
•	 types := types1 ⋄ types2 (see "Type hierarchy" section).
•	 models := models1 ∪models2.
•	 children := children1 ∪ children2 , whereas the child properties with the same name 

are recursively merged too.
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•	 regexp is the result of merging of regular expressions regexp1 and regexp2 using 
existing verified schema inference approaches [4, 5].14 If regexp1 = ǫ , then 
regexp := regexp2 . Else regexp := regexp1.

•	 If ref1 = ref2 , then ref := ref1 . Otherwise, it has to be resolved by the user/default 
settings.

Property‑based local inference algorithm

Alternatively, instead of a whole record, the working unit of the local inference process 
can be a single property, whose eventual child properties are processed separately too. 
This strategy is not common in the existing approaches; however, it may lead to a per-
formance boost (as we show in "Experiments" section) when, e.g., the record is highly 
structured and contains a large number of nested properties. Moreover, this version of 
the algorithm can be merged with the mining of footprints (see "Gathering candidates 
for ICs and redundancy" section) into a single algorithm.

To work with individual properties instead of records, we need to be able to distinguish 
their RSDs. Therefore, we introduce the notion of a hierarchical name that uniquely 
identifies each property p by concatenating the names of properties on the path from 
the root property to property p, where each step is separated by a delimiter ’/’ (slash). 
As the 0th and 1st steps, we use the name of the system and the kind where the property 
occurs. Additionally, if the property is an anonymously named element of an array, the 
name of the property consists of ‘_’ (underscore) and its data type.

Example 4.5  For example, property productId from the JSON document model in 
Fig. 9 has hierarchical name: /mongoDB/Order/items/_Object/productId

The input of the Property-Based Algorithm (PBA) (see Algorithm 3) also consists of 
the particular database wrapper wD and set ND of names of kinds whose schemas are to 

14  Due to rich related work (see "Related work" section) we omit technical details.
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be inferred. Having initiated an empty schema S, the algorithm processes each kind κ as 
follows:

•	 Preparation phase For each property p of each record, the hierarchical name of the 
property and the trivial RSD of the property is extracted from the data in paral-
lel, forming a collection NP of pairs (namep, rsdp) . Next, the grouping according to 
namep is performed, resulting in the set GP of pairs (namep,P) , where P is a set of 
RSDs of properties with the same namep.

•	 Reduce phase Next, each collection P is in parallel aggregated using function aggre-
gateByHierarchicalName() (see "Aggregating of RSDs—function aggregateByHierar-
chicalName()" section) into rsdp describing the basic RSD of property p with hierar-
chical name namep . The resulting set of pairs (namep, rsdp) is denoted as AP.

•	 Collection phase: Set AP is iterated and each rsdp is added into schema S, continu-
ously enriching and building the schema of kind κ using function addToForest() (see 
"Forest appender—function addToForest()" section).

Finally, the resulting schema S is returned as the result.

Aggregating of RSDs—function aggregatebyhierarchicalname()

Generation of a basic (local) RSD consists of generating an RSD for each prop-
erty and their aggregation into a common property schema. During the process, 
we aggregate the information, and we modify respectively the regular expression 
describing the order of the nested properties.

As we can see in Algorithm 4, having a collection of RDSs rsdi = ( namei , uniquei , 
sharei , idi , typesi , modelsi , childreni , regexpi , refi ), i = 1, ..., n , the aggregation process 
creates the resulting RSD rsdp = (name, unique, share, id, types, models, children, 
regexp, ref) corresponding to a schema of property p as follows:
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•	 The names namei are always equal, i.e., only the properties having equal hierarchical 
name are aggregated, therefore name := name1.

•	 Unique is set to minimum value of uniquei , i = 1, ..., n , where F < U < T.
•	 Share is set to the sum of shares, i.e., share := ( sharep , sharex ) = ( 

∑n
i=1 sharepi , ∑n

i=1 sharexi)
•	 Similarly to unique, the same principle applies for id.
•	 types := types1 ∪ ... ∪ typesn , whereas if there appear two types ti, tj ∈ types , s.t. 

ti ⊂ tj , then ti is removed from types.
•	 models :=

⋃n
i=1modelsi.

•	 regexp is the result of merging regular expressions regexp1, . . . , regexpn using an 
existing verified approach.

•	 Within the aggregate function, children is always an empty set as individual children 
have their own hierarchical name and thus are processed separately. Its content is 
resolved in later stage of the algorithm within function addToForest() (see "Forest 
appender—function addToForest()" section).

•	 For all ref1, . . . , refn either refi = ǫ or all the values of refi are equal, therefore 
ref := ref1 is selected. If ref = ǫ , the references are resolved after applying the candi-
dates stage (see "Global phase" section).

Forest appender—function addToForest()

The purpose of this function (see Algorithm 5) is to join RSDs describing the schema 
of particular properties to form an RSD corresponding to a schema of the whole kind. 
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Moreover, the RSDs describing a schema of a single kind are grouped into a forest. Hav-
ing pairs (namep, rsdp) which are alphabetically ordered according to namep (in ascend-
ing order), the parent property is always included in the schema S before its children 
(note that locally the schema is a tree). If the properties are not ordered, then if any par-
ent property is missing, we can insert an empty placeholder of the not-yet-processed 
parent allowing it to include its children. As soon as the parent is being processed, it 
replaces the placeholder.

Gathering candidates for ICs and redundancy

To detect integrity constraints and redundancy efficiently, we utilise a two-stage 
approach: 

1.	 We efficiently detect a set of candidates.
2.	 The user can confirm/refute them or request a full check.

For this purpose, we introduce a set of lightweight and easy to compute footprints and 
we apply them to compute candidates for ICs (i.e., primary keys, intra- and inter-model 
references, and interval-based value constraints) and redundancy in data. A naive 
approach would compare active domains of all pairs of properties. Instead, when walk-
ing through all the data during the schema inference process, the same access can be 
exploited to mine statistical (and other) information about the active domains, i.e., the 
footprints. They can be then used to compare active domains and determine the desired 
integrity constraints more efficiently.
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Property domain footprint (PDF)

For each property p, we define an active domain descriptor utilizing basic statistics and 
the Bloom filter [54], so-called Property Domain Footprint (PDF). It is represented as 
a tuple PDF = (count, first, unique, required, repeated, sequential, min, minHash, max, 
maxHash, totalHash, averageHash, bloomFilter).

•	 Count is the number of items of the active domain.
•	 First is the number of parent properties in which p occurs.
•	 unique ∈ {T,F} represents the uniqueness of values within a particular active 

domain. It is computed by counting the occurrence of each item of the active domain.
•	 required ∈ {T,F} represents the nullability of the value of a particular property. It is 

computed by comparing p.first of property p with pp.count of its parent property pp, 
i.e., required := (p.first = pp.count).

•	 repeated ∈ {T,F} represents whether the property is a direct element of an array 
(T) or a single value (F). It is computed using auxiliary features count and first, i.e., 
repeated := (count ÷ first > 1).

•	 sequential ∈ {T,F,U} represents the possibility of an active domain of a simple prop-
erty to represent a sequence of integers. The default value is U (if the property is not 
of data type Integer). The sequential feature is computed using auxiliary features 
min, max, and count, i.e., sequential := (max −min = count − 1).

•	 min is the minimum value of the active domain.
•	 minHash is the minimum hashed value of the active domain. It allows to compare 

values of distinct data types efficiently and prevents the comparison of possibly 
extensive data, e.g., BLOBs.

•	 max is the maximum value of the active domain.
•	 maxHash is the maximum hashed value of the active domain.
•	 totalHash is the sum of hashed values of the active domain.
•	 averageHash := (totalHash÷ count) represents the average of hash of unique values 

within the active domain.
•	 bloomFilter is an array of “small” size σ describing a much larger active domain K 

of property p at the cost of false positives (i.e., equal hashes of two different values). 
Using multiple hash functions H1(), . . . ,Hn() returning values from {1, . . . , σ } , each 
distinct value k ∈ K  is hashed and each value of bloomFilter[Hi(k)] is incremented.

PDF miner algorithm

The purpose of the footprint miner (see Algorithm 6) is to create a PDF for each prop-
erty. First, the data are loaded from the database store in the form of records using a 
particular database wrapper. For each property p of each individual record a footprint f 
is created describing a single value of active domain of a certain property. The hierarchi-
cal name namep is attached to each footprint instance. Next, the instances are merged 
to create distinct unique sets of each active domain using function mergeValueDupli-
cates(). Then, the distinct values are first grouped by function groupByKey(), resulting in 
set GP of pairs (namepi , Fi) , where Fi = {fi0 , . . . , fin} is the set of footprints. Second, they 
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are grouped to determine the footprint fp describing the whole active domain. To do so, 
merge function aggregateByHierarchicalName() (see Algorithm 7) is applied.

Finally, the aggregated property features are appended to the tree structure represent-
ing the data and the missing features (i.e., repeated, sequential, and averageHash) are 
resolved.

Candidate builder algorithm

Having computed footprint fp for each property p, we can determine candidates for 
identifiers, references, and data redundancy. We propose Algorithm  8 that consists of 
three phases: 

1.	 Identifier candidate The candidates for identifiers Cident are inferred from the foot-
prints in set F. An identifier must be unique within the active domain of the respec-
tive property p and required. Also, the property can not be a direct element of an 
array. Therefore, the algorithm tests whether fp.unique = fp.required = T and 
fp.repeated = F.
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2.	 Reference candidate Candidates for references Cref  are inferred on the basis of several 
observations. A reference is a property that refers to the identifier of another kind. 
Therefore, we search the Cartesian square F × Cident excluding pairs (c, c), c ∈ Cident 
in order to find pairs (f, c), s.t. f is the footprint of the referencing property pf  and 
c is the footprint of the referenced property pc . Additionally, the active domain of 
referencing property pf  must form a subset of active domain of the referenced prop-
erty pc . Therefore, we compare active domains of both the properties using function 
formsSubset() (see Algorithm 9), i.e., we analyse footprints f and c using the following 
rules:

•	 The referencing property does not have to be strictly unique, as the one-to-many 
(as well as many-to-one or many-to-many) relationship may occur.

•	 The referencing property does not have to be required as the lower bound of rela-
tionship may be zero-to-one/many.

•	 It must hold that f .minHash ≥ c.minHash , i.e., the referencing property pf  does 
not contain a smaller value than the referenced property pc.

•	 Similarly, it must hold that f .maxHash ≤ c.maxHash.
•	 Finally, only if all the above conditions are satisfied, Bloom filters are com-

pared. To denote that property f is a reference to property c for each pair of 
elements f.bloomFilter[i],   c.bloomFilter[i] it must hold that f.bloomFilter[i] ≤ 
c.bloomFilter[i]. In other words, active domain of pf  must be a subset of active 
domain of pc.

	  Additionally, we distinguish between strong and weak reference candidates. Hav-
ing sequential, unique, and required set to T for both the referencing and refer-
enced properties may imply that there is no relationship between the properties 
(i.e., both properties form a technical (auto-incremented) identifier of their kind). 
Therefore, such a combination may lead to a weak candidate for a reference15.

3	 Redundancy candidate Finally, reference candidates may be extended into data 
redundancy candidates Cred . Naturally, each pair of referencing and referenced prop-
erties having footprints f and c store redundant information. However, we assume 
that redundantly stored data should cover a more significant part. Hence, we check 
their descendants and siblings to find more pairs of properties whose active domains 
form a mutual subset. If there is at least k pairs of neighbouring properties forming 
such subsets, the reference candidate (f, c) is marked as a weak reference candidate 
and, together with its neighbourhood, extended into a redundancy candidate. If for 
all the pairs of properties in the redundancy candidate the active domains are equal, 
we speak about full redundancy. Otherwise, i.e., when one kind contains only a sub-
set of records of another kind, it is a partial redundancy. Also, note that only redun-
dant properties are considered as a part of redundancy, even though both kinds may 
contain properties having the same name. If multiple properties can form a redun-
dancy pair with the same property, it is up to the user to decide.

15  Note that such a candidate is not discarded, yet it is not marked as recommended when the inference process applies 
candidates for RSDs inferred within the local stage.
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Example 4.6  Figure 12 introduces an example of footprints of selected properties of 
the multi-model data from Fig. 9 and their application for detection of candidates. The 
upper part of the Fig. contains the data, i.e., a subset of properties from relational table 
Product (violet), nested documents _ from JSON collection Order (green) and nested 
elements Product from XML collection Invoice (grey). The bottom three parts corre-
spond to the three phases, where we can see the values of respective necessary features 
of footprints.

Fig. 12  An example of selected footprints and building of candidates
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In order to determine all the footprint features, the duplicate values are removed, the 
unique values are hashed (using, e.g., rolling hash rh(v) := vrh for each v ∈ V ) and then 
minHash, maxHash, averageHash, and bloomfilter are computed as was described. aver-
ageHash is rounded to floor(averageHash) and to compute the Bloom filter (of size = 2), 
hash functions h1(vrh) := vrh mod 2 and h2(vrh) := floor(sqrt(vrh)) mod 2 are used.

Regarding the detection of candidates, first all footprints are iterated and their unique, 
required, and repeated features are checked. In this particular case, only the footprint of prop-
erty id satisfies that unique and required are both set to T and repeated is set to F, therefore 
only a single identifier candidate is created and propagated to the next phase of the algorithm. 
Also note that id is probably a technical identifier based on auto-increment (i.e., sequential is 
also set to T).

Next, all relevant distinct pairs of footprints are compared to find candidates for references. 
If any footprint feature does not satisfy the requirements for a reference, it is denoted by the 
red colour. As we can see, only properties productId (JSON) and productId (XML) satisfy the 
requirements and therefore form the set of reference candidates Cref .

Finally, reference candidates are checked to form redundancy candidates, whereas k = 2 . 
In this case, we compare siblings (as there are no further nested properties) of pairs (id, 
productId) (JSON) and (id, productId) (XML). In the former case, there is a redundancy 
between properties title (REL, JSON), brand (REL, JSON), and price (REL, JSON). In the 
latter case, there is a redundancy only between properties title (REL, XML). In the for-
mer case, the number of pairs 3 ≥ k , therefore, the reference candidate is extended into 
the redundancy candidate, and the former reference candidate is marked as weak. In the 
latter case, the reference candidate remains unchanged as 1 < k , and it does not form 
the candidate for redundancy.

Also note that (id, title, price, brand) (REL), (productId,  title,  price,  brand) (JSON) form a 
partial redundancy, since multiple requirements are violated, e.g., features average are not 
equal (see the bold font).

Global phase

The local phase consists of inference of local (single-system, single-kind) schemas described as 
tree-based RSDs and building a set of candidates for identifiers, references, and redundancy. 
The global phase applies the knowledge gained in the previous steps and joins RSDs using 
candidates for references and redundancy into the resulting global multi-model schema. It 
can also begin with an optional full check of candidates, i.e., removing false positives.

Checking of candidates

Depending on the implementation, either the user may confirm/refute the suggested 
candidates (or denote user-specified candidates) using an interactive interface (see 
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"Architecture and implementation" section). Or, (s)he may decide which subset of candi-
dates for references and redundancy16 will be thoroughly checked. The checking itself is 
implemented as a distributed MapReduce job:

•	 Checking of references involves mapping of each value of a referencing property ref 
into tuple (value,REF) while each value of referenced property id is mapped to tuple 
(value,ID) as well. Reduction and further mapping by key takes place as follows:

–	 If the list assigned to value contains both REF and ID, the result is mapped to 0.
–	 If the list assigned to value contains only ID, the result is mapped to 1.
–	 Otherwise, the result is mapped to −1.

	  Finally, the minimum value is selected. If the result is −1 , the candidate for refer-
ence is not valid and removed. If the result is 0, it is a full reference (i.e., the active 
domains of ref and id are equal). The result of 1 denotes that property ref refers to 
a subset of the active domain of property id.

•	 Checking of redundancy is similar; in addition we have to check values of all neigh-
bouring redundant properties of the referencing and referenced properties ref 
and id. First, for each record its redundant properties are mapped to tuple (value,   
{red_subrecord, source}) , where value is the value of referencing/referenced prop-
erty, red_subrecord are values of ordered redundant properties in the record, and 
source ∈ {REF,ID} . Next, the tuples are reduced by key and then mapped as follows:

–	 If the list assigned to value contains two equal sub-records from distinct sources, 
the result is mapped to 0. If the sub-records are not equal, the result is mapped to 
−1.

–	 If the list assigned to value contains only sub-record from the source REF, the 
result is mapped to −1.

–	 Otherwise, the result is mapped to 1.

	  Finally, the minimum value is selected. If the result is −1 , the candidate for 
redundancy is not valid, i.e., either there is a sub-record in the kind containing 
the referencing property ref that is not a part of the kind containing referenced 
property id, or the sub-records with the same value do not share the same values 
in all redundant neighbouring properties. If the result is 0, the redundancy is full. 
Otherwise, the redundancy is partial.

Joining of RSDs

Joining of RSDs may be implemented variously, depending on the selected output of the 
inference process. Either the RSDs, together with the confirmed/thoroughly checked 
candidates for identifiers, references, and redundancy, are transformed to an output 

16  Candidates for identifiers do not have to be checked once approved by the user as long as the identifier requires only 
features unique and requires being set to T.
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format, such as XML Schema [55], JSON Schema [47] etc. Or, a more abstract represen-
tation using ER [51] or UML [9] can be used. How the information is captured depends 
on the selected format. For example, for representation of redundancy, the globally 
defined XML elements and respective XML references can be used. In the implementa-
tion of the inference approach (see "Architecture and implementation" section), we also 
use a simple visualisation of the forest of RSDs, where the identifiers, as well as redun-
dant parts of the trees, are respectively graphically denoted, and the trees are interlinked 
with a new type of edges representing the references.

Example 4.7  Depending on the selected parameters of the algorithm, we can get as 
a result, e.g., the ER model depicted in Fig. 1. If we look closely, e.g., at entity Product, 
in Fig. 13 we can see an example of its alternative result depending on parameter k = 1 
or k ∈ {2, 3} . The colours represent the respective “overlapping” models and properties 
(relational, JSON document, or XML document). If k = 1 , we would get one common 
schema for kind Product represented in all the three models. If k ∈ {2, 3} , we would get 
a common schema for the relational and JSON document model and a different schema 
for the XML document model.

Note that property productId is an identifier only in the relational table Product (illus-
trated by the purple colour). Also, note that non-redundant property price has probably 
a different meaning in distinct models. In the case of the XML document model, it could 
be a purchase price, whereas, in the relational and JSON document model, it could be a 
selling price.

Architecture and implementation
The proposed approach was implemented as a modular framework called MM-infer17. 
Its graphical interface and general functionality have been introduced in demo paper 
[12], but without technical details, algorithms, and experiments provided in this paper. 
It currently supports the following models and DBMSs: PostgreSQL (relational and 

(a) (b)
Fig. 13  Example of redundancy, k=1, k=2, k=3

17  https://​www.​ksi.​mff.​cuni.​cz/​~koupil/​mm-​infer/​index.​html.

https://www.ksi.mff.cuni.cz/%7ekoupil/mm-infer/index.html
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document, i.e., multi-model), Neo4j18 (graph), and MongoDB19 (document) which repre-
sents both schema-full and schema-less DBMS.

The frontend of MM-infer was implemented in Dart using framework Flutter20. Sam-
ple screenshots are provided in Fig. 14. The expected work with the tool is as follows: 

Fig. 14  Screenshots of MM-infer 

18  https://​neo4j.​com/.
19  https://​www.​mongo​db.​com/.
20  https://​flutt​er.​dev/.

https://neo4j.com/
https://www.mongodb.com/
https://flutter.dev/
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The user selects particular DBMSs (1) and kinds (2) to be involved in the inference pro-
cess. (S)he can also confirm/refute initial redundancy (3) based on kind names. Then 
the local schema inferrer infers the local RSDs and generates the candidates. In the next 
screen, the user selects particular types of candidates (4) and confirms/refutes the sug-
gestions (5). After the global schema inferrer performs the full check of candidates (if 
required) and merges the RSDs into the global schema to be visualised to the user or 
transformed to a requested form (6).

The backend of MM-infer was implemented in Java and using Apache Spark21. The 
architecture of MM-infer, depicted in Fig. 15, reflects the steps of the above described 
inference process:

•	 At the bottom we can see data sources (green box) – a multi-model DBMS or a set of 
single/multi-model DBMS (i.e., a polystore-like storage).

•	 The local schema inferrer (yellow box) uses three types of wrappers that transform 
the input data/schemas into RSDs:

Fig. 15  Architecture of MM-infer 

21  https://​spark.​apache.​org/.

https://spark.apache.org/
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–	 Having schema-full database, a pre-defined schema already exists. Therefore, we 
only fetch the schema and translate it to the unifying representation (i.e., only a 
unifying wrapper translator must be implemented to translate the local schema 
into a unified representation).

–	 Having a schema-free (or mixed) database approach, a robust schema inference 
approach may already exist for a particular model (e.g., the XML or JSON docu-
ment model). If so, we infer the schema by exploiting such an approach, and then 
we translate the resulting inferred schema using a unifying translator layer.

–	 Finally, having schema-free or schema-mixed DBMS and no existing schema 
inference approach, the basic schema is inferred for each kind.

	  Local schema inferrer then merges the RSDs locally (i.e., within one DBMS) 
using Apache Spark. In parallel, it gathers and merges the data statistics and pro-
duces the respective candidates to be eventually modified by the user.

•	 The global schema inferrer (red box) checks candidates for references and redun-
dancy and merges the RSDs globally (i.e., in the context of all inputs).

•	 The resulting multi-model schema is provided to the user in the chosen representa-
tion (violet box).

Database wrappers

MM-infer is based on custom-tailored wrappers, each of which reads individual records 
from a particular DBMS and returns its RSD. Note that not only the whole data set may 
be represented in different data formats and data models, but a collection of data models 
may represent even a single record. The wrapper also includes user settings that deter-
mine the level of detail of the described schema. For example, the user may request the 
inference of data structures which implicitly may not be supported by the data model 
(e.g., Set and Map in the case of JSON documents) but can be specified in RSDs.

Naturally, we assume the implementation of a wrapper for each DBMS. However, sep-
arate wrappers may exist for distinct settings of a particular DBMS—e.g., schema-less vs 
schema-mixed—or a wrapper that involves a particular single-model schema inference 
approach. A separate wrapper module is also devoted to reading data statistics and their 
transformation into PDFs.

The following examples show the core of sample implementation of wrappers for par-
ticular considered models of selected popular DBMSs.

Table 2  An example of PostgreSQL (relational model) schema mapping

Construct Name Unique Share Id Types Models Children regexp Ref.

Tuple _ U (1,1) F Map REL {...} ǫ ǫ

Attribute (simple) Name T/F/U (0/1,0/1) T/F/U Simple REL ǫ ǫ ǫ/κ .p

Attribute (array) Name T/F/U (0/1,0/1) F Array REL {...} Trivial ǫ

Element of an array _ T/F/U (1,0/1) F Simple REL ǫ ǫ ǫ

Simple identifier Name T (1,1) T Simple REL ǫ ǫ ǫ/κ .p

Reference Name T/F/U (0/1,1) T/F/U Simple REL ǫ ǫ κ .p
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Example 5.1  Table 2 illustrates the mapping of PostgreSQL record schema (represent-
ing relational tuple) or property (i.e., an attribute of a tuple or an identifier of a tuple) to 
an RSD. Note that PostgreSQL record (tuple) has an anonymous name _ and its type 
corresponds to Map as the properties are named values stored in an arbitrary order. In 
this case, we distinguish between Simple (representing any simple type) and Array 
type attribute, both possibly nullable (i.e., share can be either 0 or 1), and array being 
only homogeneous (i.e., described by a set of children {. . . } and a trivial automaton rep-
resenting an arbitrary number of anonymously named elements of an array (i.e., _+ ). 
Also, note that a structured property is not allowed as the purely relational model is 
naturally aggregate-ignorant22. Finally, we may consider an identifier and a reference as 
a particular attribute type. The identifier must be unique, and share cannot be 0 as the 
identifier cannot be nullable. In the case of references, the ref field is set to the refer-
enced kind κ and respective referenced property p.

Example 5.2  Table 3 illustrates mapping of SciDB23 array schema to the unified RSD 
representation. A multi-dimensional array consists of anonymously named cells which 
contain a Map of named simple attributes. Note that SciDB does not allow complex 
attributes, therefore neither Array type nor Structure type is allowed in the map-
ping. Finally, each cell is uniquely identified by dimension coordination (i.e., an identi-
fier), whereas references between tables are not supported.

Table 3  An example of SciDB (array model) schema mapping

Construct Name Unique Share Id Types Models Children regexp Refs.

Cell _ U (1,1) F Map ARRAY​ {...} ǫ ǫ

Attribute (simple type) Name T/F/U (0/1,0/1) T/F/U Simple ARRAY​ ǫ ǫ ǫ

Simple identifier (dimension) Name T (1,1) T Simple ARRAY​ ǫ ǫ ǫ

Table 4  An example of Neo4j (graph model) schema mapping

Construct Name Unique Share Id Types Models Children regexp Refs.

Node/edge _ U (1,1) F Map GRAPH {...} ǫ ǫ

Property (simple type) name T/F/U (1,1) T/F/U Simple GRAPH ǫ ǫ ǫ/κ .p

Property (array type) name T/F/U (1,1) F Array GRAPH {...} Trivial ǫ

Element of an array _ T/F/U (1,0/1) F Simple GRAPH ǫ ǫ ǫ

Identifier (simple) name T (1,1) T Simple GRAPH ǫ ǫ ǫ

Reference from/to T/F/U (1,1) F REF GRAPH ǫ ǫ κ .p

23  https://​www.​parad​igm4.​com/.

22  PostgreSQL also supports the document model (i.e., JSON and XML). In this case, the mapping of respective embed-
ded properties is the same way as in the document model (see Example 5.6 and 5.5).

https://www.paradigm4.com/
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Example 5.3  Table 4 illustrates mapping of Neo4j node/edge schema to RSD. Both a 
node and an edge have an anonymous name _ and its type corresponds to Map (i.e., both 
contain an unordered map of uniquely named properties). Similarly to PostgreSQL (its 
relational model), only simple attributes and homogeneous arrays of simple types are 
allowed. Also, only simple identifiers are allowed, and only two special kinds of refer-
ences are allowed, i.e., special properties from and to representing the source and the 
target of an edge. Also, note that share = 0 is not allowed since null meta values are 
represented as a missing property in Neo4j. Therefore no property can be mapped to an 
RSD having share = 0.

Example 5.4  Table 5 illustrates mapping of Redis24 (key/value model) key/value pair 
schema to RSD. A pair is an anonymously named Tuple of ordered anonymous proper-
ties, i.e., a key and a value. A key is a simple identifier while the value can be Simple, 
Array, Set or structured in general. However, we do not support mapping of structural 

Table 5  An example of Redis (key/value model) schema mapping

Construct Name Unique Share Id Types Models Children regexp Refs.

Pair _ U (1,1) F Tuple KV {...} ǫ ǫ

Value (simple) _ T/F/U (1,1) F Simple KV ǫ ǫ ǫ

Value (array) _ T/F/U (1,1) F Array KV {...} Automaton ǫ

Value (set) _ T/F/U (1,1) F Set KV {...} ǫ ǫ

Element of an array/set _ T/F/U (1,0/1) F AnyType KV {...}/ǫ ǫ ǫ

Key (simple) _ T (1,1) T Simple KV ǫ ǫ ǫ

Table 6  An example of MarkLogic (XML document model) schema mapping

Construct Name Unique Share Id Types Models Children regexp Refs.

Root Name U (1,1) F Array/ Map/ 
Array+ Map

XML {...} Automaton ǫ

@attribute @name T/F/U (1,1) T/F/U ǫ/Simple XML ǫ ǫ ǫ/κ .p

Element (sim-
ple w/o atts)

Name T/F/U (1,0/1) F Simple XML ǫ ǫ ǫ

Element (sim-
ple + atts)

Name T/F/U (1,0/1) F Array+ Map XML {...} (__TEXT__?) ǫ

Element (array 
w/o atts)

Name T/F/U (1,0/1) F Array XML {...} automaton ǫ

Element (array 
+ atts)

Name T/F/U (1,0/1) F Array+ Map XML {...} automaton ǫ

TEXT_NODE __TEXT__ T/F/U (1,0/1) F ǫ/Simple XML ǫ ǫ ǫ

Identifier 
(simple)

Name T (1,1) T Simple XML ǫ ǫ ǫ

Reference Name T/F/U (0/1,1) T/F/U Simple XML ǫ ǫ κ .p

24  https://​redis.​io/.

https://redis.io/
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values – otherwise it would be document model. Redis also does not support references, 
therefore no mapping exists for them25.

Example 5.5  Table 6 illustrates the mapping of an XML schema to a unifying RSD. The 
root of an XML document is a named root element possibly having attributes (reflected 
as type Map) and nested subelements (reflected as type Array), or both (Array+Map). 

Table 7  An example of MongoDB (JSON document) schema mapping

Construct Name Unique Share Id Types Models Children regexp Refs.

Document _ F (1,1) F Map DOC {...} ǫ ǫ

Field (simple) Name T/F/U (0/1,1) T/F/U ǫ/Simple DOC ǫ ǫ ǫ/κ .p

Field (hom. 
array)

Name T/F/U (0/1,0/1) T/F/U ǫ/Array DOC {...} Trivial ǫ

Field (het. 
array)

Name T/F/U (0/1,0/1) T/F/U ǫ/Array DOC {...} Automaton ǫ

Field (structure) Name T/F/U (0/1,0/1) T/F/U ǫ/Map DOC {...} ǫ ǫ/κ .p

Element of an 
array

_ T/F/U (1,0/1) T/F/U AnyType DOC ǫ/{...} ǫ / trivial/ 
automaton

ǫ

Identifier 
(simple)

Name T (1,1) T Simple/ Map DOC ǫ/{...} ǫ ǫ/κ .p

Reference Name T/F/U (0/1,0/1) T/F/U Simple/ Map DOC ǫ/{...} ǫ κ .p

Table 8  An example of Cassandra (columnar model) schema mapping

Construct Name Unique Share Id Types Models Children regexp Refs.

Row _ F (1,1) F Map COL {...} ǫ ǫ

Column (simple) Name T/F/U (0/1,0/1) T/F/U Simple COL ǫ ǫ ǫ

Column (homo-
geneous array)

Name T/F/U (1,1) F/U Array COL {...} Trivial ǫ

Tuple Name T/F/U (1,1) F/U Tuple COL {...} Automaton ǫ

Column family 
(complex struc-
ture)

Name T/F/U (1,1) F/U Map COL {...} Trivial ǫ

List (= array; 
column)

Name T/F/U (1,1) F/U Array COL {...} Automaton ǫ

Column (map) Name T/F/U (1,1) F/U Map COL {...} ǫ ǫ

Column (set) Name T/F/U (1,1) F/U Set COL {...} ǫ ǫ

Element of an 
array

_ T/F/U (1,0/1) F/U AnyType COL ǫ ǫ/trivial/ automa-
ton

ǫ

Element of a 
tuple

_ T/F/U (1,1) F/U AnyType COL ǫ/{...} ǫ/trivial/ automa-
ton

ǫ

Element of a set _ T/F/U (1,1) F/U AnyType COL ǫ/{...} ǫ/trivial/ automa-
ton

ǫ

Identifier (simple) Name T (1,1) T Simple COL ǫ ǫ ǫ

25  Yet it is not a rule in general, e.g., key/value store RiakKV (https://​riak.​com/​produ​cts/​riak-​kv/​index.​html) supports 
links between so-called buckets allowing link walking

https://riak.com/products/riak-kv/index.html
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Any element can be Simple (i.e., without nested elements) or Array-type (i.e., having 
at least 1 nested element), with or without attributes. In addition, XML allows text con-
tent of an element (being arbitrary nested between other subelements within an array). 
As for the attributes, only simple types are allowed, and the name of an attribute is pre-
fixed by @. Finally, a simple/composite attribute may identify an XML element. A refer-
ence may refer to this identifier. Both are mapped as an identifier or a reference as a 
special kind of attribute. Note that in an XML document, an element of an array is an 
ordinary named (sub)element. Therefore Table 6 does not contain a special row for an 
element of an array.

Example 5.6  Table 7 illustrates the mapping of a JSON schema into a unifying RSD. 
The root of a JSON document is an anonymously named map (reflected as type Map) of 
name/value pairs (fields). A field can be simple (i.e., allowing only simple types of values), 
array (i.e., a homogeneous array allowing elements of the same type or a heterogeneous 
array allowing elements of any type), or structural (i.e., a nested document of type Map). 
An element of an array may be of any type, e.g., simple, array, or structural. Finally, each 
document is identified by an identifier (simple or composite), and references to other 
documents are supported.

Example 5.7  Finally, Table 8 illustrates mapping of Cassandra26 column family schema 
to a unifying RSD. A row of column family is an unordered set of uniquely named name/
value pairs, i.e., reflected as type Map. In addition, Cassandra explicitly allows many var-
iations of columns—e.g., a simple column, complex columns (e.g., array, set, map), or 
simple and complex identifiers. On the other hand, Cassandra does not allow references. 
Therefore no mapping for references is proposed (allowed).

Experiments
MM-infer was implemented not only as a user-friendly tool for interaction with the user 
during the inference process but also as a tool that enables verification of the correctness 
and efficiency of the proposed algorithms. In particular, we evaluate RBA against PBA 
schema inference in terms of execution performance concerning the number of input 
documents and their structure. The experiments were run over subsets of 6 real-world 
datasets:

26  https://​cassa​ndra.​apache.​org/.

https://cassandra.apache.org/
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Table 9  Statistics of the used data sets

Collection Size (MB) Properties NestedDocs Arrays maxDepth avgDepth

imdb16k 1.19 11.00 1.00 0.00 2 2.00

imdb32k 2.37 11.00 1.00 0.00 2 2.00

imdb64k 4.80 11.00 1.00 0.00 2 2.00

imdb128k 9.63 11.00 1.00 0.00 2 2.00

imdb256k 19.19 11.00 1.00 0.00 2 2.00

imdb512k 39.09 11.00 1.00 0.00 2 2.00

imdb1024k 81.32 11.00 1.00 0.00 2 2.00

imdb2048k 164.17 11.00 1.00 0.00 2 2.00

imdb4096k 331.08 11.00 1.00 0.00 2 2.00

imdb8192k 668.97 11.00 1.00 0.00 2 2.00

lexemes1k 2.09 128.53 39.26 14.73 26 10.92

lexemes2k 3.80 118.33 36.05 13.60 26 10.62

lexemes4k 7.43 115.32 35.06 13.16 26 10.60

lexemes8k 23.99 193.84 56.38 26.29 26 10.10

lexemes16k 109.96 399.25 119.88 50.52 26 13.42

lexemes32k 244.33 439.74 131.86 53.07 26 13.58

lexemes64k 429.01 408.93 120.60 50.95 26 11.93

lexemes128k 863.78 405.33 119.90 48.78 26 12.03

lexemes256k 1560.63 367.57 108.94 45.79 26 11.71

lexemes512k 3202.35 375.31 111.44 46.64 26 11.86

wikidata1k 54.57 3 041.47 825.10 302.71 22 11.96

wikidata2k 99.13 2753.54 746.45 274.60 22 12.32

wikidata4k 158.38 2218.33 603.29 221.99 22 12.36

wikidata8k 280.31 1965.14 533.50 198.65 22 12.55

wikidata16k 492.38 1738.91 470.97 174.48 22 12.89

wikidata32k 914.44 1597.41 433.88 158.36 22 12.86

wikidata64k 1611.56 1398.28 381.05 136.18 22 12.89

wikidata128k 2702.60 1175.67 321.31 114.15 22 12.91

wikidata256k 4276.11 925.00 255.06 86.86 22 12.73

wikidata512k 6755.81 725.59 201.30 66.62 22 12.60

yelpreview1k 0.72 11.00 1.00 0.00 2 2.00

yelpreview2k 1.41 11.00 1.00 0.00 2 2.00

yelpreview4k 2.77 11.00 1.00 0.00 2 2.00

yelpreview8k 5.57 11.00 1.00 0.00 2 2.00

yelpreview16k 11.12 11.00 1.00 0.00 2 2.00

yelpreview32k 22.27 11.00 1.00 0.00 2 2.00

yelpreview64k 44.58 11.00 1.00 0.00 2 2.00

yelpreview128k 89.48 11.00 1.00 0.00 2 2.00

yelpreview256k 179.15 11.00 1.00 0.00 2 2.00

yelpreview512k 361.99 11.00 1.00 0.00 2 2.00

yelpreview1024k 729.29 11.00 1.00 0.00 2 2.00

yelpreview2048k 1461.10 11.00 1.00 0.00 2 2.00

yelpreview4096k 2932.20 11.00 1.00 0.00 2 2.00

yelptip1k 0.18 7.00 1.00 0.00 2 2.00

yelptip2k 0.37 7.00 1.00 0.00 2 2.00

yelptip4k 0.74 7.00 1.00 0.00 2 2.00

yelptip8k 1.48 7.00 1.00 0.00 2 2.00

yelptip16k 2.95 7.00 1.00 0.00 2 2.00

yelptip32k 5.90 7.00 1.00 0.00 2 2.00
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•	 An 8.192 million record sample of IMDB title.basics tab-separated-values (TSV) col-
lection 27 imported into Neo4j graph database.

•	 A 512 thousand record sample of Wikidata Lexeme namespace JSON collection  28 
imported into mongoDB document database.

•	 A subset of 512 thousand records of Wikidata entities in a single JSON collection 
dump 29 imported into mongoDB.

•	 A three collections of Yelp Academic Dataset 30 of JSON documents imported into 
mongoDB, namely 4.096 million record sample of Review collection, 512 thousand 
records of Tip collection, and 1.024 million records of User collection.

The characteristics of the selected datasets are listed in Table 9 to indicate the growing 
complexity. Experiments with different data sizes were executed to measure the perfor-
mance depending on the number and complexity of the input documents.

The experiments were performed on a bare-metal virtual machine running on the 
VMware31 infrastructure. The allocated hardware resources were CPU Intel(R) Xeon(R) 
Silver 4214 CPU @ 2.20GHz (8 core), 64 GB of memory, and a solid-state drive with 
a capacity of 1.1 TB. Apache Spark was executed locally with 32 GB RAM set to JVM 
via -Xmx32768M. A possible bias caused by temporary decreases in system resources 
was mitigated by 20 runs of each algorithm on each extracted subset of input data. The 
extremes (minimum and maximum) were removed from the measurements, and the 
remaining measurements were averaged.

Table 9  (continued)

Collection Size (MB) Properties NestedDocs Arrays maxDepth avgDepth

yelptip64k 11.82 7.00 1.00 0.00 2 2.00

yelptip128k 23.68 7.00 1.00 0.00 2 2.00

yelptip256k 47.60 7.00 1.00 0.00 2 2.00

yelptip512k 95.73 7.00 1.00 0.00 2 2.00

yelpuser1k 11.59 24.00 1.00 0.00 2 2.00

yelpuser2k 20.07 24.00 1.00 0.00 2 2.00

yelpuser4k 35.83 24.00 1.00 0.00 2 2.00

yelpuser8k 59.72 24.00 1.00 0.00 2 2.00

yelpuser16k 92.84 24.00 1.00 0.00 2 2.00

yelpuser32k 130.97 24.00 1.00 0.00 2 2.00

yelpuser64k 240.10 24.00 1.00 0.00 2 2.00

yelpuser128k 359.46 24.00 1.00 0.00 2 2.00

yelpuser256k 648.87 24.00 1.00 0.00 2 2.00

yelpuser512k 1055.76 24.00 1.00 0.00 2 2.00

yelpuser1024k 1814.98 24.00 1.00 0.00 2 2.00

27  https://​www.​imdb.​com/​inter​faces/.
28  https://​www.​wikid​ata.​org/​wiki/​Wikid​ata:​Datab​ase_​downl​oad.
29  https://​www.​wikid​ata.​org/​wiki/​Wikid​ata:​Datab​ase_​downl​oad.
30  https://​www.​kaggle.​com/​datas​ets/​yelp-​datas​et/​yelp-​datas​et.
31  https://​www.​vmware.​com/.

https://www.imdb.com/interfaces/
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.vmware.com/
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Figure  16 confirms our hypothesis that the RBA, which utilised the traditional 
strategy to work with whole records, is slower when run on more complex data (i.e., 
lexeme or wikidata dump) because it has to work with whole records instead of sep-
arate properties. Instead, PBA first merges separate properties and, in the end, it 
merges them into the resulting schema of the whole kind. In the case of simple data, 
this difference is not that significant, but larger, more complex documents depict the 
difference. In addition, PBA is also scalable more easily because it works with the 

Fig. 16  Results of experiments
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approximately same data portions regardless of the size of the input. Hence, RBA is 
more suitable for smaller, less complex data. In general, RBA is more appropriate for 
aggregate-ignorant models with a smaller amount of properties in kinds, whereas 
PBA is a better choice for aggregate-oriented models.

Conclusion and future work
This paper introduces a novel proposal of an approach dealing with schema infer-
ence for multi-model data. Contrary to existing works, it covers all currently pop-
ular data models and possible combinations, including cross-model references and 
data redundancy. In addition, it can cope with large amounts of data—a standard 
feature in NoSQL databases but not commonly considered in existing schema infer-
ence strategies. Note that the idea of multi-model schema inference, namely the PBA, 
was introduced in the paper [56] together with initial experiments. In this paper, we 
have provided a complete description of the proposal, i.e., both the RBA and PBA 
strategies and their experimental comparison; a discussion of the broad context of the 
schema inference problem and the variety of the combined models; all the building 
blocks of the proposed approach, including, e.g., the type hierarchy; illustration of 
the schema inference process using the tool MM-infer as well as its architecture and 
examples of system-specifics wrappers.

The core idea of the proposal is completed, implemented as a tool MM-infer, and 
experimentally verified. Nevertheless, there are still possible directions for extension 
and exploitation. In our future work, we will focus on the inference of more com-
plex cross-model integrity constraints which can be expressed, e.g., using the Object 
Constraint Language [57]. To infer a more precise target schema, we can also incor-
porate the eventual knowledge of multi-model queries or semantics of the data. In 
the former case, we can infer an equivalent schema that reflects the expected data 
access. In the latter case, we can reveal information that cannot be found in the data 
itself. Last but not least, the inference approach, together with statistical analysis of 
the source data, can reveal and enable the backwards correction of errors (i.e., occa-
sionally occurring exceptional cases) in the data.
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