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Abstract 

Background:  The aim of this study was to identify the ferroptosis induced tumor 
microenvironment (FeME) landscape in bladder cancer (BCa) for mRNA vaccine devel‑
opment and selecting suitable patients for precision treatment.

Methods:  Gene expression profiles and clinical information of 1216 BCa patients were 
extracted from TCGA-BLCA, three GEO databases and IMvigor210 cohort. We compre‑
hensively established the FeME landscape of 1216 BCa samples based on 290 ferrop‑
tosis related genes (FRGs), and systematically correlated these regulation patterns with 
TME cell-infiltrating characteristics. Besides, we identified the patients’ ferroptosis risk 
index (FRI) to predict the prognosis of BCa for precise treatment.

Results:  Six over-expressed and mutated tumor antigens associated with poor 
prognosis and infiltration of antigen presenting cells were identified in BCa. Further‑
more, we demonstrated the evaluation of FeME within individual tumors could predict 
stages of tumor inflammation, subtypes, genetic variation, and patient prognosis. Then, 
5-lncRNA signature was mined to produce the FRI. Low FRI was also linked to increased 
mutation load, better prognosis and enhanced response to anti-PD-L1 immuno‑
therapy. Besides, an immunotherapy cohort confirmed patients with lower FRI demon‑
strated significant therapeutic advantages and clinical benefits.

Conclusions:  TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are potent antigens for 
developing anti-BCa mRNA vaccine. Establishment of FRI will contribute to enhancing 
our cognition of TME infiltration characterization and guiding more effective immuno‑
therapy strategies and selecting appropriate patients for tumor vaccine therapy.

Keywords:  Ferroptosis, Bladder cancer, Precise treatment, mRNA vaccine, 
Immunotherapy, Tumor immune microenvironment
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Background
BCa is one of the most common malignancies worldwide, with high morbidity and 
mortality [1]. More than 500,000 new BCa cases and 200,000 BCa-related deaths occur 
worldwide annually [2]. BCa has two main subtypes: muscle-invasive BCa and nonmus-
cle-invasive BCa. Although the 5-year survival rate of nonmuscle-invasive BCa is about 
90%, approximately 15–20% of such cases would progress to the muscle-invasive stage 
and even to distant metastasis, which has a dismal 5-year survival rate of 5–30% [1].

In  the  last decade, some large-scale clinical trials, such as KEYNOTE-045 and 
IMvigor211, demonstrated that BCa is susceptible to ICIs, representing an important 
advancement in the treatment of BCa [3, 4]. When patients can’t afford immunother-
apy, there may be another treatment that works. Recently, tumor vaccines targeting the 
ganglioside GD2 and CA-199/KLH have been successful in mitigating pancreatic ade-
nocarcinoma progression [5, 6]. Although these vaccines provided a survival benefit 
of only several months, the results are encouraging enough to explore the potential of 
anti-tumor vaccines. Prototypical cancer vaccines have the advantages of relative non-
toxicity, minimal nonspecific effects, broad therapeutic window and induction of per-
sistent immunological memory [7, 8]. Therefore, cancer vaccines can overcome the drug 
resistance, adverse reactions, limited therapeutic efficacy and high costs associated with 
standard chemo- and immunotherapies [7]. However, no mRNA vaccine against bladder 
cancer antigens has been developed so far, and no subgroup of patients suitable for vac-
cination has been identified.

Simultaneously, ferroptosis, a form of iron-dependent and nonapoptotic cell death, is 
attracting increasing attention in view of the fact that apoptosis resistance is one of the 
hallmarks of tumors [9]. Inducing tumor cell ferroptosis seems to be an attractive and 
promising therapeutic strategy, especially for drug resistant malignancies. Recent evi-
dence has revealed a strong association between ferroptosis and tumor immune reac-
tions [10, 11]. For instance, Wang et  al. found that IFNγ released from CD8+ T cells 
could suppress the expression of SLC7A11, thereby promoting lipid peroxidation in 
cancer cells and inducing ferroptosis [10]. The above suggested that the combination of 
mRNA vaccines and ferroptosis inducers is a promising treatment.

Long noncoding RNAs (lncRNAs), a type of RNA molecule with transcripts of > 200 
nucleotides, participate in tumorigenesis and cancer development not only by altering 
the malignancy of cancer cells themselves but also by changing the TME, as reported in 
many studies [12]. In recent years, the interaction between lncRNAs and ferroptosis has 
also been investigated. For instance, the lncRNA P53RRA serves as a tumor suppressor 
by promoting p53 maintenance in the nucleus, thus, facilitating ferroptosis [13].

In this study, we aimed to verify the close association between ferroptosis and the TME 
and to propose an important tool for predicting the prognosis and immune infiltration 
of BCa, also for precise treatment of immunotherapy and developing mRNA vaccines.

Methods
Bladder cancer dataset source and preprocessing

The workflow of our study was shown in Fig. 1. Public RNA-seq data and full clini-
cal annotation were downloaded from Gene-Expression Omnibus (GEO) and the 
Cancer Genome Atlas (TCGA) database. Patients without survival information were 
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removed from further evaluation. In total, three eligible BCa cohorts (GSE13507, 
GSE32894 and GSE48075) and TCGA-BLCA (The Cancer Genome Atlas-Bladder 
Cancer) cohort were gathered in this study for further analysis. For microarray data 
from GEO database, the normalized matrix files were directly downloaded. As to 
datasets in TCGA, RNA sequencing data (FPKM value) of gene expression were 
downloaded from the Genomic Data Commons (GDC, https://​portal.​gdc.​cancer.​
gov/). And then FPKM values were transformed into transcripts per kilobase mil-
lion (TPM) values. Batch effects from non-biological technical biases were corrected 
using the “ComBat” algorithm of sva package. The baseline information of all eligible 
BCa datasets was summarized in Table 1. The somatic mutation data was acquired 
from TCGA database.

Besides, we performed a systematical search for the immune checkpoint blockade 
gene expression profiles, which could be publicly obtained and reported with complete 
clinical information. An immunotherapeutic cohort was finally included in our study: 
advanced urothelial cancer with intervention of atezolizumab, an anti-PD-L1 antibody 
(IMvigor210 cohort) [14]. For IMvigor210 cohort, based on the Creative Commons 
3.0 License, the complete expression data and detailed clinical annotations could be 
obtained from http://​resea​rch-​pub.​Gene.​com/​imvig​or210​coreb​iolog​ies. The raw count 
data were normalized by the DEseq2 R package and then the count value was trans-
formed into the TPM value.

Additionally, a total of 290 ferroptosis regulators were identified from a previous study 
[9]. To select lncRNAs, the annotation file was obtained from the Ensembl database 
(http://​asia.​ensem​bl.​org).

Different expression analysis and Kaplan–Meier survival analysis

Differential gene expression and patient survival data were integrated using Gene 
Expression Profiling Interactive Analysis [15] (GEPIA, http://​gepia2.​cancer-​pku.​cn, ver-
sion 2). ANOVA was used to identify the differentially expressed genes with |log2FC| 
values > 1 and q values < 0.01. OS and disease-free survival (DFS) were evaluated using 
the Kaplan–Meier method with a 50% (Median) cutoff, and compared by the log rank 

Fig. 1  The flow chart of the study procedure

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://research-pub.Gene.com/imvigor210corebiologies
http://asia.ensembl.org
http://gepia2.cancer-pku.cn
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test. The cox proportional hazards regression model was applied to calculate the haz-
ard ratio. The parameter setting was consistent in each analysis without adjustment for 
any p value. One-way ANOVA and Kruskal–Wallis tests were used to conduct difference 

Table 1  Clinical features of all eligible 1216 BCa patients from TCGA, GEO and IMvigor210 cohorts

We identified a 5-lncRNA signature in TCGA cohort, and verified this signature in GEO cohort. Besides, we demonstrated 
significant therapeutic advantages and clinical benefits in an immunotherapy cohort (IMvigor210 cohort)

Data are shown as n(%)

IMvigor210 cohort downloaded from http://​resea​rch-​pub.​gene.​com/​IMvig​or210​CoreB​iolog​ies/​packa​geVer​sions/

AJCC, American Joint Committee on Cancer; GEO, Gene Expression Omnibus; BCa, bladder cancer; TCGA, The Cancer 
Genome Atlas

Variables TCGA cohort GEO cohort IMvigor210 cohort

(n = 406) (n = 462) (n = 348)

Status

 Alive 298 (73.40) 340 (73.59) 116 (33.33)

 Dead 108 (26.60) 122 (26.41) 232 (66.67)

Age 68.09 ± 10.57 67.81 ± 11.51 NA

Gender

 Female 107 (26.35) 111 (24.03) 76 (21.84)

 Male 299 (73.65) 351 (75.97) 272 (78.16)

AJCC—T Response:CR 25(7.18)

 T1 11(2.70) 277(59.96)

 T2 193(47.54) 116(25.11) PR 43(12.36)

 T3 158(38.92) 49(10.61) SD 63(18.10)

 T4 44(10.84) 20(4.32) PD 167(47.99)

NE 50(14.37)

AJCC—N Immune 
phenotype:inflammed

74(21.26)

 N0 239(58.86) 414(89.61)

 N1 47(11.58) 48(10.39) excluded 134(38.51)

 N2 76(18.72) desert 76(21.84)

 N3 8(1.97)

 Nx 36(8.87) NE 64(18.39)

AJCC—M

 M0 196(48.28) 448(96.97)

 Mx/M1 210(51.72) 14(3.03)

Stage I 2(0.49) NA 118(33.90)

 II 128(31.53) NA 95 (27.30)

 III 140(34.48) NA 69 (19.833)

 IV 136(33.50) NA 66 (18.97)

Tumor_grade

 High grade 382(94.09) 155(33.55) NA

 Low grade 21(5.17) 234(50.65) NA

 Unknown 3(0.74) 73(15.80) NA

 Median follow-
up,months(IQR)

17.73(10.83–31.60) 35.54(16.72–62.13) 8.05(2.87–17.87)

Overall survival (95% CI)

 1 years 85.2(83.4–87.0) 92.0(90.7–93.3) 3 months 76.0(73.7–78.3)

 3 years 66.2(63.1–69.3) 80.2(78.2–82.2) 6 months 60.7(58.7–63.4)

 5 years 61.3(57.8–64.8) 70.3(67.6–73.0) 9 months 49.3(46.6–52.0)

12 months 41.2(38.5–43.9)

http://research-pub.gene.com/IMvigor210CoreBiologies/packageVersions/
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comparisons of three or more groups [16]. p-values < 0.05 were considered statistically 
significant.

Comparison of genetic alterations and estimation of tumor immune cell infiltration

The cBio Cancer Genomics Portal [17] (cBioPortal, http://​www.​cbiop​ortal.​org) was 
used to integrate the raw RNA-seq data from TCGA and other databases, and compare 
genetic alterations in Bladder Cancer. p-values < 0.05 were considered statistically signif-
icant. Tumor Immune Estimation Resource [18] (TIMER, https://​cistr​ome.​shiny​apps.​io/​
timer/) was used to analyze and visualize the association between abundance of tumor 
immune infiltrating cells (TIICs) and ferroptosis related genes through analytical mod-
ules for gene expression, somatic mutations, clinical outcomes and somatic copy num-
ber alteration. Purity Adjustment was selected using Spearman’s correlation analysis. 
p-values < 0.05 were considered statistically significant. We also used the ssGSEA (sin-
gle-sample gene-set enrichment analysis) algorithm to quantify the relative abundance 
of each cell infiltration in the BCa TME. The enrichment scores calculated by ssGSEA 
analysis were utilized to represent the relative abundance of each TME infiltrating cell in 
each sample.

Unsupervised clustering for 55 FRGs

A total of 55 regulators were extracted from three integrated GEO datasets and TCGA 
cohorts for identifying distinct ferroptosis regulation patterns mediated by FRGs. Unsu-
pervised clustering analysis was applied to identify distinct ferroptosis regulation pat-
terns based on the expression of 55 FRGs and classify patients for further analysis. The 
number of clusters and their stability were determined by the consensus clustering algo-
rithm [19]. We used the “ConsensusClusterPlus” package to perform the above steps and 
1000 times repetitions were conducted for guaranteeing the stability of classification 
[20]. And we verified the unsupervised clustering analysis in another external database 
(IMvigor210 cohort).

Gene set variation analysis (GSVA) and functional annotation

To investigate the difference on biological process between ferroptosis regulation pat-
terns, we performed GSVA enrichment analysis using “GSVA” R packages. GSVA, in a 
non-parametric and unsupervised method, is commonly employed for estimating the 
variation in pathway and biological process activity in the samples of an expression data-
set [21]. The gene sets of “c2.cp.kegg.v6.2.-symbols” were downloaded from MSigDB 
database for running GSVA analysis. Adjusted p-value less than 0.05 was considered as 
statistically significance. The clusterProfiler R package was used to perform functional 
annotation for ferroptosis-related genes, with the cutoff value of FDR < 0.05.

Generation of comprehensive ferroptosis related genes score

As previously mentioned, we classified patients into three distinct ferroptosis regulation 
patterns based on the expression of 55 FRGs. The empirical Bayesian approach of limma 
R package was applied to determine DEGs between different regulation patterns [22]. 
The significance criteria for determining DEGs was set as adjusted p-value < 0.001. And 
to understand the potential functions of these developed ferroptosis regulation patterns, 

http://www.cbioportal.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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gene ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis were performed in the Enrichr database (http://​
amp.​pharm.​mssm.​edu/​Enric​hr/).

Then we further quantified the ferroptosis regulation patterns of individual tumor, 
and constructed a set of scoring system to evaluate the ferroptosis pattern of individual 
patients with BCa—the ferroptosis related genes score, and we termed as FRGs score. 
The procedures for establishment of FRGs score were as follows:

The DEGs identified from different ferroptosis regulation patterns were firstly normal-
ized among all samples and the overlap genes were extracted. The patients were classi-
fied into several groups for deeper analysis by adopting unsupervised clustering method 
for analyzing overlap DEGs. The consensus clustering algorithm was utilized for defin-
ing the number of gene clusters as well as their stability. Then, we performed the prog-
nostic analysis for each gene in the signature using univariate Cox regression model. The 
genes with the significant prognosis were extracted for further analysis. We then con-
ducted principal component analysis (PCA) to calculate FRGs score. This method had 
advantage of focusing the score on the set with the largest block of well correlated (or 
anticorrelated) genes in the set, while down-weighting contributions from genes that do 
not track with other set members. We then define the FRGs score using a method simi-
lar to GGI [23, 24]:

where i is the expression of ferroptosis patterns-related genes.

Further establishment of a convenient and brief ferroptosis related lncRNA signature

First, 607 Fr-lncRNAs(ferroptosis related lncRNAs) were obtained through different 
expression analysis between groups of high FRGs score and low FRGs score by limma 
package(lncRNAs with an average expression value of < 0.05 and |logFC| > 2). Then, after 
comparison of expression of genes between 19 normal-tissue samples and 406 BCa sam-
ples, 346 lncRNAs were obtained by the Wilcoxon test (|logFC| > 1). Next, univariate 
Cox survival analysis was employed to explore relationships between OS and 346 dif-
ferentially expressed lncRNAs linked to ferroptosis in the training set of TCGA cohort. 
The HR and p-value were generated using the “survival package” in R. Once significance 
(p < 0.001) had been reached, 44 lncRNAs were selected for use in the LASSO method 
to search for the hub lncRNAs related to survival. And we drew a plot with the partial 
likelihood deviance versus log (λ) (with λ representing a “tuning” parameter) (Fig. 6A). 
Based on this process, six important prognostic lncRNAs were selected from prognostic 
lncRNAs.

Next, multivariate Cox regression analysis (MCRA) was used to estimate the regres-
sion coefficient of less important prognostic lncRNAs associated with ferroptosis in the 
training set. A 5-lncRNA signature comprising these selected lncRNAs associated with 
ferroptosis was constructed using respective coefficients. According to the ferroptosis 
risk index (FRI) formula, FRI of each patient was calculated, and the median FRI was 
determined using “survminer” in R to classify patients in the training set into a low-risk 
group and high-risk group. Then, differences in OS between the low-risk group and 

FRGs score =
∑

(PC1i + PC2i),

http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
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high-risk group were compared using the Kaplan–Meier method. To test the sensitiv-
ity and specificity of the FRI formula, ROC curves were created to assess the predictive 
accuracy. Similarly, the formula was applied in the test set to validate its stability. Clin-
icopathologic characteristics (e.g., TNM stage) are closely associated with the prognosis 
of BCa patients. Hence, univariate and MCRA were undertaken to test whether the FRI 
was independent of clinicopathologic characteristics.

ANOVA was used to determine the association of immune subtypes with different 
immune-related molecular and cellular characteristics. The most frequently mutated 
genes were screened using the chi-square test. DAVID program was used to function-
ally annotate each gene module through gene ontology analysis. Single-sample GSEA 
(ssGSEA) was used to calculate immune enrichment scores for each sample, which is 
the measure of genes that are coordinately up- or down-regulated within a sample. We 
also conducted validation analysis in the IMvigor210 cohort using these identified cru-
cial lncRNAs.

WGCNA analyses

To explore relationships between the lncRNAs signature and biological functions of 
BCa, WGCNA was employed to construct gene co-expression modules among differen-
tially expressed mRNAs [25]. Modules with the maximum significance associated with 
the lncRNAs signature were selected. Then, enrichment analyses of these genes in the 
most highly related module were done using the “clusterProfiler” package in R software.

Predicting the effective response of postoperative immunotherapy and evaluated 

the immunotherapy response in IMvigor210 cohort

We downloaded the IPS of ccRCC patients from the cancer immune group atlas (TCIA) 
(https://​tcia.​at/​home). The patient’s IPS was obtained without bias by considering the 
four categories of immunogenicity-determining genes: effector cells, immunosuppressor 
cells, MHC molecules and immune modulators. This step was performed by evaluating 
gene expression in four cell types and the IPS was calculated on a scale of 0–10 based 
on z-scores representing gene expression in cell types. Higher IPS scores are positively 
correlated to the increased immunogenicity [26]. Meanwhile, the TIDE algorithm was 
used to predict ICB responses and evaluate ability to serve as a neoantigen (http://​tide.​
dfci.​harva​rd.​edu) [27]. Then, we calculate the FRI in cohort of advanced urothelial can-
cer with intervention of atezolizumab, an anti-PD-L1 antibody (IMvigor210 cohort), and 
explore the effect of FRI on immunotherapy response.

Nomogram construction based on the FRI and comparison of the predictive ability 

with clinicopathologic characteristics

A nomogram comprising independent prognostic factors was developed to predict 1-, 
3-, and 5-year OS rates by employing the “rms” package in R. The capacity of the nom-
ogram to distinguish survival was tested using AUC values. The DCA curve indicated 
that a nomogram was feasible to make valuable and profitable judgments. Furthermore, 
among these detected factors included in the nomogram, we also observed that “FRI” 
was more beneficial than the other clinical and laboratory indicators in the prediction of 
overall survival.

https://tcia.at/home)
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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Statistical analysis

All data sorting and analyses were completed by the R 4.1.0 software. For continuous 
variables with normal distribution and homogeneity of variance, an independent sam-
ple t-test was used; otherwise, Wilcoxon rank-sum test was selected. Pearson correlation 
coefficient test was used to analyze the correlation. A value of p < 0.05 was considered 
significant.

Results
Identification of potential ferroptosis related mRNA vaccines of BCa

To identify potential mRNA vaccines of BCa, we first screened for the aberrantly 
expressed genes and detected 546 overexpressed genes that likely encode tumor-asso-
ciated antigens (Fig. 2A, 3E). A total of 18,249 mutated genes potentially encoding for 
tumor-specific antigens were then filtered by analyzing altered genome fraction and 
mutation counts in individual samples (Fig. 3A–E). Mutational analysis showed that titin 
(TTN) and tumor protein p53 (p53) were the most frequently mutated genes in terms 
of both altered genome fraction and mutation counts (Fig. 3C, D). Of note, in addition 
to TTN, p53 and mucin 16 (MUC16) in top 3 candidates with altered genome fractions, 
KMT2D, ARID1A, KDM6A, SYNE1, PIK3CA, RB1, as well as HMCN1, all have a muta-
tion frequency of more than 15%, indicating the potential genomic interaction among 
them (Fig.  3D). According to the analysis, missense mutations had the highest inci-
dence of all mutation types. High missense mutation counts were observed in TTN, p53, 

Fig. 2  Identification of potential tumor antigens and landscape of genetic and expression variation of 
ferroptosis regulators in bladder cancer. A Potential tumor-associated antigens of BCa. B Overlap genes of 
univariate Cox regression analysis based on overall survival and disease-free survival. C The expression of 
ferroptosis regulators between normal tissues and BCa tissues. (*p < 0.05; **p < 0.01; ***p < 0.001). D The CNV 
variation frequency of ferroptosis regulators in TCGA-BLCA cohort. E The location of CNV alteration. F The 
mutation frequency of top20 ferroptosis regulators
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MUC16, KMT2D, ARID1A, KDM6A, SYNE1, PIK3CA, RB1 and HMCN1 (Fig.  3D). 
Overall, 534 overexpressed and frequently mutated tumor specific genes were identified.

After survival analysis about overall survival and DFS, a total of 55 FRGs from 290 
FRGs were finally identified in this study (Fig. 2B). We first summarized the incidence 
of copy number variations and somatic mutations of 55 FRGs in BCa. Among 406 sam-
ples, 144 experienced mutations of FRGs, with frequency 34.95%. It was found that the 
FBXW7 exhibited the highest mutation frequency followed by ZEB1, SCD, FADS2, 
G6PD as well as SLC3A2 (Fig. 2F). Further analyses revealed a significant mutation cooc-
currence relationship between FBXW7 and MAPK3, ZEB1 and ACSF2, along with PGD 
and EGFR (Additional file 1: Fig. S2B). The investigation of CNV alteration frequency 
showed a prevalent CNV alteration in 55 FRGs and most were focused on the amplifica-
tion in copy number, while IDH1, FBXW7, CRYAB and SCD had a widespread frequency 
of CNV deletion (Fig. 2D). The location of CNV alteration of FRGs on chromosomes was 
shown in Fig. 2E. Based on the expression of these 55 FRGs, we could completely distin-
guished BCa samples from normal samples (Fig.  2C). To ascertain whether the above 
genetic variations influenced the expression of FRGs in BCa patients, we investigated 
the mRNA expression levels of regulators between normal and BCa samples, and found 
that the alterations of CNV could be the prominent factors resulting in perturbations on 
the FRGs expression. Compared to normal bladder tissues, FRGs with amplificated CNV 
demonstrated markedly higher expression in BCa tissues (e.g., VHL and SQLE), and vice 

Fig. 3  Identification of potential tumor-specific antigens of BCa. Samples overlapping in A mutation 
count groups and B altered genome fraction. C Genes with highest frequency in mutation count groups. 
D Summary of overall mutation results. E 6 candidates with high expression, mutation and significant 
association with OS and DFS. F, G The OncoPrint tab summarizes genomic alterations across TCGA set. H, I 
Identification of tumor antigens associated with tumor purity (H) and APCs (I)
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versa (e.g., SLC39A14, CDO1, CRYAB, JUN and EMP1) (Fig. 2C, D). The above analy-
ses presented the highly heterogeneity of genetic and expressional alteration landscape 
in FRGs between normal and BCa samples, indicating that the expression imbalance of 
FRGs played a crucial role in the BCa occurrence and progression.

The prognosis-related tumor antigens were next screened from the aforementioned 
genes as potential candidates for developing mRNA vaccine. Fifty-five genes were closely 
associated with the OS of BCa patients, of which 6 genes showed significant correlation 
with the DFS (Fig.  3E, Additional file  1: Fig. S1A). As shown in Additional file  1: Fig. 
S1A, patients overexpressing fatty acid desaturase 2(FADS2) in the tumor tissues had 
significantly shorter survival compared to the FADS2 low group. Likewise, high expres-
sion levels of stearoyl-CoA desaturase (SCD), squalene epoxidase (SQLE), glucose-
6-phosphate dehydrogenase (G6PD), transferrin receptor (TFRC), solute carrier family 
3 member 2 (SLC3A2) were also associated with poor prognosis (Additional file 1: Fig. 
S1A). Taken together, 6 gene candidates were identified that are critical for BCa develop-
ment and progression. Furthermore, lower expression levels of SCD, SQLE, FADS2 and 
TFRC were significantly associated with increased tumor infiltration of DCs and/or B 
cells (Fig.  3H, I). G6PD and SLC3A2 exhibited the upregulated tendency in increased 
infiltration of Macrophages (Fig. 3H, I). These findings suggest that the identified tumor 
antigens may be directly processed and presented by the antigen presenting cells (APCs) 
to T cells, and recognized by the B cells to trigger an immune response, and are there-
fore promising candidates for developing mRNA vaccine against BCa.

Identification of three ferroptosis regulation patterns mediated by 55 FRGs

Three GEO datasets (GSE13507, GSE32894 and GSE48075) and TCGA-BLCA cohort 
with available OS data and clinical information (Table 1) were enrolled into one meta-
cohort. A univariate Cox regression model revealed the prognostic values of 55 FRGs in 
patients with bladder cancer (Additional file 1: Table S1). The comprehensive landscape 
of top 27 FRGs’ interactions, regulator connection and their prognostic significance for 
BCa patients were depicted with the FRG network (Additional file 1: Fig. S2A). We found 
that a significant correlation was shown among these FRGs. It was found that tumors 
with a high expression of (SLC3A2, TFRC, SCD, and G6PD) showed a low expression 
of ZEB1, while the high expression of SRC did not affect the expression of PRDX1 and 
RNF113A. Tumors with a high expression of FADS2, PRDX1, G6PD and TFRC showed 
a high expression of SLC38A1 and GCLM, GCLM and PGD also did not interfere with 
ZEB1 expression, while FBXW7 shared a common trend in gene expression with ZEB1. 
In addition, the change of SRC expression did not affect the expression of these two 
genes. Considering the relatively higher mutation frequency of writer gene FBXW7, we 
analyzed the difference in expression of other FRGs between FBXW7-mutant and wild 
types (Fig. 4A). Of these, SCD was significantly up-regulated in FBXW7- mutant tumors 
compared to wild-type tumors, while SCP2 was significantly down-regulated (Fig. 4A). 
The above results indicated that cross-talk among the regulators of different FRGs may 
play critical roles in the formation of different ferroptosis regulation patterns and TME 
cell-infiltrating characterization between individual tumors.

And we further examined the specific correlation between each TME infiltration 
cell type and each FRG using spearman’s correlation analyses (Fig. 4B). We focused 
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on the regulator FBXW7, and revealed its significantly positive correlation with 
numerous TME infiltrating immune cells. We used ESTIMATE algorithm to quan-
tify the overall infiltration of immune cells between high and low FBXW7 expression 
patients. The results showed that high expression of FBXW7 exhibited high immune 
scores, which meant that the TME with high expression of FBXW7 existed a signifi-
cantly increased immune cell infiltration, thus confirming the above findings (Fig. 4E). 
We then explored the specific difference of 23 TME infiltrating immune cells between 
high and low FBXW7 expression patients. We found tumors with high expression of 
FBXW7 presented significantly increased infiltration in 23 TME immune cells com-
pared to patients with high expression (Fig.  4C). Recent studies paid special atten-
tion to the mechanism of ferroptosis regulating the activation of dendritic cells (DCs). 
DCs, which are responsible for antigen presentation and the activation of naive 
T cells, are a bridge connecting innate and adaptive immunity, and their activation 
depending on the high expression level of MHC molecules, costimulatory factors 
and adhesion factors [28]. Our study indicated that tumors with high expression of 
FBXW7 showed significant more enrichment of TME DCs infiltration including acti-
vated DCs, immature DCs, and plasmacytoid DCs. We also noted that the decreased 
expression of FBXW7 resulted in the comprehensively elevated expression of MHC 
molecules, costimulatory molecules, and adhesion molecules (Fig.  4D). Subsequent 
pathway enrichment analyses, as expected, tumors with high FBXW7 expression 
exhibited an obvious enhancement in immune activation pathways including the 
pathway of antigen processing and presentation, C-type lectin receptor, NOD-like 

Fig. 4  Correlation between TME infiltration cells and ferroptosis regulators and the roles of FBXW7 
in activation of dendritic cells. A Difference in gene expression between FBXW7 mut and wt. B The 
correlation between TME infiltration cells and ferroptosis regulators. C Difference in the abundance of 
TME infiltrating cells. D Difference in expression of HLA genes and ICPs. E Difference in immuneScore. F 
Differences in immune-activated pathways. G, H Survival analyses for patients in TCGA (G) and anti-PD-L1 (H) 
immunotherapy cohort (*p < 0.05; **p < 0.01; ***p < 0.001)
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receptor, T cell receptor, Tolllike receptor and NF-κB signaling pathway (Fig.  4F). 
It was interesting that the immune-related pathway enhancements were accompa-
nied by the increased expression of immunological checkpoint molecules PD1/L1 
(Fig.  4D). So, we investigated whether the expression of FBXW7 regulator affected 
the therapeutic efficacy of immune checkpoint blockade. In meta-cohort and anti-
PD-L1 immunotherapy cohort (IMvigor210), a survival benefit trend was observed in 
patients with high expression of FBXW7 (Fig. 4G, H). From above, we could speculate 
that FBXW7-mediated ferroptosis modification may promote the activation of TME 
DCs, thus enhancing the intratumoral anti-tumor immune response.

Interestingly, three distinct ferroptosis regulation patterns were eventually identi-
fied based on the expression of 55 FRGs using unsupervised clustering (Fig. 5A–C), 
including 236 cases in pattern A, 260 cases in pattern B and 372 cases in pattern C. 
We termed these patterns as FRGs cluster A–C, respectively (Fig. 5D and Additional 
file 1: Fig. S2C). Prognostic analysis for the three main ferroptosis subtypes revealed 
the particularly prominent survival advantage in FRGscluster-A regulation pattern 
(Fig. 5D).

To explore the biological behaviors among these distinct ferroptosis regulation 
patterns, we performed GSVA enrichment analysis. As shown in Fig.  5G, H, FRG-
scluster-A was markedly enriched in immune fully activation including the activation 
of chemokine signaling pathway, cytokine-cytokine receptor interaction and NOD 
like receptor signaling pathways. FRGscluster-B presented enrichment pathways 

Fig. 5  Patterns of ferroptosis regulation modification and biological characteristics of each pattern. A–C 
Unsupervised clustering of 55 ferroptosis regulators in a meta cohort (TCGA + GEO sets, n = 868, k = 3). 
D Survival analyses for the three ferroptosis regulation patterns based on 868 patients with BCa. E The 
abundance of TME infiltrating cells in three ferroptosis regulation patterns in meta cohort. F–H GSVA 
enrichment analysis. I Survival analyses in IMvigor210 cohort. J The abundance of TME infiltrating cells in 
three ferroptosis regulation patterns in IMvigor210 cohort
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associated with stromal and carcinogenic activation pathways such as ECM recep-
tor interaction, JAK-STAT signaling pathway, cell adhesion. While FRGscluster-C was 
prominently related to immune and metabolism suppression biological process.

We then used the CIBERSORT method, a deconvolution algorithm using support vec-
tor regression for determining the immune cell type in tumors, to compare the com-
ponent differences of immune cells among the three ferroptosis regulation patterns. To 
our surprise, subsequent analyses of TME cell infiltration indicated FRGscluster-A was 
remarkably rich in innate immune cell infiltration including activated B cell, activated 
CD4 T cell, activated CD8 T cell, activated dendritic cell, Gamma delta T cell, Immature 
B cell, Immature dendritic cell, Type 2 T helper cell and Type 17 T helper cell (Fig. 5E), 
and FRGscluster-B was remarkably rich in more immune cell infiltration such as eosino-
phil, MDSC, Macrophage, mast cell, natural killer cell, natural killer T cell, neutrophil 
cell, plasmacytoid dendritic cell and Regulatory T cell. Consistent with the abovemen-
tioned, patients with three ferroptosis pattern did show a matching survival difference 
(Fig. 5D). Previous studies demonstrated that tumors with immune excluded phenotype 
also showed the presence of abundant immune cells, while these immune cells were 
retained in the stroma surrounding tumor cell nests rather than penetrate their paren-
chyma. The activation of stroma in TME were considered T-cell suppressive [29]. The 
results from GSVA analyses have revealed cluster B regulation pattern was significantly 
associated with stromal activation. Therefore, we speculated that stromal activation in 
cluster B inhibited the anti-tumor effect of immune cells. Subsequent analyses showed 
that stroma activity was significantly enhanced in cluster B such as the activation of epi-
thelial-mesenchymal transition (EMT), Janus Kinase (JAK) and angiogenesis pathways, 
which confirmed our speculation Based on the above analyses, we were surprised to 
find three ferroptosis regulation patterns had significantly distinct TME cell infiltration 
characterization. Cluster A was classified as immune-inflamed phenotype, characterized 
by adaptive immune cell infiltration and immune activation; cluster B was classified as 
immune-excluded phenotype, characterized by innate immune cell infiltration and stro-
mal activation; cluster C was classified as immune-desert phenotype, characterized by 
the suppression of immunity (Fig. 5E–H).

Validation of ferroptosis regulation patterns in IMvigor210 cohort

To further explore the characteristics of these ferroptosis phenotypes in the different 
clinical traits and biological behaviors, we fixed attention on the IMvigor210 cohort, 
which comprised 348 urothelial cancer patients and offered the most comprehensive 
clinical annotation. Similar to BCa meta-cohort clustering, unsupervised clustering also 
discovered three fully distinct patterns of ferroptosis in IMvigor210 cohort (Additional 
file 1: Fig. S3A–D). There was significant distinction existed on the ferroptosis transcrip-
tional profile among three different ferroptosis regulation patterns (Additional file  1: 
Fig. S3E, F). FRGs cluster A was characterized by the increased expression of FADS2 
and ALOX5, and presented variable decreases in other FRGs; FRGs cluster B showed 
high expression of CDO1, ABCC1, ALDH3A1, EIF4A1, EMP1, IFNG, TMBIM4, 
TGFBR1, LAMP2, NOX1, MYC and ACSL5; and FRGs cluster C exhibited significant 
increases in the expression of G6PD, TFRC, FXN and LOX. Patients with immune-
inflammed subtype were characterized by the FRGs cluster-A regulation patterns, while 
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immune-excluded were characterized by the FRGs cluster-C regulation patterns, and 
FRGs cluster-B regulation patterns belonged to immune-desert subtype (Fig.  5J). We 
also noted that tumors with FRGs cluster-A patterns presented better differentiation 
and were enriched in the TCGA subtype-I. In bladder cancer, the TCGA subtype with 
poorer differentiation was markedly linked to a poorer survival. Therefore, the tumors 
characterized by FRGs cluster-B regulation patterns were significantly correlated with 
stromal activation, high malignancy and rapid progression (Fig. 5J, Additional file 1: Fig. 
S3E). One-way ANOVA test also confirmed the remarkable differences on FRG expres-
sion between three key ferroptosis regulation patterns. Prognostic analysis also revealed 
FRGs cluster A to be markedly related to prolonged survival, while FRGs cluster B and 
FRGs cluster C were characterized by poorer survival (Fig. 5I).

Generation of ferroptosis phenotype‑related genes scores and functional annotation

To further investigate the potential biological behavior of each ferroptosis regulation 
pattern, we determined 3310 ferroptosis phenotype-related DEGs using limma package 
(Additional file 1: Fig. S4A, B). The “clusterProfiler” package was used to perform GO 
enrichment analysis for the DEGs. The biological processes with significant enrichment 
were summarized in Additional file  1: Fig. S4C, D. Surprisingly, these genes showed 
enrichment of biological processes remarkably related to ferroptosis and immune, which 
confirmed again that ferroptosis played a nonnegligible role in the immune regulation in 
tumor microenvironment.

To further validate this regulation mechanism, we then performed unsupervised 
clustering analyses based on the obtained 3310 ferroptosis phenotype-related genes in 
order to classify patients into different genomic subtypes. Consistent with the cluster-
ing grouping of ferroptosis regulation patterns, the unsupervised clustering algorithm 
also revealed three distinct ferroptosis genomic phenotypes and we named these three 
clusters as ferroptosis gene cluster A–C, respectively (Additional file 1: Figs. S4E–5F). 
This demonstrated that three distinct ferroptosis regulation patterns did exist in blad-
der cancer. Patients with alive status were mainly concentrated in the ferroptosis gene 
cluster A, while patients with clinical stage IV were characterized by the ferroptosis gene 
cluster C patterns. Analysis also indicated three distinct gene clusters were character-
ized by different signature genes (Additional file 1: Fig. S5A–D). 269 of 868 patients with 
bladder cancer were clustered in gene cluster A, which were proved to be related to bet-
ter prognosis. While patients in gene cluster C (413 patients) experienced the outcome 
of poorer prognosis. An intermediate prognosis was observed in gene cluster B, with 186 
patients clustered (Additional file 1: Fig. S4F). In the three FRG gene clusters, the promi-
nent differences in the expression of FRGs were observed, which was in accordance with 
the expected results of ferroptosis regulation patterns (Additional file 1: Fig. S4G).

Considering the individual heterogeneity and complexity of ferroptosis, based on 
these phenotype-related genes, we constructed a set of scoring system to quantify the 
ferroptosis pattern of individual patients with bladder cancer, we termed as FRGs score. 
The Sankey diagram was used to visualize the attribute changes of individual patients 
(Additional file 1: Fig. S4I).

Next, we sought to further identify the value of FRGs score in predicting patients’ out-
come. With the cutoff value -13 determined by survminer package, patients were divided 
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into low or high FRGs score group. Patients with low FRGs score demonstrated a promi-
nent survival benefit (HR 2.23 (1.68–3.89); Additional file 1: Fig. S4H), with 5-year sur-
vival rate significantly higher than patients with high FRGs score (82.5% vs 56.8%). We 
also found that FRGs score was distributed differently in the FRGs clusters and gene 
clusters, with the highest level in clusterC (Additional file  1: Fig. S4J). And the FRGs 
score is closely related to the level of immune-infiltrating cells in tumors. For example, 
the higher FRGs score is, the lower activated B cell, activated CD4 T cell and activated 
CD8 T cell infiltration is (Additional file 1: Fig. S4K).

Identification of a brief lncRNA signature related to ferroptosis for prognosis and treatment

Pearson correlation analysis was applied to calculate the correlation between lncRNAs 
and ferroptosis-related genes. This analysis led to identification of 1329 lncRNAs associ-
ated with ferroptosis genes with a correlation coefficient > 0.4 and p < 0.01. After com-
parison of expression of genes between high and low FRG score, 607 lncRNAs were 
obtained by the Wilcoxon test. Then, 302 lncRNAs were finally obtained by the limma 
analysis between 19 normal-tissue samples and 406 BC samples. Last, the 406 BC sam-
ples were divided randomly into a “training” set (203 samples) and “testing” set (203 
samples) for subsequent analyses.

Then, forty-eight prognostic lncRNAs (p < 0.001) were identified by univariate Cox 
survival analysis in the training group. Because the number of prognostic lncRNAs was 
too high, six key prognostic lncRNAs (LINC01426, LRP4-AS1, LINC01098, C6orf99, 
LINC01614, ST7-OT4) were selected through a least absolute shrinkage and selection 
operator (LASSO) regression model (Fig.  6A). Subsequently, we calculated the coeffi-
cient (βi) of 5 lncRNAs (ST7-OT4, LIINC01614, LINC01426, LINC01098, C6orf99) after 

Fig. 6  Establishment of a 5-lncRNA signature and a comprehensive nomogram. A Illustration for LASSO 
coefficient profiles of 44 prognostic lncRNAs. B–E The performance of a 5-lncRNA signature in Training 
group (B), testing group (C), TCGA cohort (D), IMvigor210 cohort (E). F, H The interaction between m6 A 
regulators (F) and DNA methylation regulators (H). G–I Kaplan–Meier analyses. J ggAlluvial diagram. K The 
comprehensive nomogram in TCGA dataset. L ROC analyses. M, N The DCA curve and calibration curve
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multivariate Cox regression analysis (MCRA), and revealed the hazard ratio (HR) with 
95% confidence interval (CI), respectively (Additional file 1: Table S2).

Based on the estimated regression coefficient of the five lncRNAs, a formula for 
the risk score was developed. The ferroptosis risk index (FRI) of each patient was 
calculated based on the following formula: FRI = (0.2654 × relative expression of 
LINC01426) + (1.1533 × relative expression of LINC01098) + (0.3617 × relative expres-
sion of C6orf99) + (0.0352 × relative expression of LINC01614) + (5.1652 × relative 
expression of ST7-OT4). A heatmap of the expression profile of the five lncRNAs and 
distribution of the risk score, survival status along with survival duration of BCa patients 
and relative expression of five key prognostic lncRNAs are shown in Fig. 6B–E. Among 
these lncRNAs, they were all risk factors positively correlated with OS (p < 0.0001). All 
BCa patients were stratified into “low-risk” and “high-risk” groups using the median 
value of the risk score as the cutoff. Overall, data indicated that a higher risk score pre-
dicted a shorter OS of BC patents in the training set, and this theory was verified in a 
validation set, IMvigor210 cohort.

Comparison of OS between patients with a high FRI and patients with a low FRI 
was undertaken using the median value of the FRI as the cutoff. Results suggested that 
patients with a higher FRI had shorter OS than patients with a low FRI in the train-
ing set (HR = 1.564, p < 0.001) (Fig.  6B, Additional file  1: Table  S3), testing set (1.247, 
< 0.001) (Fig. 6C, Additional file 1: Table S3) and training set + testing set (1.048, < 0.001) 
(Fig.  6D, Additional file  1: Table  S3). Analyses of ROC curves indicated that the five-
lncRNA signature had “ideal” sensitivity and specificity for prognostic prediction of BCa 
patients, with all areas under the ROC curve (AUC) > 0.72 in the TCGA cohort (Fig. 6B–
D). We also undertook analyses of survival and ROC curves in the IMvigor210 cohort 
(AUC = 0.685) (Fig. 6E). Analyses of Kaplan–Meier curves also indicated that patients 
with a high FRI carried a poor prognosis (p < 0.01) (Fig.  6B–E). Samples in the whole 
TCGA cohort were subjected to principal component analysis (PCA) based on the FRI 
of the 5-lncRNA signature, and were divided into high-risk and low-risk groups for OS 
of patients with BC. PCA showed that the 5-lncRNA signature predicted OS (Fig. 6B–E). 
Moreover, we conducted univariate Cox regression analysis in TCGA cohort to screen 
significant clinical features for the prognosis, during which the FRI, age, gender, stage, 
T stage, N stage, and M stage of the American Joint Committee on Cancer classifica-
tion were included. Univariate analysis showed that the 5-lncRNA signature, age, T 
stage, N stage, M stage and stage were correlated significantly with OS (Additional file 1: 
Table S3). To ascertain whether the 5-lncRNA signature could be an independent prog-
nostic factor for BC patients, MCRA was done using the FRI and other clinical features. 
The 5-lncRNA signature was a significant independent prognostic factor in the three 
cohorts (Additional file 1: Table S2). MCRA showed that only the 5-lncRNA signature, 
age, N stage, and M stage remained significantly associated with OS in the whole TCGA 
cohort (Additional file 1: Table S5).

Cellular and molecular characteristics of two FRI subtypes for selecting the right patients 

for precise treatment

The response to mRNA vaccine depends on the tumor immune status. Hence, we fur-
ther characterized the immune cell components in FRI subtypes by scoring 28 previously 
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reported signature genes in both TCGA and IMvigor210 cohorts using ssGSEA. As 
shown in Fig. 7A, the immune cell components were divided into two clusters. The two 
clusters showed the different trend of immune cell infiltration. Further, the immune cell 
composition was significantly different among the subtypes. For instance, the immune 
scores were significantly higher in high-risk cluster compared to low-risk cluster 

Fig. 7  Cellular and molecular characteristics of 5-lncRNA risk subtypes. A The landscape of immune cell 
infiltration in TCGA cohort. B Difference in the immune related signaling pathways. C Gene expression of HLA 
gene sets between two distinct clusters. D Dendrogram of all differentially expressed genes clustered based 
on a dissimilarity measure (1-TOM). E, F Weight gene co-expression analysis and function enrichment analysis. 
G The landscape of immune cell infiltration in IMvigor210 cohort. H Functional annotation in IMvigor210 
cohort
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(Additional file 1: Fig. S6A), and that of eosinophils, activated CD8 T cells, activated B 
cells, monocytes and effector memory CD4 T cells were higher in high-risk cluster rela-
tive to low-risk cluster. Thus, high risk cluster are immunological “hot” while low risk 
cluster are immunological “cold” phenotypes. Similar trends were seen in IMvigor210 
cohort as well (Fig. 7G, Additional file 1: Fig. S7A). These results suggest that FRI sub-
type reflects the BCa immune status, and can identify suitable patients for mRNA vac-
cination. The mRNA vaccine with these antigens can induce immune infiltration in 
patients with immunologically “cold” low risk cluster tumors.

For example, low risk cluster showed lower counts of activated B cells, activated CD4+ 
T cells, activated CD8+ T cells, effector memory CD8+ T cells, regulatory T cells and 
myeloid-derived suppressor cells (MDSCs), while high risk cluster scored higher in 
terms of activated B cells, activated CD8+ T cells, effector memory CD8+ T cells, regu-
latory T cells and MDSCs. Thus, the mRNA vaccine may be relatively viable and more 
effective in low-FRI than in high-FRI group.

WGCNA analysis and identification of biological pathways associated with the 5‑lncRNA 

signature

The 5-lncRNA signature had a strong discriminatory power for the prognosis of BCa 
patients, so this signature might be closely associated with the biological pathways of 
BCa. To further explore the key mechanisms of the 5-lncRNA, we clustered the hub 
genes that were highly correlated with the FRI by weighted gene co-expression network 
analysis (WGCNA) in TCGA cohort. 20 modules were obtained after merging dynamic 
and clustering analysis, and only the cyan and salmon module was correlated signifi-
cantly with the FRI (cyan: correlation = 0.39, p = 4 × 10–16; salmon: correlation = 0.41, 
p = 1 × 10–17) (Fig. 7D, E, Additional file 1: Fig. S6B).

Based on the genes included in the cyan and salmon module, we tried to elucidate the 
underlying biological pathways using the Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) databases. Three signaling pathways [Rap1, hypoxia-
inducible factor (HIF), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)] were 
the primary ones which the 5-lncRNA appeared to be involved in. Other ferroptosis-
associated processes (e.g., regulation of extent of cell growth, positive regulation of JNK 
cascade and cartilage development) were also enriched significantly (Fig. 7F and Addi-
tional file 1: Fig. S6C). And we also found that patients in FRI-high group enriched in 
immune related pathways (Fig. 7H).

Association between FRI subtypes of BCa and immune modulators

We identified that the higher FRI resulted in the comprehensively elevated expres-
sion of MHC molecules, costimulatory molecules, and adhesion molecules (Fig.  7B). 
Subsequent analyses of relationship between HLA gene sets and two FRI subtypes, as 
expected, the patients in FRI-high group have significantly higher expression than 
patients in FRI-low group (Fig. 7C). And the same goes for IMvigor210 cohort (Addi-
tional file 1: Fig. S7B).

Given the importance of immune checkpoints (ICPs) and immunogenic cell death 
(ICD) modulators in cancer immunity, we next analyzed their expression levels in 
the different FRI subtypes. Forty-seven ICPs related genes were detected in both 



Page 19 of 30Gui et al. Journal of Big Data            (2022) 9:88 	

cohorts, of which 41 (87%) genes in TCGA cohort (Additional file 1: Fig. S8A–E) and 
46 (97.9%) in IMvigor210 cohort (Additional file  1: Fig. S8G–J) were differentially 
expressed between the high and low-FRI subtypes. For instance, ADORA2A, BTLA, 
CD160, CD27, CD40LG, CD48, CTLA4, ICOS, ICOSLG, IDO2, LAG3, LAIR1,NRP1, 
PDCD1, PDCD1LG2, TIGIT, TNFRSF14, TNFRSF25, TNFRSF4, TNFRSF8, TNFSF14, 
TNFSF15, TNFSF18, and VSIR were significantly upregulated in high-FRI tumors in the 
IMvigor210 cohort, and ADORA2A, BTLA, CD200, CD200R1, CD244, CD27, CD28, 
CD40, CD40LG, CD48, CD80, CD86, CTLA4, HAVC R2, ICOS, IDO1, IDO2, LAG3, 
LAIR1, PDCD1, PDCD1LG2, TIGIT, TMIGD2, TNFRSF18, TNFR SF25, TNFRSF4, 
TNFRSF8, TNFRSF9, and VSIR were also overexpressed in high-FRI tumors in TCGA 
cohort.

Furthermore, the overall expression level of ICPs in the IMvigor210 cohort was higher 
than that in TCGA cohort. Twenty-five ICD genes were detected in the IMvigor210 
cohort, of which 18 (72%) were differentially expressed among the FRI subtypes (Addi-
tional file 1: Fig. S8K). Likewise, twenty-five ICD genes were expressed in TCGA cohort, 
of which 19 (76%) showed significant differences between the subtypes (Additional file 1: 
Fig. S8F). For instance, CALR, CXCL10, IFNAR1, MET, EIF2A and PANX1 were sig-
nificantly upregulated in low-FRI tumors in TCGA cohort, while CALR, MET, TLR4, 
LRP1, EIF2A, ANXA1 and P2RY2 showed significantly higher expression levels in low-
FRI tumors in IMvigor210 cohort. Therefore, FRI can reflect the expression levels of 
ICPs and ICD modulators and be treated as potential therapeutic biomarkers for mRNA 
vaccines.

Relationship between FRI and tumor somatic mutation, microsatellite instability

Then, we analyzed the distribution differences of somatic mutation between FRI-low 
and FRI-high subgroup in TCGA-BLCA cohort using “maftools” package. As shown in 
Fig.  8A, B, FRI-low group presented more extensive tumor mutation burden than the 
high-risk score group. The TMB quantification analyses confirmed the low-risk score 
tumors was markedly correlated with a higher TMB (Fig. 8C). The FRI and TMB also 
exhibited a significant negative correlation (Fig. 8F, Additional file 1: Fig. S11A). Accu-
mulated evidence demonstrated patients with high TMB status presented a durable 
clinical response to anti-PD-L1 immunotherapy. Therefore, the above results indirectly 
demonstrated that the difference in tumor ferroptosis regulation patterns could be a cru-
cial factor that mediated the clinical response to anti-PD-L1 immunotherapy. And the 
values of FRI in predicting immunotherapeutic outcomes were also indirectly confirmed.

The clinical trials as well as preclinical researches have revealed patients with higher 
somatic TMB were correlated with enhanced response, long-term survival and durable 
clinical benefit when treated with immune checkpoint blockade therapy. The individ-
ual altered genes could mediate resistance or sensitivity to immunotherapy. For spe-
cific altered genes in TCGA-BLCA such as TP53, TTN, ARID1A, PIK3CA, SYNE1 and 
RB1, mutant type had significantly higher FRI compared to wild type, as well as FGFR3 
and STAG2, mutant type had significantly lower FRI compared to wild type (Fig. 8A, B, 
Additional file 1: Fig. S9A, B). These results would provide novel perspective for explor-
ing the mechanisms of ferroptosis modification in the tumor somatic mutations, shaping 
of TME landing, and roles in immune checkpoint blockade therapy.
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The highly microsatellite instability subtype, characterized by better prognosis, 
was significantly correlated with lower FRI, whereas MSI-Low and MSS had a higher 
FRI (Fig.  8H, I). Multivariate analysis for TCGA-BLCA cohort also confirmed that 
FRI could act as an independent prognostic biomarker in bladder cancer (Additional 

Fig. 8  Characteristics of 5-lncRNA signature in TCGA molecular subtypes and relationship with tumor 
somatic mutation and MSI. A, B The waterfall plot of tumor somatic mutation. C Difference of TMB. D Survival 
analyses in TCGA cohort. E Survival analyses stratified by both FRI and TMB. F Correlation between FRI level 
and TMB in TCGA cohort. G Difference in PD-L1 expression. H The proportion of MSI subtype. I Differences 
of FRI among three MSI status in TCGA cohort. J The association between IPS and FRI. K Difference of TIDE 
score. L Differences of TMB in IMvigor210 cohort. M Survival analyses by median TMB in IMvigor210 cohort. N 
Differences of FRI among distinct immunotherapy response phenotypes in IMvigor210 cohort
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file  1: Table  S5). Previous studies indicated that patients with higher MSI or higher 
TMB in bladder cancer have been shown to respond to anti-PD-L1 antibodies in sev-
eral studies. In our study, higher MSI or higher TMB in patients were markedly asso-
ciated with lower FRI, and we found patients with combination of low-FRI and high 
mutation burden showed a great survival advantage (Fig. 8D, E), which implied FRI 
could be a more effective biomarker for the prediction of immunotherapeutic efficacy 
than MSI and TMB in patients with bladder cancer (Fig. 8E, I).

In addition, the immunogenicity of FRI was evaluated by IPS analysis. The IPS, 
IPS-CTLA4, IPS-PD1 and IPS-PD1-CTLA4 scores were higher in the FRI-low group 
(Fig. 8J). To evaluate the ability of FRI served as a biomarker predictive of the clinical 
response to ICB therapy. We analyzed datasets from patients with stage III/IV ccRCC 
using the TIDE algorithm. And the results showed that the FRI-low group was associ-
ated with lower TIDE scores, indicating a stronger response to ICB therapy (Fig. 8K).

Analyzing the role of FRI in anti‑PD‑L1 immunotherapy

In anti-PD-L1 cohort (IMvigor210), patients with low FRI exhibited significantly 
clinical benefits and a markedly prolonged survival [Fig.  6E; IMvigor210, HR 1.623 
(1.203–1.996), Additional file 1: Table S3]. The significant therapeutic advantages and 
clinical response to anti-PD-L1 immunotherapy in patients with low-risk score com-
pared to those with high-risk score were confirmed (Fig. 8L, N and Additional file 1: 
Fig. S10B). In addition, patients with low-risk score showed an obviously high expres-
sion of PD-L1, which indicated a potential response to anti-PD-L1 immunotherapy 
(Fig. 8G). Further research revealed that regulatory T-cells and TME stroma were sig-
nificantly activated in tumors with high-risk score, which mediated immune tolerance 
of tumors (Fig. 7G).

The above implied that the quantification of ferroptosis regulation patterns was 
a potential and robust biomarker for prognosis and clinical response assessment of 
immunotherapy (Fig. 8L, N, Additional file 1: Fig. S10A, C). The immune phenotypes 
of tumors in the IMvigor210 cohort have been detected, so we investigated the differ-
ence of risk score among different phenotypes. We found that higher risk score was 
remarkably associated with exclusion and desert immune phenotypes, and checkpoint 
inhibitors were difficult to exert anti-tumor effect in these phenotypes (Additional 
file 1: Fig. S10C). In summary, our work strongly indicated that ferroptosis regulation 
patterns was significantly correlated with tumor immune phenotypes and response 
to anti-PD-L1 immunotherapy, and the established ferroptosis signature would con-
tribute to predicting the response to anti-PD-L1 immunotherapy. These findings sug-
gest that FRI can predict TMB and somatic mutation rates in BCa patients, and that 
patients with low risk may respond positively to anti-PD-L1 immunotherapy.

In addition, we revealed that elderly patients, diffuse histological subtype and 
advanced patients were significantly associated with a higher FRI, which meant that 
these patients were characterized with a poorer clinical outcome. These results dem-
onstrated FRI could be also used to evaluate certain clinical characteristics of patients 
such as MSI status, molecular subtypes, histological subtypes as well as clinical stage, 
etc. (Additional file 1: Fig. S11A–C).
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Identify the value of m6A and DNA methylation score (DMS) cluster in predicting patients’ 

outcome

m6A score and DMS was constructed to quantify ferroptosis regulation patterns of indi-
vidual tumors using principal component analysis algorithms, just like calculating FRGs 
score (Fig. 6F–J).

Construction of nomograms and validation

According to MCRA results, a comprehensive nomogram was generated for “individual-
ized” prediction of OS at 1 year, 3 years and 5 years that integrated independent prog-
nostic features (age, T stage, N stage, M stage, m6A score, DMS score, FRI) (Fig. 6K). For 
this nomogram, AUC ≤ 0.799, so it could be employed to discriminate between patients 
with a poor prognosis from patients with a favorable prognosis (Fig. 6L). Besides, The 
DCA curve and calibration curve indicated that a nomogram was feasible to make valu-
able and profitable judgments (Fig. 6M).

Discussion
Increasing evidence demonstrated that ferroptosis took on an indispensable role in 
inflammation, innate immunity as well as anti-tumor effect through interaction with 
various ferroptosis related regulators. As most studies focus on single TME cell type 
or single regulator, the overall TME infiltration characterizations mediated by inte-
grated roles of multiple FRGs are not comprehensively recognized. Identifying the role 
of distinct ferroptosis regulation patterns in the TME cell infiltration will contribute to 
enhancing our understanding of TME anti-tumor immune response, and guiding more 
effective immunotherapy strategies.

Here, based on 55 FRGs, we revealed three distinct ferroptosis regulation patterns. 
These three patterns had significantly distinct TME cell infiltration characterization. 
Cluster A was characterized by the activation of adaptive immunity, corresponding to 
immune-inflamed phenotype; cluster B was characterized by the activation of innate 
immunity and stroma, corresponding to immune-excluded phenotype; cluster C was 
characterized by the suppression of immunity, corresponding to immune-desert phe-
notype. The immune-excluded and immune-desert phenotypes could be regarded as 
non-inflamed tumors. The immune-inflamed phenotype, known as hot tumor, show 
by a large number of immune cell infiltration in TME [29–31]. Although the immune-
excluded phenotype also showed the presence of abundant immune cells, the immune 
cells were retained in the stroma surrounding tumor cell nests rather than penetrate 
their parenchyma. The stroma could be confined to the tumor envelope or may pen-
etrate the tumor itself, making the immune cells appear to be really inside the tumor 
[32–34]. The immune-desert phenotypes were associated with immune tolerance and 
ignorance, and lack of activated and priming T-cell [35]. Consistent with the above def-
initions, we found cluster B exhibited a significant stroma activation status, including 
the highly expressed angiogenesis, EMT and TGF-β pathways, which were considered 
T-cell suppressive. Combined with the TME cell-infiltrating characteristics in each clus-
ter, it confirmed the reliability of our classification of immune phenotypes for different 
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ferroptosis regulation patterns. Therefore, after fully exploring the TME cell-infiltrating 
characterization induced by distinct ferroptosis regulation patterns, it was not surpris-
ing that cluster B had the activated innate immunity but poorer prognosis than cluster 
A.

Further, in this study, the mRNA transcriptome differences between distinct ferropto-
sis regulation patterns have been proved to be significantly associated with ferroptosis 
and immune related biological pathways. Similar to the clustering results of the ferrop-
tosis phenotypes, three genomic subtypes were identified based on ferroptosis pheno-
type related genes, which were also significantly correlated with stromal and immune 
activation. This demonstrated again that the ferroptosis was of great significance in 
shaping different TME landscapes. Therefore, a comprehensive assessment of the fer-
roptosis regulation patterns will enhance our understanding of TME cell-infiltrating 
characterization. Considering the individual heterogeneity of ferroptosis, it was urgently 
demanded to quantify the ferroptosis regulation patterns of individual tumor. For that, 
we established a set of scoring system to evaluate the ferroptosis pattern of individual 
patients with bladder cancer—FRGs score. The ferroptosis pattern characterized by 
immune-excluded phenotype exhibited a higher FRGs score, while the pattern charac-
terized by immune-inflamed phenotype showed a lower FRGs score.

On the other hand, the component of FRGs score contains thousands of genes, which 
has limitations in practical application. Therefore, it is extremely necessary to establish a 
brief and representative model: FRI.

Thus, 5 Fr-lncRNAs were identified to predict the prognosis and tumor immune reac-
tion of BCa for the first time. KM plot analysis, ROC curve analysis, random sampling 
validation, and subgroup analysis were performed for model verification and showed 
that the novel signature is a powerful tool for BCa prognosis prediction. Moreover, it was 
found that the risk score calculated using the Fr-lncRNA signature was significantly cor-
related with immune infiltration and immunotherapeutic effectiveness. GSEA analysis 
showed that the constructed risk model is ferroptosis related. In addition, In IMvigor210 
cohort with the determined lncRNA signature phenotype, these results were well vali-
dated [36]. This suggested risk score was a reliable and robust tool for comprehensive 
assessment of individual tumor ferroptosis regulation patterns, which could be used to 
further determine the TME infiltration patterns, that was, tumor immune phenotypes. 
Integrated analyses also demonstrated that risk score was an independent prognostic 
biomarker in bladder cancer. The result showed that patients with low-risk score have 
better OS.

The Fr-lncRNA signature is an effective and practical tool for predicting the prognosis 
of patients with BCa. Compared with other clinical features, the novel model was able to 
distinguish cases with a high or low risk with higher efficacy. Univariate and multivariate 
analyses revealed that the risk score was an independent prognostic predictor. Random 
resampling verification, clinical parameter association analysis, and subgroup analysis 
validated the robustness of the model.

Among the lncRNAs in the Fr-lncRNA signature, several have been demonstrated to 
be related to immunity, ferroptosis, and malignancy. For instance, LINC01614, which 
was reported to suppress the malignant phenotypes of gastric cancer cells [37], could 
also regulate lung cancer cell proliferation and migration [38]. LINC01426 contributes to 
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clear cell renal cell carcinoma progression by modulating CTBP1/miR-423-5p/FOXM1 
axis via interacting with IGF2BP1 [39], and to lung cancer progression via AZGP1 and 
predicts poor prognosis in patients with LUAD [40]. LncRNAs(C6orf99) was identified 
that it can predict survival and tumor microenvironment characteristics in breast can-
cer [41, 42]. Overall, our model helped in identifying new biomarkers and in proposing 
novel mechanisms for BCa.

To the best of our knowledge, this is the first study to screen for BCa antigens for 
developing ferroptosis related mRNA vaccine. We constructed the aberrantly expressed 
and mutational landscape of BC and identified a series of targetable antigens, of which 
TFRC, SCD, G6PD, FADS2, SQLE, and SLC3A2 are promising mRNA vaccine candi-
dates. Their upregulation was not only associated with poor prognosis and DFS, but 
also high APC and B cell infiltration. Therefore, these antigens play critical roles in the 
development and progression of BCa and can be directly processed and presented to 
CD8+ T cells in the event of adequate lymphocyte infiltration to induce an immune 
attack. Although these candidates have to be functionally validated, their potential for 
mRNA development is supported by previous reports. For example, A missense muta-
tion in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency [43] 
and TFRC also promotes epithelial ovarian cancer cell proliferation and metastasis via 
up-regulation of AXIN2 expression [44]. Suppressing SCD expression will inhibit esoph-
ageal cancer progression via activating the GADD45B-MAP2K3-p38-p53 feedback loop 
[45]. Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls 
Melanoma Phenotypic Plasticity [46]. G6PD acts as an oncogene in many types of can-
cers and Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/
Notch1 axis [47]. FADS2 knockout suppresses cancer cell proliferation, migration and 
invasion by inducing p53/p21-mediated G0/G1 phase blockade [48]. The aberrantly 
low levels and activation of FADS2 are closely related with cancer onset, progression 
and metastasis [39] through inhibiting Ferroptosis [49]. It shows that SQLE reduction 
caused by cholesterol accumulation, which correlated with tumor biological processes, 
especially oncogenic signaling pathways, ferroptosis, and tumor microenvironment, 
aggravates CRC progression via the activation of the β-catenin oncogenic pathway and 
deactivation of the p53 tumor suppressor pathway [50]. Despite the proven tumorigenic 
role of SLC3A2 in a number of cancers including head and neck squamous cell carcino-
mas (HNSCC), it is also a novel therapeutic approach for advanced prostate cancer [51].

Given that mRNA vaccine is only beneficial for a fraction of cancer patients, we clas-
sified BCa into high and low risk subtypes based on Fr-lncRNAs expression profiles 
for selecting the appropriate population for vaccination. The two risk score subtypes 
exhibited distinct molecular, cellular and clinical characteristics. Patients with low-risk 
score showed better prognosis compared to high-risk subtypes in both IMvigor210 
cohort and TCGA cohorts. This suggests the ferroptosis related lncRNA signa-
ture can be used for predicting the prognoses of BCa patients, and we demonstrated 
its superior predictive accuracy compared to traditional staging and grading. In addi-
tion to prognostic prediction, Fr-lncRNA signature is also indicative of the therapeu-
tic response to mRNA vaccine. For instance, patients with low-risk score with higher 
TMB may have greater responsiveness to mRNA vaccine. The high expressions of ICPs 
in high risk in IMvigor210 cohort cohort, and in high risk in TCGA cohort suggest an 
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immunosuppressive tumor microenvironment, which may inhibit the mRNA vaccine 
from eliciting an effective immune response. In contrast, the elevated expression of 
ICD modulators in low risk in IMvigor210 cohort, and in low risk in TCGA cohort are 
suggestive of greater potential of mRNA vaccine in these immune subtypes. Interest-
ingly, a missense mutation in TFRC, encoding transferrin receptor 1, causes combined 
immunodeficiency. And may therefore be a stronger candidate for mRNA vaccine com-
pared to the other selected antigens. Since the tumor immune status is a determinant of 
mRNA vaccine efficacy, we further characterized the immune cell components in the 
different subtypes. High risk group showed significantly elevated scores of eosinophils, 
activated CD8 T cells, activated B cells, monocytes and effector memory CD4 T cells 
compared to low-risk group. This indicated that low risk group are immunological “cold”, 
and high-risk group are immunological “hot” phenotypes. The molecular signatures of 
these tumors were consistent with the immune signatures, indicating that patients with 
different immune subtypes respond distinctly to mRNA vaccine.

For instance, low risk was associated with low expression of CD8+ T cells, lymphocyte 
and stromal fraction and TGF-β response gene signatures, indicating an immunologi-
cally cold phenotype. To circumvent poor immunogenicity of these tumors, mRNA vac-
cines that stimulate the immune system by triggering immune cell infiltrating may be 
a suitable option. Combining the vaccine with ICB or ICD modulators, low risk group 
patients may reinvigorate the immune system and increase immune cell infiltration. 
High risk group exhibited a more immune-activated phenotype with low stromal frac-
tion and TGF-β response gene expression, and may therefore be responsive to ICB and 
other strategies. Based on above ferroptosis-typing studies, BCa was classified into the 
A-C subtypes. A is associated with superior, B with moderate, and C with inferior prog-
noses. In this study, BC was differentiated into low risk-high risk subtypes. High risk 
mainly overlapped with C, low risk with A. These results were in agreement with better 
survival probability of low risk, and the relatively poor prognoses of High risk. There-
fore, our risk-typing method is reliable and complements the previous classification. 
Nevertheless, the vaccine antigens and other prognostic markers identified in this study 
will have to be validated in future studies.

Our data also revealed a markedly negative correlation between risk score and tumor 
mutation burden. Consistent with previous studies, ferroptosis molecular subtypes 
demonstrated the lowest FRGs score, underlining the core role of immune activation 
in resistance to checkpoint immunotherapy [52]. This indicated that response to check-
point immunotherapy was not only associated with antigen processing, and improved 
cytolytic activity, but also related to suppression of angiogenesis, fibroblast activation, 
TGF beta pathway components and the EMT. Previous studies confirmed that the EMT- 
and TGFbeta-related pathway activation resulted in decreased trafficking of T-cell into 
tumors as well as their weakened tumor killing effects [14, 52]. The above suggested that 
the activated stromal TME in the activated immune TME could mediate therapeutic 
resistance to immune-checkpoint blockade, as well as influence the individual precise 
immunotherapy of bladder cancer.

In this work, we showed ferroptosis regulation patterns played a nonnegligible role in 
shaping different stromal and immune TME landscape, implying ferroptosis could affect 
the therapeutic efficacy of immune checkpoint blockade. The Fr-lncRNA signature risk 
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score with integrated various biomarkers including mutation load, PD-L1 expression and 
immune TME and MSI status, could be the more effective predictive strategy for immu-
notherapy. We also confirmed the predictive value of the risk score in one cohort with 
anti-PD-L1 immunotherapy. A significantly difference on risk scores existed between 
non-responders and responders.

Shortly, in clinical practice, the FR-lncRNA signature risk score could be used to com-
prehensively evaluate the ferroptosis regulation patterns as well as their corresponding 
TME cell infiltration characterization within individual patient, further to determine 
the immune phenotypes of tumors and guide the more effective clinical practice. We 
also demonstrated the risk score could be utilized for assessing patients’ clinicopatho-
logical features including stages of tumor inflammation, tumor differentiation levels, 
clinical stages, molecular subtypes, genetic variation, MSI status and tumor mutation 
burden etc. The detailed relationships between risk score and clinicopathological fea-
tures could be found in our study. Similarly, risk score could act as an independent prog-
nostic biomarker for predicting patients’ survival. We could also predict the efficacy of 
the patients’ clinical response to antiPD-L1 immunotherapy through risk score. More 
importantly, this study has yielded several novel insights for cancer immunotherapy that 
targeting FRGs or ferroptosis phenotype-related genes for changing the ferroptosis reg-
ulation patterns, and further reversing the adverse TME cell infiltration characteriza-
tion, that was the transformation of “cold tumors” into “hot tumors”, may contribute to 
exploiting the development of novel drug combination strategies or novel immunothera-
peutic agents in the future. Our findings provided novel ideas for improving the patients’ 
clinical response to immunotherapy, identifying different tumor immune phenotypes 
and promoting personalized cancer immunotherapy in the future, last for selecting 
appropriate patients for mRNA vaccine therapy.

Conclusions
In conclusion, the difference of ferroptosis regulation patterns was a factor that could 
not be ignored to cause the heterogeneity and complexity of individual tumor microen-
vironment. And six ferroptosis related regulators (TFRC, SCD, G6PD, FADS2, SQLE, 
and SLC3A2) are potential BC antigens for mRNA vaccine development. Furthermore, 
we developed a novel lncRNA signature to help clinicians estimate the immunotherapy 
response, develop anti-BCa mRNA vaccine and selecting patients for vaccination.
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in distinct survival status groups. (B) Difference in risk score between distinct survival status groups. (p < 0.0001, 
Wilcoxon test) (C) The prognostic value of risk score and correlation between the clinicopathological features and 
risk score.
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