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Introduction
An increasing number of industrial applications have focused on exploring high-dimen-
sional and incomplete (HDI) matrices in the artificial intelligence era including e-com-
merce recommendation systems, social networks analysis, biometric feature recognition 
etc. [1–5]. The missing items in an HDI matrix are probably the most valuable infor-
mation that can be exploited by latent factor analysis [6], matrix factorization [7], col-
laborative filtering [8], and neural network-related models [9]. They are constructed to 
approximate the high-dimensional data with low-dimensional features that can repre-
sent the unobserved data in the HDI matrix.
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Latent factor analysis (LFA) model is a nontrivial model for big data analysis problems, 
which represents the HDI matrix with magnitude lower-dimensional latent factor matri-
ces. From the learned features of users and items in the latent matrices, missing items of 
interested users can be acquired when meeting a goal built as an objective function. To 
date, there are symmetric, non-negative, dynamic, and deep latent factor models, etc. 
[10–14]. Song et al. [10] integrate triple-factorization-based symmetric into a nonneg-
ative latent factor model for a lower expenditure of time and storage space. Luo et al. 
[11] establish an ingenious method of unconstrained non-negative latent factor analysis 
method through a single-element-dependent mapping function. Bong et  al. [12] focus 
on the cross-correlations among the latent variables in neural recordings, the dynamic 
high-dimensional time series data, to capture target factors. Wu et  al. [14] provide a 
deep-structured model that successively connects multiple latent factor models with 
computational complexity linearly related to its layer count.

In practical application, however, extra parameters in these models unavoidably affect 
their performance. Recently, evolutionary computation-based methods, one of the most 
suitable and effective adaptive techniques with the swarm intelligence, arose. Differ-
ential evolution (DE), innovatively proposed by Storn and Price for solving the Cheby-
shev polynomials, is a simple yet efficient global numerical optimization evolutionary 
algorithm [15]. Instead of mimicking biological or social behaviors of ants [16], birds 
[17], bees [18], or humans [19], DE directly inherits the mechanisms of evolutionary: 
mutation, crossover, and selection. In fact, these three mechanisms are also included in a 
genetic algorithm (GA) [20], but DE directly employs the parent individuals to generate 
the offspring in which the gene representation process is omitted. Mutation, the decisive 
mechanism of DE, determines the range of generated offspring. For instance, with differ-
ent selection mechanism of fundamental individual, there are standard DE (DE/rand/1), 
DE/best/1, DE/cur-to-best/1, DE/best/2, DE/rand/2, DE/rand-to-best/1, and DE/rand-
to-best/1 schemes [21]. However, offspring random selection operation in mutation 
mechanism restricts its exploration and exploitation abilities, thereby inducing search 
stagnation and premature convergence. Engaged by this problem, many studies propose 
new models like DEHM [22], GA-KMEANS [23], and NBOLDE [24]. All these methods 
enhance the performance of convergence more or less, but they did not focus on the 
internal operation of mutation mechanism.

To solve multi-parameter adaptive latent factor analysis on an HDI matrix with the 
accuracy and efficiency, this paper presents an efficient annealing-assisted differen-
tial evolution for adaptive multi-parameter latent factor analysis (ADMA) utilizing the 
standard DE to train parameters. To further improve its efficiency, with the probability 
of the crossover in DE, some unchanged individuals will not participate in the evalua-
tion process, which efficiently reduces the total computational time in DE. In addition, 
a physical mechanism annealing is further incorporated to help the model overstep its 
local saddle points, thereby receiving a desirable performance in predicting missing 
data. Contributions of this study can be summarized as follows:

1)	 An ADMA algorithm, an adaptive multi-parameter latent factor analysis on an HDI 
matrix, witch adopts the philosophy of annealing mechanism to improve the explo-
ration and exploitation abilities of DE;
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2)	 Efficient self-adaptive mechanism for multi-parameter estimation in the dynamic 
training process of the proposed latent factor analysis model;

3)	 Improved DE for analyzing HDI matrices in real industrial applications.

The rest of this paper is organized as follows. Section II illustrates the preliminaries, 
Section III introduces the ADMA model, Section IV analyzes the performance of the 
ADMA algorithm as well as the state-of-the-art, and lastly, the work is conducted in 
Section V.

Related work
Parameter selection has been revealed as one of the most significant challenges espe-
cially in big data analysis tasks [25–28]. Manual fine-tuning of the parameters is inev-
itably time consuming and cannot achieve high accuracy in capricious industrial 
applications. Along this line, parameter adaptable algorithms are proposed as a prom-
ising approach to address the problem. Various techniques have been developed for 
parameter adaptive. Pertaining to traditional optimization algorithm, Miao et  al. [29] 
proposed a novel parameter-adaptive variational mode decomposition (VMD) by grass-
hopper optimization algorithm (GOA) applied to compound-fault diagnosis, which can 
acquire a competitive decomposition results more efficiently. It can significant decline 
the overhead triggered by the long-term and harsh operation environment. Moreover, 
machine learning related methods are also utilized to solve this problem. For example, 
Xiao et al. [30] employ an unsupervised reinforcement learning to dynamically acquire 
the parameters in navigation systems of robots.

Among the parameter adaptive algorithms, three main categories of their adaptive 
mechanisms, which is mentioned in Table 1, can be concluded as follows:

1)	 Analytical approach-based. The motivation of analytical approach is controlling 
the updating process by analyzing the objective function in a big data analysis task. 
El-Naggar et  al. [31] firstly propose a simulated annealing approach-based solar 
cell model parameters estimation method. Na et al. [32] estimate the time-varying 
parameters from parameter estimation errors that drive several new adaptive laws 

Table 1  Classification of parameter adaptive mechanisms

ADMA employs evolutionary computation DE as the multi-parameter adaptive mechanism and improve its optimization 
progress by an annealing technique. Therefore, ADMA inherits the flexibility and adaptively of swarm intelligence, while 
enjoying the exploration and exploitation merits of the improved DE, which thereby can solve the big data analysis 
problems well especially conducting an LFA on an HDI matrix

Classifications Adaptive mechanisms Defects HDI 
data 
analysis

Multi-
parameters

Analytical approach Simulated annealing 
approach[31]

Internal assumptions  ×   × 

Parameter estimation adjust-
ment[32]

Manual tunning  ×   × 

Dynamic optimization NE[33] Need Priori Knowledge  ×   × 

Gradient-based estimation[34] Sensitive to initialization  ×   × 

Evolutionary computation PSO[36] Premature convergence √  × 

BSO[37] time consuming √ √
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with a faster convergence rate. Noticeable, analytical approach-based mechanisms 
are efficient and concise, but it is unavoidable to set internal assumptions precisely in 
advance.

2)	 Dynamic optimization method-based. For a more intelligent parameter adaptation, 
some dynamic optimization methods are employed into the parameters training, 
such as the Newton–Euler (NE) method and the stochastic gradient descent (SGD) 
method. Yang et  al. [33] identify dynamic parameters of robot systems by a robot 
control scheme based on the NE method accelerating the convergence speed. Kapet-
ina et  al. [34] propose a gradient-based parameter estimation technique that can 
track sufficiently slow changes in process and parameters. Although dynamic opti-
mization method-based methods are intelligent in searching optimal solutions, the 
searching results are highly sensitive to their initialization and searching knowledge.

3)	 Evolutionary computation-based. Despite the methods based on dynamic optimi-
zation rules, using evolutionary algorithms such as ant colony optimization (ACO) 
[35], particle swarm optimization (PSO) [36], gene and brain storm optimization 
(BSO) [37], etc. is an advanced genre in parameter adaptable algorithms. For exam-
ple, Luo et al. [36] incorporate PSO into the latent factor analysis that makes the big 
data analysis convergence faster than traditional SGD-based mechanism. The evolu-
tionary computation-based method neither tracks error with bound nor require the 
knowledge of dynamics. Unfortunately, the evolution process is time consuming and 
has premature convergence.

Peliminaries
Problem statement

The key problem of finding an LFA on an HDI scoring matrix is stated as follows:

Definition 1.  Suppose M and N are entity sets of users and items respectively, each 
of the entity m ∈ M grades the entity n ∈ N with the score zm,n that constitutes the HDI 
scoring matrix Z|M|×|N|; The entities in an HDI matrix can be divided into two sets Λ and 
Γ, where the known entry set Λ is far less in size than that of the unknown entry set Γ, 
namely, |Λ| ≪|Γ|.

Definition 2.  Suppose there are P|M|×D and Q|N|×D latent factor matrices for M and 
N respectively, from which a rank-d matrix Ẑ = PQT is learned to approximate Z via an 
LFA model. With these latent factor matrices, the dimensional space of the approxima-
tion matrix Ẑ of an HDI matrix is far less than that of entities of users and items, i.e., 
D ≪ min {|M|, |N|}.

The objective of the LFA model is to predict unknown entities in Γ via learned 
latent factor matrices P and Q from the limited known entry set Λ. Along this line, 
the unknown information in an HDI matrix can be acquired, which is theoretically 
expressed as solving the following Euclidean distance measure problem [10, 11]:
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where zm,n represents a known element in HDI matrix Z, pm,d demotes the m-th row 
vector of P in the d-th dimension, while qn,d denotes the n-th row vector of Q in the d-th 
dimension.

Due to the ill-posed characteristic of solving (1), the commonly used Tikhonov regu-
larization is employed to fight against the disturbance from the model. Along this line, 
the fundamental Eq. (1) is accordingly extended into:

where zm̂,n = ∑D d = 1 pm,dqn,d, λP and λQ are set as regularization constants of P and Q 
respectively, and ||||2 denotes L2norm.

An SGD‑based LFA model

An LFA model is commonly addressed by the stochastic gradient descent (SGD) algo-
rithm that shows the stability, flexibility, and advanced feedback control in solving big 
data analysis issues, especially on HDI data. Based on the SGD algorithm, matrices P 
and Q in (2) can be updated as follows:

where εm,n = (zm,n–zm̂,n)2 + λP||pm||2 2 + λQ||qn||2 2, in which pmdemotes the m-th row 
vector of P and qn denotes the n-th row vector of Q, η denotes the learning rate in the 
SGD, and the detailed update process for (2) in (3) is derived as follows:

where errm,n = zm,n–zm̂, denotes an instant error. As noted above, there are three hyper-
parameters that need to be tuned including the learning rate η in SGD and the regulari-
zation parameters λP and λQ. The model can fast converge with impressive performance 
when these hyper-parameters are properly tuned.

Differential evolution

As a particle swarm optimization algorithm, original differential evolution (DE) conducts 
its mutation, crossover, and update operations on NC particles that can be represented as 
set X = {xi = [xi,1,xi,2,…,xi,K]| xi ∊ Ω, 1 ≤ i ≤ NC} where Ω = RK is the feasible solution space. 
The mutation operation in t-th iteration generates a new particle vti=

(

vti,1, v
t
i,2, ..., v

t
i,K

)

 . In 

(1)min
P,Q

ε(P,Q) =
∑

zm,n

(

zm,n −

D
∑

d=1

pm,dqn,d

)2

(2)

arg min
P,Q

ε(P,Q) =
∑

zm,n∈�

(

(

zm,n − ẑm,n

)2
+ �P

∥

∥pm,·

∥

∥

2

2
+ �Q

∥

∥qn,·
∥

∥

2

2

)

=
∑

zm,n∈�

(

(

zm,n − ẑm,n

)2
+ �P

D
∑

d=1

p2m,d + �Q

D
∑

d=1

q2n,d

)

(3)

arg min
P,Q

ε(P,Q)
SGD
⇒ ∀zm,n ∈ �, d ∈ {1, 2, . . . ,D} : ptm,d ← pt−1

m,d−η
∂εt−1

m,n

∂pt−1
m,d

, qtn,d ← qt−1
n,d −η

∂εt−1
m,n

∂qt−1
n,d

.

(4)
∂εt−1

m,n

∂pt−1
m,d

= −errt−1
m,n · qt−1

n,d + �P · pt−1
m,d ,

∂εt−1
m,n

∂qt−1
n,d

= −errt−1
m,n · pt−1

m,d + �Q · qt−1
n,d .
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the original DE, the new particle is generated based on a random particlext−1
r1,k in X, and a 

differential value of the other two random particles xt−1
r2,k and xt−1

r3,k:

where r1, r2, r3 are different random constants in the range of [1,NC], γ is a scaling factor 
between 0 and 1.

Crossover decides whether the new particle can be inherited. With the probability of 
Pselect or when the operation is on the iselect-th particle, the particle ut

i=
(

uti,1,u
t
i,2, ...,u

t
i,K

)

 
is replaced by the mutation particle. Instead, it will inherit the original particles. It is pro-
cessed as follows:

where iselect is a fixed constant in the range of [1,NC]. This guarantees that at least one 
particle will be inherited by the new particle.

Selection operation chooses the better particle asxti in the iteration t from ut
i and xt−1

i  
after comparing the evaluation results of them, which is defined as:

where f is the objective function.
After limited iterations for all particles, such as, meeting the maximal iteration count 

or multiple rounds of updates unchanged, the algorithm meets the termination criteria 
and acquires a final solution.

Methods
An annealing‑assisted differential evolution algorithm

To further improve the performance of DE, the cosine anneal mechanism is incorpo-
rated into the original DE algorithm for adjusting the parental particles in mutation 
operation. Following the definition of the original ED, the cosine annealing mechanism 
can be defined as a period function within minimal and maximal value of the target xmin 
and xmax:

where xtanneal is the anneal value at t-th iteration, and the maximal iteration time is T.
In the mutation operation, two of three parents are selected to calculate their differen-

tial values between the anneal values, and the equilibrium factor μ is set to balance them 
and the original differential value between the selected parents, which are defined as:

(5)vti,k = xt−1
r1,k + γ

(

xt−1
r2,k − xt−1

r3,k

)

(6)uti,k =

{

vti,k , if rand(0, 1) < pselect or i = iselect ,

xt−1
i,k , else.

(7)xti,k =







uti,k , if f
�

uti,k
�

< f
�

xt−1
i,k

�

,

xt−1
i,k , else.

(8)xtanneal = xmin +
1

2
(xmax − xmin)

(

1+ cos
tπ

T

)

(9)
vti,k = xt−1

r1,k + γ (1− µ)

(

xt−1
r2,k − xt−1

r3,k

)

+γµ

(

xtanneal − xt−1
r2,k

)

+γµ

(

xtanneal − xt−1
r3,k

)
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where vti=
(

vti,1, v
t
i,2, ..., v

t
i,K

)

 , r1, r2, r3 are different random constants in the range of 
[1,NC], and γ is the scaling factor in the range of (0,1).

To further improve its efficiency, evaluation operation in HDI data analysis task need to 
be conducted more concisely, which is consistent with estimating particles. Specifically, 
after the crossover operation, some particles are unchanged, whose evaluation results can 
be reserved without further estimation, in contrast, other renewed particles need to be 
evaluated exactly.

An ADMA model

From the previous information of the improved DE, the flowchart of the proposed ADMA 
can be illustrated as Fig. 1, where the red boxes represent the improvements. In order to 
make parameters adaptive in solving the LFA model on an HDI matrix, three-dimensional 
particles (learning rate η and regularization constants λP and λQ) need to learn using the 
improved DE, i.e., the problem dimension K = 3 in this part which means X = {xi = [xi,1,xi,2,
xi,3]| xi ∊ Ω, 1 ≤ i ≤ NC} where Ω = R3.

As discussed in Sect. 3.1, the mutation particle vti=
(

vti,1, v
t
i,2, v

t
i,3

)

 is limited in the lower 
and upper bounds:

where empirical settings of these parameters’ boundaries are xmax,1 = 2–8, xmin,1 = 2–12, 
and xmax,2 = xmax,3 = 2–3, xmin,2 = xmin,3 = 2–7, respectively in the vector xmin and xmax.

(10)vti,k =

{

xmax,k , vti,k > xmax,k

xmin,k , vti,k < xmin,k

Conduct Nc particles

Termination No

Yes

Update Nc particles
Yes

Start

Stop

No

New Cosine Anneal Variable

Crossover

Mutation

Evaluate the Crossover Value

Generate Nc Particles 

The particle changed
Yes

No

Fig. 1  Flowchart of ADMA
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Crossover operation is the same as the original one, which is:

where ut
i=

(

uti,1,u
t
i,2,u

t
i,3

)

 , iselect is in the range of [1,NC], and Pselect is the probability of 
selecting mutation particles.

Based on Eqs. (3) and (4), when the crossover particle is replaced by the mutation par-
ticle, the update of P and Q is completed in the evaluation operation as follows:

where uti,1 represents the learning rate η on the SGD-based model, uti,2 and uti,3 denote the 
regularization constants λP and λQof P and Q respectively.

Selection operation chooses the particle with a better evaluation value between the 
replaced particle and the original one, which is defined as:

where xti=
(

xti,1, x
t
i,2, x

t
i,3

)

 , f is the RMSE or MAE evaluation function in this method.
In the end, if the model meets the termination criteria that the best evaluation value is 

unchanged for five iterations or the maximum iteration time 1000 is reached, the latest 
optimum latent factor matrices are returned as the approximate results of the model.

Algorithm design and analysis

As is shown in Fig.  1, the flowchart of algorithm ADMA demonstrates that there are 
two additional mechanisms: an anneal mechanism and a screening mechanism of evalu-
ation compared with the traditional DE algorithm. Evaluation for latent factor matrices 
learned from an HDI matrix in this model is the most time-consuming part, which can 
also be shown in the Algorithm ADMA. 

(11)uti,k =

{

vti,k , if rand(0, 1) < pselect or i = iselect ,

xt−1
i,k , else.

(12)
ptm,d ← pt−1

m,d+ut−1
i,1

(

errt−1
m,n q

t−1
n,d − ut−1

i,2 pt−1
m,d

)

, qtn,d ← qt−1
n,d +ut−1

i,1

(

errt−1
m,n p

t−1
m,d − ut−1

i,3 qt−1
n,d

)

.

(13)xti,k =







uti,k , if the particle changed, f
�

uti,k
�

< f
�

xt−1
i,k

�

,

xt−1
i,k , else.
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Time complexity

To train the latent factor matrices in ADMA, the following steps are sequentially per-
formed at each iteration: cosine anneal for each dimension, mutation, crossover, evalua-
tion screening, evaluation, and replace for particles, whose total time complexity is:

where C is a constant, D represents latent feature dimension, NC denotes the particles 
in DE algorithm. From (14) we know that the size of the known entry set |Λ| major can 
affect the overall time consumption, but it is far less than the size of entity size |M| and 
|N|.

Space complexity

Large-scale data processing requires high storage space in most cases. Therefore the 
space complexity is another significant indicator of the algorithm. As for the ADMA 
algorithm, there are latent factor matrices and differential evolution particles that 
take the most space to store. More specifically, the dimension of the target latent fac-
tors P and Q, the dimension of the parameters, and the number of the particles are 
the primary source of storage costs, which is confirmed as follows:

where D is the latent feature dimension and |M| and |N| are the entity size of users and 
items. The result in (15) indicates that the storage space of ADMA is far less than that of 
the original rating matrix.

Experimental results and analysis
General settings

Evaluation metrics

Numerical comparison for predicting missing data in HDI matrices commonly per-
forms via two evaluation measures: mean squared error (RMSE) and mean absolute 
error (MAE) [6, 38], which are:

where ẑm,n is the approximation of zm,n ∈ Γ. It is worth noting that from the previous illus-
tration of function (13), the evaluation function is consistent with the RMSE and MAE 
evidencing the affinity of the evaluation function and metrics.

Experimental design

To illuminate the exploration and exploitation abilities of the proposed method, a 
standard scheme with a fundamental model SGD and its modified one Moment SGD 
are compared to show the searching ability. And to describe the adaptive searching 
efficiency, a general adaptive model ALF, and the standard DE adaptive model DELF 

(14)
TADMA = �(C × (NC × (|�| × D + |Ŵ| + D + 3K )+ K )) ≈ �(|�| × NC × D × C).

(15)SADMA = (|M| + |N |)× D + 3NC + 2D + 12 ≈ (|M| + |N |)× D + NC .

RMSE =

�

�

�

�

�





�

zm,n∈Ŵ

�

zm,n − ẑm,n

�2





�

|Ŵ|,MAE =





�

zm,n∈Ŵ

�

�zm,n − ẑm,n

�

�

abs





�

|Ŵ|;
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are also compared in this part. Datasets from industrial applications with different 
density under 0.54% are adopted in our experiments. These sparse data form the tar-
get high-dimensional and incomplete matrix to be analyzed.

Datasets

As shown in Table 2, five popular datasets of industrial HDI matrices, including Dou-
ban, MovieLlens 20 M (ML20M), Flixter, Yahoo-R2, and Epinion [39–42] are used in 
this paper. Detailed information is described as follows:

1)	 D1: Douban. It is composed of 16,830,839 ratings from 58,541 items in a large Chi-
nese website Douban where 129,490 users grade the movies, music, books, etc. The 
data density of Douban is about 0.22% that subjects to an HDI matrix.

2)	 D2: MovieLens 20  M (ML20M). There are 26,744 movies in the MovieLens sys-
tem constituted by GroupLens. Within the ML20M dataset collected in the system, 
138,493 users grade the movies 20,000,263 times scaling from 0.5 to 5, whose density 
is 0.54% and size is 20 M.

3)	 D3: Flixter. The Flixter commercial website dataset has 8,196,077 ratings ranging 
from 0.5 to 5 on 48,794 movies graded by 147,612 users. The data density of the data-
set is around 0.11%.

4)	 D4: Yahoo-R2. Yahoo-R2 termed Yahoo is a large dataset that contains 200,000 users 
who rate 136,736 songs with 76,344,627 ratings ranging from 1 to 5. Its density is 
0.28%.

5)	 D5: Epinion. In the website Trustlet, Epinion dataset is collected in which 120,492 
users grade 775,760 articles with 13,668,320 known entries. Notably, the density of 
Epinion is only 0.015%.

Conventional data assignments are also implemented in this paper that randomly 
divide the data into ten independent parts on average and allocate the train, valida-
tion, and test part into a ratio of 7:1:2.

Moreover, each model on these datasets are conducted ten times. Then, the aver-
ages of ten experimental results under the same conditions are analyzed in the end, 
which can dismiss the possible outliers.

Table 2  Statistics of the studied datasets

*  Density denotes the percentage of observed entries in the dataset

No. Name #User #Item #Interaction Density*

D1 Douban 129,490 58,541 16,830,839 0.22%

D2 MovieLens 20 M 138,493 26,744 20,000,263 0.54%

D3 Flixter 147,612 48,794 8,196,077 0.11%

D4 Yahoo-R2 200,000 136,736 76,344,627 0.076%

D5 Epinion 120,492 775,760 13,668,320 0.015%
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Model settings

We compare our model with five representative state-of-the-art SGD-based LFA 
models on HDI datasets are compared in the following part. M1 (SGD) and M2 
(Moment SGD) are LFA methods based on traditional SGD. M3 (Adam), M4 (ALF), 
M5 (DELF) [37, 38], and M6 (ADMA) are methods of parameter adaptive SGD-based 
LFA models. All model descriptions are illustrated in Table 3

The experimental parameter settings in the aforementioned methods are set in 
advance as follows:

1)	 For all models, latent factor features in an LFA model are constructed with a fixed 
dimension D = 20, which can both maximize the representation ability and balance 
the computing effects.

2)	 In M1–M4, their hyper-parameters are set as the optimal value of each model, for 
instance, λP = λQ = 0.03 in M1-M4; η = 0.003 in M1 and M2; the adaptive boundary 
of the learning rate η is from 2–12 to 2–8 in M3 and M4; For PSO mechanism in M4, 
model parameters are c1 = c2 = 2, the number of particles is set as 20, and the velocity 
boundary is vmax = 1, vmin = -−1 etc.

3)	 In M5-M6, the learning rate η and regularization constants λP and λQ are all self-
adaptive. Other parameters used in the adaptive learning process are empirically 
set asγ = μ = 0.1, Pselect = 0.7, NC = 20, iselect = NC/4, xmax,1 = 2–8, xmin,1 = 2–12, and 
xmax,2 = xmax,3 = 2–3, xmin,2 = xmin,3 = 2–7.

4)	 Experimental termination criteria is the best evaluation value unchanged in five 
rounds or the reach of the maximum iteration number—1000.

Performance comparison

Experiments intuitively show the numerical performance of SGD (M1), Moment SGD 
(M2), Adam (M3), ALF (M4), DELF (M5), and our method GASL (M6) on indus-
trial datasets Douban (D1), ML20M (D2), Flixter (D3), Yahoo (D4), and Epinion (D5). 
Table 4 and Table 5 report all their results regarding total iterations, total training time 

Table 3  Summary of the compared models

Parameters Models Descriptions

fixed η and
λ (λP = λP) model

M1 SGD. A fundamental SGD-based LFA model that converges very fast with the 
resilience for the HDI data analysis

M2 Moment SGD. For a better update of the current one in the process of the SGD-
based LFA model, it incorporates the previous updates into the current one in 
the way of momentum

M3 Adam. This adaptive moment estimation SGD method further considers expo-
nentially decaying of square average and past stochastic gradients average

η-λ-(λP = λP)
adaptive
model

M4 ALF. An adaptive SGD-based LFA model that adopts standard PSO to adjust the 
learning rate in the model

M5 DELF. Differential evolution-based LF analysis model employs original differen-
tial evolution to conduct an SGD-based LFA model adaptively

η-λ-(λP ≠ λP) adaptive
model

M6 The proposed ADMA. Compared with DELF, the proposed model ADMA 
improves the original DE algorithm for a more precise prediction in an SGD-
based LFA model with limited time
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with variance, and the prediction precision evaluated by RMSE and MAE respectively. 
Noticeabley, the precision and total training time are in bold in each experiments. Their 
training processes are compared in Fig. 2 and Fig. 3 with RMSE and MAE respectively. 
The follwing observations can be made based on these results:

1)	 Our model ADMA predicts the missing data in an HDI matrix more accurately than 
both adaptive and non-adaptive LFA models. Overall, Table  4 illustrates that the 
RMSE evaluation results of M6 are more accurately than M1-M5 on all five data-
sets D1-D5. And from Table 5, the MAE evaluation results of our model M6 are also 
more accurately than M1-M5 on D1-D4, and M2-M3 on D5. Take the non-adap-
tive model M2 as an example, the prediction accuracy is 2.648%, 1.494%, 0.7289%, 
1.027%, and 0.2983% lower than that of our model on D1-D5 respectively in RMSE 
results. Andcompared with the adaptive model M3, the MAE prediction errors of 
our model M6 are 3.959%, 3.661%, 3.464%, 3.019%, and 0.7723% more accurately on 

Table 4  Mean RMSE results

Dataset Method RMSE and computational efficiency measures

RMSE Iteration number Total time (s) Per time (s)

D1 M1 0.7213 ± 1.849E–04 143.9 ± 7.379E-01 240.8 ± 1.172E + 01 1.674 ± 8.591E-02

M2 0.7363 ± 2.298E–04 234.9 ± 3.542E + 00 793.2 ± 2.143E + 01 3.377 ± 6.292E-02

M3 0.7252 ± 3.741E–03 291 ± 0.000E + 00 1607 ± 2.048E + 03 5.523 ± 2.048E + 00

M4 0.7232 ± 1.231E–04 7.000 ± 0.000E + 00 303.7 ± 2.755E + 01 43.39 ± 3.936E + 00

M5 0.7193 ± 2.558E–03 24.30 ± 1.477E + 01 1114 ± 6.864E + 02 45.64 ± 1.383E + 00

M6 0.7168 ± 7.518E–04 24.30 ± 5.926E + 00 1011 ± 2.474E + 02 41.62 ± 1.101E + 00

D2 M1 0.7807 ± 2.030E–04 120.9 ± 1.287E + 00 221.9 ± 6.055E + 00 1.835 ± 4.187E-02

M2 0.7898 ± 2.547E–04 210.3 ± 2.541E + 00 770.7 ± 1.111E + 01 3.665 ± 2.210E-02

M3 0.7804 ± 1.781E–04 271 ± 0.000E + 00 1900 ± 1.504E + 03 7.010 ± 1.504E + 00

M4 0.7826 ± 1.292E–04 6.000 ± 0.000E + 00 320.9 ± 2.892E + 01 53.50 ± 4.820E + 00

M5 0.7796 ± 1.392E–03 21.10 ± 8.006E + 00 1097 ± 4.187E + 02 51.94 ± 1.242E + 00

M6 0.7780 ±1.286E–03 18.70 ± 5.618E + 00 912.3 ± 2.920E + 02 48.56 ± 2.521E + 00

D3 M1 0.9506 ± 2.439E–04 202.8 ± 1.751E + 00 149.7 ± 3.050E + 00 0.7380 ± 1.325E-02

M2 0.9467 ± 5.613E–04 260.6 ± 2.066E + 00 389.9 ± 1.308E + 01 1.496 ± 5.253E-02

M3 0.9581 ± 8.206E–04 466 ± 0.000E + 00 1293 ± 7.030E + 01 2.774 ± 7.030E-02

M4 0.9523 ± 2.134E–03 10.8 ± 3.615E + 00 222.0 ± 7.531E + 01 20.54 ± 5.005E-01

M5 0.9447 ± 2.557E–03 35.60 ± 6.207E + 01 827.5 ± 1.426E + 03 23.52 ± 5.334E-01

M6 0.9398 ± 1.257E–03 21.60 ± 2.989E + 00 507.6 ± 6.981E + 01 23.51 ± 2.679E-01

D4 M1 1.062 ± 2.223E–04 65.30 ± 6.749E-01 765.8 ±2.323E + 01 11.73 ± 3.386E-01

M2 1.071 ± 2.933E–04 227.6 ± 1.350E + 00 6353 ± 4.055E + 01 27.91 ± 1.879E-01

M3 1.061 ± 3.330E–04 93.60 ± 8.600E + 01 7304 ± 6.493 + 01 78.02 ± 4.600E-01

M4 1.064 ± 2.617E–04 3.700 ± 4.830E-01 1090 ± 1.985E + 02 292.7 ± 2.031E + 01

M5 1.062 ± 3.834E–03 8.800 ± 2.741E + 00 2889 ± 9.334E + 02 327.6 ± 4.029E + 00

M6 1.060 ± 1.257E–03 10.10 ± 1.729E + 00 3171 ± 5.463E + 02 313.9 ± 1.996E + 00

D5 M1 0.7357 ± 1.072E–04 1000 ± 0.000E + 00 2171 ± 5.503E + 01 2.171 ± 5.503E-02

M2 0.7376 ± 1.465E–04 684.8 ± 4.341E + 00 2810 ± 3.148E + 01 4.104 ± 4.440E-02

M3 0.7364 ± 6.200E–05 438.0 ± 4.150E + 00 2027 ± 8.028E + 01 4.627 ± 2.400E-01

M4 0.7364 ± 8.703E–05 16.90 ± 3.162E-01 731.5 ± 3.394E + 01 43.28 ± 1.701E + 00

M5 0.7358 ± 2.201E–03 41.40 ± 2.899E + 01 1671 ± 1.336E + 03 39.40 ± 3.203E + 00

M6 0.7354 ± 5.410E–04 47.10 ± 6.574E + 00 1775 ± 3.674E + 02 37.59 ± 5.182E + 00
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Table 5  Mean MAE results 

Dataset Method MAE and computational efficiency measures

MAE Iteration number Total time (s) Per time (s)

D1 M1 0.5609 ± 1.084E-04 151.6 ± 6.992E-01 274.9 ± 5.715E + 00 1.813 ± 3.958E-02

M2 0.5686 ± 2.007E-04 238.5 ± 4.720E + 00 777.6 ± 2.052E + 01 3.260 ± 4.937E-02

M3 0.5791 ± 1.086E-04 303 ± 0.000E + 00 1938 ± 1.816E + 03 6.397 ± 1.816E + 00

M4 0.5666 ± 1.038E-04 7.000 ± 0.000E + 00 279.6 ± 9.736E + 00 39.95 ± 1.038E-04

M5 0.5613 ± 2.672E-03 19.20 ± 4.614E + 00 870.4 ± 2.043E + 02 45.44 ± 1.261E + 00

M6 0.5579 ± 1.640E-03 21.40 ± 5.948E + 00 885.7 ± 2.510E + 02 41.32 ± 1.165E + 00

D2 M1 0.5963 ± 9.869E-05 128.4 ± 8.433E-01 263.0 ±6.029E + 00 2.049 ± 4.572E-02

M2 0.5998 ± 3.005E-04 225.5 ± 3.567E + 00 799.7 ± 1.455E + 01 3.547 ± 4.325E-02

M3 0.6128 ± 2.573E-04 76.00 ± 0.000E + 00 500.8 ± 1.434E + 03 6.590 ± 1.434E + 00

M4 0.6011 ± 4.181E-04 6.000 ± 0.000E + 00 273.6 ± 2.009E + 01 45.60 ± 4.181E-04

M5 0.5967 ± 4.362E-03 17.10 ± 1.135E + 01 894.0 ± 5.889E + 02 52.39 ± 2.867E + 00

M6 0.5943 ± 2.424E-03 15.20 ± 4.872E + 00 740.6 ± 2.421E + 02 48.64 ± 1.740E + 00

D3 M1 0.6711 ± 1.759E-04 259.0 ± 4.761E + 00 213.7 ± 1.067E + 01 0.8250 ± 3.851E-02

M2 0.6689 ± 3.549E-04 299.5 ± 3.308E + 00 449.2 ± 1.688E + 01 1.500 ± 5.042E-02

M3 0.6871 ± 5.071E-04 453.0 ± 0.000E + 00 1374 ± 3.067E + 02 3.032 ± 3.067E-01

M4 0.6733 ± 2.933E-03 13.30 ± 4.473E + 00 279.0 ± 1.068E + 02 20.81 ± 1.273E + 00

M5 0.6659 ± 4.917E-03 29.30 ± 2.028E + 01 687.8 ± 4.763E + 02 23.40 ± 4.113E-01

M6 0.6633 ± 3.314E-03 19.60 ± 3.534E + 00 464.1 ± 8.557E + 01 23.66 ± 2.061E-01

D4 M1 0.8120 ± 1.606E-04 78.00 ± 4.714E-01 972.0 ± 3.236E + 01 12.46 ± 4.360E-01

M2 0.8114 ± 3.939E-04 275.9 ± 2.331E + 00 7656 ± 1.063E + 02 27.75 ± 2.023E-01

M3 0.8109 ± 2.370E-04 109.6 ± 1.730E + 00 8863 ± 1.626E + 02 80.84 ± 3.300E-01

M4 0.8158 ± 6.763E-05 4.000 ± 0.000E + 00 1117 ± 6.113E + 01 279.5 ± 1.528E + 01

M5 0.8115 ± 2.468E-03 9.200 ± 3.327E + 00 2999 ± 1.109E + 03 325.3 ± 4.388E + 00

M6 0.8095 ± 1.308E-03 11.90 ± 2.558E + 00 3741 ± 7.906E + 02 314.6 ± 2.360E + 00

D5 M1 0.3482 ± 1.278E-04 471.00 ± 3.801E + 00 945.4 ± 1.824E + 01 2.008 ± 4.811E-02

M2 0.3587 ± 1.840E-04 658.9 ± 4.954E + 00 2706 ± 4.296E + 01 4.107 ± 6.820E-02

M3 0.3663 ± 1.180E-04 103.0 ± 2.630E + 00 461.7 ± 1.361E + 02 4.482 ± 3.200E-01

M4 0.3500 ± 1.716E-04 19.40 ± 5.164E-01 773.9 ± 4.180E + 01 39.87 ± 1.439E + 00

M5 0.3500 ± 2.653E-03 25.20 ± 1.314E + 01 982.4 ± 4.826E + 02 39.66 ± 3.189E + 00

M6 0.3518 ± 4.571E-03 29.30 ± 5.100E + 00 1075 ± 2.453E + 02 36.60 ± 4.395E + 00

(a) D1 (b) D2 (c) D3          

(d) D4 (e) D5  
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Fig. 2  RMSE Comparison of M1 to M6 on D1 to D5
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D5, D1, D3, D2, and D4 respectively. Although there is an inferior MAE performace 
of M6 on D5, its RMSE performace is superior. Resonalble explaination for the pre-
cise prediction is that the physical mechanism annealing helps the model overstep its 
local saddle points, thereby achieving a desirable performance in terms of prediction 
accuracy.

2)	 ADMA saves a great deal of computational time without degrading prediction accu-
racy. From the total training iterations shown in Table 4 and Table 5, the iteration 
time of ADMA plummets from previous researches, which is neither too much 
to be trained fully, nor too little to save the computational time. From the average 
results, the RMSE iteration number of our model M6, as shown in Table 4, is less 
than 84.53% of M1-M3 on D1-D5 without degrading the performances of predic-
tion accuracy. Similarly, the MAE iteration of our model M6, as shown in Table 5, is 
less than 80.00% of M1-M3 on D1-D5 except for the iteration time of M3 on D5 that 
is also less than 71.55% with fast convergence. Although, the iteration of our model 
M6 is slightly more than that of M4, our model breaks the bottleneck of the prema-
ture shortcoming in M4 that makes the model stop early before reaching its optimal 
value.

3)	 ADMA is increasing rapidly in convergence with relatively higher computational effi-
ciency. Another advantage of an ADMA is that it converges fastly. From the con-
vergence curves drawn in Fig.  2 and Fig.  3 for RMSE and MAE training process 
respectively, the yellow triangle convergent curves represents our model M6, which 
is plummeting with limited number of iterations in a relatively short time on all 
HDI datasets. On the contrary, M1-M3 colored as purple, light blue, and blue have 
a slower rate of convergence on D1-D5, where the preset maximun is even reached 
forcing to stop training untimely and resulting in suboptimal prediction accuracy. 
The M4 that adapts the learning rate of an LFA model colored as brown in Fig. 2 and 
Fig. 3 is the fastest converged algorithm. Unfortunately, the accuracy of M4 is lower 
than our model M6 and other models in a number of cases.
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4)	 Compared with traditional DE algorithm, the improved DE algorithm in ADMA 
avoids its premature convergence while at the same time requiring less training time. 
One typical improvement of an algorithm is to avoid premature convergence, thus 
reducing total training time. Surprisingly, they are both realized in our method M6. 
From the RMSE results in Table 4, the convergence time of M6 is 16.84% and 38.66% 
smaller than that of M5 on D2 and D3 respectively, while its prediction error is also 
0.5878% and 1.313% on each data. The same situation is also shown in Table 5, the 
MAE convergence results of M6 is lower 17.16% and 32.52% lower than M5 on D2 
and D3 respectively, while its prediction error is lower 1.131% and 1.485% on each 
data. It shows that the physical mechanism cosine annealing dose help the original 
DE-based model overstep its local saddle points, and the improved differential evolu-
tion (DE) mechanism achieves a desirable prediction efficiency.

Summary

The aforementioned results show that the proposed model ADMA (M6) can balance the 
exploration and exploitation well, and has better prediction accuracy when solving latent 
factor analysis (LFA) on HDI matrices. It also helps reduce a great number of iterations 
without degrading prediction accuracy. Moreover, the convergence of an ADMA is 
increasing rapidly, thereby maintaining a relatively higher computational efficiency. The 
model overstep its local optimum effectively with the support of the annealing mecha-
nism. And the improved DE algorithm in ADMA avoids its premature convergence. The 
resulting ADMA is an efficient parameter self-adaptive HDI data analysis model.

Discussion
On the one hand, ADMA adaptively learn latent factors by the use of DE algorithm 
firstly. Although the basic offspring random selection operation in mutation mechanism 
restricts its exploration and exploitation abilities, we innovatively control the internal 
operation by a periodic equilibrium mechanism thereby improving its search and con-
vergence abilities. Compared with other non-adaptive and adaptive related methods, 
the proposed method has better properties in terms of predicting the missing data in 
HDI matrices with reasonable overhead. On the other hand, ADMA estimates param-
eters basically under the stochastic mechanism. However, the SGD mechanism is easy 
to fall into the local optimum. Therefore, other learning mechanisms like Newton meth-
ods, alternating least squares (ALS), and alternating direction method (ADM) can be 
employed to dismiss the disadvantage of the mechanism used in ADMA. We plan to 
explore these alternative mechanisms to further enhance our model ADMA in our 
future work.

Conclusion
An efficient annealing-assisted differential evolution for multi-parameter adaptive 
latent factor analysis (ADMA) is proposed in this paper. By incorporating the physical 
mechanism annealing, it efficiently improves the fundamental differential evolution (DE) 
mechanism and helps the latent factor analysis (LFA) model analyze high-dimensional 
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and incomplete (HDI) matrix adaptively. Experiments on five popular industrial HDI 
datasets show that our proposed model ADMA has better performance in terms of pre-
diction accuracy and convergence speed. Integrating the annealing mechanism, ADMA 
assists the model overstep its local optimum and the improved DE algorithm effec-
tively, which is increasing rapidly in convergence and reduces a great number of itera-
tions without degrading prediction accuracy. Although on some datasets, ADMA has 
relatively longer training time, it substantially increases the prediction accuracy without 
requiring the extremely costly multi-parameter computing. As a result, ADMA outper-
forms the state-of-the-art in terms of predicting missing data in HDI matrices in real 
industrial applications.

In the future, there are at least three research directions worth studying. First, with 
time perspective, this method focus on a periodic equilibrium mechanism. To further 
improve particles searching accuracy, space related accelerate mechanisms can also be 
analyzed and incorporated into the method. Second, as regard to adaptive learning effi-
ciency, we employ DE algorithm as the main update strategy. Meanwhile, other state of 
the art algorithms that have different advantages is worth studying according to different 
tasks. And last, but certainly not least, fundamental stochastic gradient descent mecha-
nism, generally used in the HDI data analysis methods, could also be improved, and then 
strengthen the big data analysis field.
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