
An efficient annealing‑assisted differential
evolution for multi‑parameter adaptive latent
factor analysis
Qing Li1,2, Guansong Pang3 and Mingsheng Shang2* 

Introduction
An increasing number of industrial applications have focused on exploring high-dimen-
sional and incomplete (HDI) matrices in the artificial intelligence era including e-com-
merce recommendation systems, social networks analysis, biometric feature recognition
etc. [1–5]. The missing items in an HDI matrix are probably the most valuable infor-
mation that can be exploited by latent factor analysis [6], matrix factorization [7], col-
laborative filtering [8], and neural network-related models [9]. They are constructed to
approximate the high-dimensional data with low-dimensional features that can repre-
sent the unobserved data in the HDI matrix.

Abstract 

A high-dimensional and incomplete (HDI) matrix is a typical representation of big data.
However, advanced HDI data analysis models tend to have many extra parameters.
Manual tuning of these parameters, generally adopting the empirical knowledge,
unavoidably leads to additional overhead. Although variable adaptive mechanisms
have been proposed, they cannot balance the exploration and exploitation with early
convergence. Moreover, learning such multi-parameters brings high computational
time, thereby suffering gross accuracy especially when solving a bilinear problem like
conducting the commonly used latent factor analysis (LFA) on an HDI matrix. Herein,
an efficient annealing-assisted differential evolution for multi-parameter adaptive
latent factor analysis (ADMA) is proposed to address these problems. First, a periodic
equilibrium mechanism is employed using the physical mechanism annealing, which
is embedded in the mutation operation of differential evolution (DE). Then, to further
improve its efficiency, we adopt a probabilistic evaluation mechanism consistent with
the crossover probability of DE. Experimental results of both adaptive and non-adap-
tive state-of-the-art methods on industrial HDI datasets illustrate that ADMA achieves a
desirable global optimum with reasonable overhead and prevails competing methods
in terms of predicting the missing data in HDI matrices.

Keywords:  Big data analysis, Latent factor analysis, Simulated annealing, Differential
evolution algorithm, Multi-parameter adaptive

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

METHODOLOGY

Li et al. Journal of Big Data (2022) 9:95
https://doi.org/10.1186/s40537-022-00638-8

Journal of Big Data

*Correspondence:
msshang@cigit.ac.cn

1 College of Computer
Science and Technology,
Chongqing University of Posts
and Telecommunications,
Chongqing 400065, China
2 Chongqing Key Laboratory
of Big Data and Intelligent
Computing, Chongqing
Institute of Green and Intelligent
Technology, Chinese Academy
of Sciences, Chongqing 400714,
China
3 School of Computing
and Information Systems,
Singapore Management
University, Singapore 188065,
Singapore

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00638-8&domain=pdf

Page 2 of 18Li et al. Journal of Big Data (2022) 9:95

Latent factor analysis (LFA) model is a nontrivial model for big data analysis problems,
which represents the HDI matrix with magnitude lower-dimensional latent factor matri-
ces. From the learned features of users and items in the latent matrices, missing items of
interested users can be acquired when meeting a goal built as an objective function. To
date, there are symmetric, non-negative, dynamic, and deep latent factor models, etc.
[10–14]. Song et al. [10] integrate triple-factorization-based symmetric into a nonneg-
ative latent factor model for a lower expenditure of time and storage space. Luo et al.
[11] establish an ingenious method of unconstrained non-negative latent factor analysis
method through a single-element-dependent mapping function. Bong et al. [12] focus
on the cross-correlations among the latent variables in neural recordings, the dynamic
high-dimensional time series data, to capture target factors. Wu et al. [14] provide a
deep-structured model that successively connects multiple latent factor models with
computational complexity linearly related to its layer count.

In practical application, however, extra parameters in these models unavoidably affect
their performance. Recently, evolutionary computation-based methods, one of the most
suitable and effective adaptive techniques with the swarm intelligence, arose. Differ-
ential evolution (DE), innovatively proposed by Storn and Price for solving the Cheby-
shev polynomials, is a simple yet efficient global numerical optimization evolutionary
algorithm [15]. Instead of mimicking biological or social behaviors of ants [16], birds
[17], bees [18], or humans [19], DE directly inherits the mechanisms of evolutionary:
mutation, crossover, and selection. In fact, these three mechanisms are also included in a
genetic algorithm (GA) [20], but DE directly employs the parent individuals to generate
the offspring in which the gene representation process is omitted. Mutation, the decisive
mechanism of DE, determines the range of generated offspring. For instance, with differ-
ent selection mechanism of fundamental individual, there are standard DE (DE/rand/1),
DE/best/1, DE/cur-to-best/1, DE/best/2, DE/rand/2, DE/rand-to-best/1, and DE/rand-
to-best/1 schemes [21]. However, offspring random selection operation in mutation
mechanism restricts its exploration and exploitation abilities, thereby inducing search
stagnation and premature convergence. Engaged by this problem, many studies propose
new models like DEHM [22], GA-KMEANS [23], and NBOLDE [24]. All these methods
enhance the performance of convergence more or less, but they did not focus on the
internal operation of mutation mechanism.

To solve multi-parameter adaptive latent factor analysis on an HDI matrix with the
accuracy and efficiency, this paper presents an efficient annealing-assisted differen-
tial evolution for adaptive multi-parameter latent factor analysis (ADMA) utilizing the
standard DE to train parameters. To further improve its efficiency, with the probability
of the crossover in DE, some unchanged individuals will not participate in the evalua-
tion process, which efficiently reduces the total computational time in DE. In addition,
a physical mechanism annealing is further incorporated to help the model overstep its
local saddle points, thereby receiving a desirable performance in predicting missing
data. Contributions of this study can be summarized as follows:

1)	 An ADMA algorithm, an adaptive multi-parameter latent factor analysis on an HDI
matrix, witch adopts the philosophy of annealing mechanism to improve the explo-
ration and exploitation abilities of DE;

Page 3 of 18Li et al. Journal of Big Data (2022) 9:95 	

2)	 Efficient self-adaptive mechanism for multi-parameter estimation in the dynamic
training process of the proposed latent factor analysis model;

3)	 Improved DE for analyzing HDI matrices in real industrial applications.

The rest of this paper is organized as follows. Section II illustrates the preliminaries,
Section III introduces the ADMA model, Section IV analyzes the performance of the
ADMA algorithm as well as the state-of-the-art, and lastly, the work is conducted in
Section V.

Related work
Parameter selection has been revealed as one of the most significant challenges espe-
cially in big data analysis tasks [25–28]. Manual fine-tuning of the parameters is inev-
itably time consuming and cannot achieve high accuracy in capricious industrial
applications. Along this line, parameter adaptable algorithms are proposed as a prom-
ising approach to address the problem. Various techniques have been developed for
parameter adaptive. Pertaining to traditional optimization algorithm, Miao et al. [29]
proposed a novel parameter-adaptive variational mode decomposition (VMD) by grass-
hopper optimization algorithm (GOA) applied to compound-fault diagnosis, which can
acquire a competitive decomposition results more efficiently. It can significant decline
the overhead triggered by the long-term and harsh operation environment. Moreover,
machine learning related methods are also utilized to solve this problem. For example,
Xiao et al. [30] employ an unsupervised reinforcement learning to dynamically acquire
the parameters in navigation systems of robots.

Among the parameter adaptive algorithms, three main categories of their adaptive
mechanisms, which is mentioned in Table 1, can be concluded as follows:

1)	 Analytical approach-based. The motivation of analytical approach is controlling
the updating process by analyzing the objective function in a big data analysis task.
El-Naggar et al. [31] firstly propose a simulated annealing approach-based solar
cell model parameters estimation method. Na et al. [32] estimate the time-varying
parameters from parameter estimation errors that drive several new adaptive laws

Table 1  Classification of parameter adaptive mechanisms

ADMA employs evolutionary computation DE as the multi-parameter adaptive mechanism and improve its optimization
progress by an annealing technique. Therefore, ADMA inherits the flexibility and adaptively of swarm intelligence, while
enjoying the exploration and exploitation merits of the improved DE, which thereby can solve the big data analysis
problems well especially conducting an LFA on an HDI matrix

Classifications Adaptive mechanisms Defects HDI
data
analysis

Multi-
parameters

Analytical approach Simulated annealing
approach[31]

Internal assumptions  ×   × 

Parameter estimation adjust-
ment[32]

Manual tunning  ×   × 

Dynamic optimization NE[33] Need Priori Knowledge  ×   × 

Gradient-based estimation[34] Sensitive to initialization  ×   × 

Evolutionary computation PSO[36] Premature convergence √  × 

BSO[37] time consuming √ √

Page 4 of 18Li et al. Journal of Big Data (2022) 9:95

with a faster convergence rate. Noticeable, analytical approach-based mechanisms
are efficient and concise, but it is unavoidable to set internal assumptions precisely in
advance.

2)	 Dynamic optimization method-based. For a more intelligent parameter adaptation,
some dynamic optimization methods are employed into the parameters training,
such as the Newton–Euler (NE) method and the stochastic gradient descent (SGD)
method. Yang et al. [33] identify dynamic parameters of robot systems by a robot
control scheme based on the NE method accelerating the convergence speed. Kapet-
ina et al. [34] propose a gradient-based parameter estimation technique that can
track sufficiently slow changes in process and parameters. Although dynamic opti-
mization method-based methods are intelligent in searching optimal solutions, the
searching results are highly sensitive to their initialization and searching knowledge.

3)	 Evolutionary computation-based. Despite the methods based on dynamic optimi-
zation rules, using evolutionary algorithms such as ant colony optimization (ACO)
[35], particle swarm optimization (PSO) [36], gene and brain storm optimization
(BSO) [37], etc. is an advanced genre in parameter adaptable algorithms. For exam-
ple, Luo et al. [36] incorporate PSO into the latent factor analysis that makes the big
data analysis convergence faster than traditional SGD-based mechanism. The evolu-
tionary computation-based method neither tracks error with bound nor require the
knowledge of dynamics. Unfortunately, the evolution process is time consuming and
has premature convergence.

Peliminaries
Problem statement

The key problem of finding an LFA on an HDI scoring matrix is stated as follows:

Definition 1.  Suppose M and N are entity sets of users and items respectively, each
of the entity m ∈ M grades the entity n ∈ N with the score zm,n that constitutes the HDI
scoring matrix Z|M|×|N|; The entities in an HDI matrix can be divided into two sets Λ and
Γ, where the known entry set Λ is far less in size than that of the unknown entry set Γ,
namely, |Λ| ≪|Γ|.

Definition 2.  Suppose there are P|M|×D and Q|N|×D latent factor matrices for M and
N respectively, from which a rank-d matrix Ẑ = PQT is learned to approximate Z via an
LFA model. With these latent factor matrices, the dimensional space of the approxima-
tion matrix Ẑ of an HDI matrix is far less than that of entities of users and items, i.e.,
D ≪ min {|M|, |N|}.

The objective of the LFA model is to predict unknown entities in Γ via learned
latent factor matrices P and Q from the limited known entry set Λ. Along this line,
the unknown information in an HDI matrix can be acquired, which is theoretically
expressed as solving the following Euclidean distance measure problem [10, 11]:

Page 5 of 18Li et al. Journal of Big Data (2022) 9:95 	

where zm,n represents a known element in HDI matrix Z, pm,d demotes the m-th row
vector of P in the d-th dimension, while qn,d denotes the n-th row vector of Q in the d-th
dimension.

Due to the ill-posed characteristic of solving (1), the commonly used Tikhonov regu-
larization is employed to fight against the disturbance from the model. Along this line,
the fundamental Eq. (1) is accordingly extended into:

where zm̂,n = ∑D d = 1 pm,dqn,d, λP and λQ are set as regularization constants of P and Q
respectively, and ||||2 denotes L2norm.

An SGD‑based LFA model

An LFA model is commonly addressed by the stochastic gradient descent (SGD) algo-
rithm that shows the stability, flexibility, and advanced feedback control in solving big
data analysis issues, especially on HDI data. Based on the SGD algorithm, matrices P
and Q in (2) can be updated as follows:

where εm,n = (zm,n–zm̂,n)2 + λP||pm||2 2 + λQ||qn||2 2, in which pmdemotes the m-th row
vector of P and qn denotes the n-th row vector of Q, η denotes the learning rate in the
SGD, and the detailed update process for (2) in (3) is derived as follows:

where errm,n = zm,n–zm̂, denotes an instant error. As noted above, there are three hyper-
parameters that need to be tuned including the learning rate η in SGD and the regulari-
zation parameters λP and λQ. The model can fast converge with impressive performance
when these hyper-parameters are properly tuned.

Differential evolution

As a particle swarm optimization algorithm, original differential evolution (DE) conducts
its mutation, crossover, and update operations on NC particles that can be represented as
set X = {xi = [xi,1,xi,2,…,xi,K]| xi ∊ Ω, 1 ≤ i ≤ NC} where Ω = RK is the feasible solution space.
The mutation operation in t-th iteration generates a new particle vti=

(

vti,1, v
t
i,2, ..., v

t
i,K

)

 . In

(1)min
P,Q

ε(P,Q) =
∑

zm,n

(

zm,n −

D
∑

d=1

pm,dqn,d

)2

(2)

arg min
P,Q

ε(P,Q) =
∑

zm,n∈�

(

(

zm,n − ẑm,n

)2
+ �P

∥

∥pm,·

∥

∥

2

2
+ �Q

∥

∥qn,·
∥

∥

2

2

)

=
∑

zm,n∈�

(

(

zm,n − ẑm,n

)2
+ �P

D
∑

d=1

p2m,d + �Q

D
∑

d=1

q2n,d

)

(3)

arg min
P,Q

ε(P,Q)
SGD
⇒ ∀zm,n ∈ �, d ∈ {1, 2, . . . ,D} : ptm,d ← pt−1

m,d−η
∂εt−1

m,n

∂pt−1
m,d

, qtn,d ← qt−1
n,d −η

∂εt−1
m,n

∂qt−1
n,d

.

(4)
∂εt−1

m,n

∂pt−1
m,d

= −errt−1
m,n · qt−1

n,d + �P · pt−1
m,d ,

∂εt−1
m,n

∂qt−1
n,d

= −errt−1
m,n · pt−1

m,d + �Q · qt−1
n,d .

Page 6 of 18Li et al. Journal of Big Data (2022) 9:95

the original DE, the new particle is generated based on a random particlext−1
r1,k in X, and a

differential value of the other two random particles xt−1
r2,k and xt−1

r3,k:

where r1, r2, r3 are different random constants in the range of [1,NC], γ is a scaling factor
between 0 and 1.

Crossover decides whether the new particle can be inherited. With the probability of
Pselect or when the operation is on the iselect-th particle, the particle ut

i=
(

uti,1,u
t
i,2, ...,u

t
i,K

)

is replaced by the mutation particle. Instead, it will inherit the original particles. It is pro-
cessed as follows:

where iselect is a fixed constant in the range of [1,NC]. This guarantees that at least one
particle will be inherited by the new particle.

Selection operation chooses the better particle asxti in the iteration t from ut
i and xt−1

i
after comparing the evaluation results of them, which is defined as:

where f is the objective function.
After limited iterations for all particles, such as, meeting the maximal iteration count

or multiple rounds of updates unchanged, the algorithm meets the termination criteria
and acquires a final solution.

Methods
An annealing‑assisted differential evolution algorithm

To further improve the performance of DE, the cosine anneal mechanism is incorpo-
rated into the original DE algorithm for adjusting the parental particles in mutation
operation. Following the definition of the original ED, the cosine annealing mechanism
can be defined as a period function within minimal and maximal value of the target xmin
and xmax:

where xtanneal is the anneal value at t-th iteration, and the maximal iteration time is T.
In the mutation operation, two of three parents are selected to calculate their differen-

tial values between the anneal values, and the equilibrium factor μ is set to balance them
and the original differential value between the selected parents, which are defined as:

(5)vti,k = xt−1
r1,k + γ

(

xt−1
r2,k − xt−1

r3,k

)

(6)uti,k =

{

vti,k , if rand(0, 1) < pselect or i = iselect ,

xt−1
i,k , else.

(7)xti,k =







uti,k , if f
�

uti,k
�

< f
�

xt−1
i,k

�

,

xt−1
i,k , else.

(8)xtanneal = xmin +
1

2
(xmax − xmin)

(

1+ cos
tπ

T

)

(9)
vti,k = xt−1

r1,k + γ (1− µ)

(

xt−1
r2,k − xt−1

r3,k

)

+γµ

(

xtanneal − xt−1
r2,k

)

+γµ

(

xtanneal − xt−1
r3,k

)

Page 7 of 18Li et al. Journal of Big Data (2022) 9:95 	

where vti=
(

vti,1, v
t
i,2, ..., v

t
i,K

)

 , r1, r2, r3 are different random constants in the range of
[1,NC], and γ is the scaling factor in the range of (0,1).

To further improve its efficiency, evaluation operation in HDI data analysis task need to
be conducted more concisely, which is consistent with estimating particles. Specifically,
after the crossover operation, some particles are unchanged, whose evaluation results can
be reserved without further estimation, in contrast, other renewed particles need to be
evaluated exactly.

An ADMA model

From the previous information of the improved DE, the flowchart of the proposed ADMA
can be illustrated as Fig. 1, where the red boxes represent the improvements. In order to
make parameters adaptive in solving the LFA model on an HDI matrix, three-dimensional
particles (learning rate η and regularization constants λP and λQ) need to learn using the
improved DE, i.e., the problem dimension K = 3 in this part which means X = {xi = [xi,1,xi,2,
xi,3]| xi ∊ Ω, 1 ≤ i ≤ NC} where Ω = R3.

As discussed in Sect. 3.1, the mutation particle vti=
(

vti,1, v
t
i,2, v

t
i,3

)

 is limited in the lower
and upper bounds:

where empirical settings of these parameters’ boundaries are xmax,1 = 2–8, xmin,1 = 2–12,
and xmax,2 = xmax,3 = 2–3, xmin,2 = xmin,3 = 2–7, respectively in the vector xmin and xmax.

(10)vti,k =

{

xmax,k , vti,k > xmax,k

xmin,k , vti,k < xmin,k

Conduct Nc particles

Termination No

Yes

Update Nc particles
Yes

Start

Stop

No

New Cosine Anneal Variable

Crossover

Mutation

Evaluate the Crossover Value

Generate Nc Particles

The particle changed
Yes

No

Fig. 1  Flowchart of ADMA

Page 8 of 18Li et al. Journal of Big Data (2022) 9:95

Crossover operation is the same as the original one, which is:

where ut
i=

(

uti,1,u
t
i,2,u

t
i,3

)

 , iselect is in the range of [1,NC], and Pselect is the probability of
selecting mutation particles.

Based on Eqs. (3) and (4), when the crossover particle is replaced by the mutation par-
ticle, the update of P and Q is completed in the evaluation operation as follows:

where uti,1 represents the learning rate η on the SGD-based model, uti,2 and uti,3 denote the
regularization constants λP and λQof P and Q respectively.

Selection operation chooses the particle with a better evaluation value between the
replaced particle and the original one, which is defined as:

where xti=
(

xti,1, x
t
i,2, x

t
i,3

)

 , f is the RMSE or MAE evaluation function in this method.
In the end, if the model meets the termination criteria that the best evaluation value is

unchanged for five iterations or the maximum iteration time 1000 is reached, the latest
optimum latent factor matrices are returned as the approximate results of the model.

Algorithm design and analysis

As is shown in Fig. 1, the flowchart of algorithm ADMA demonstrates that there are
two additional mechanisms: an anneal mechanism and a screening mechanism of evalu-
ation compared with the traditional DE algorithm. Evaluation for latent factor matrices
learned from an HDI matrix in this model is the most time-consuming part, which can
also be shown in the Algorithm ADMA.

(11)uti,k =

{

vti,k , if rand(0, 1) < pselect or i = iselect ,

xt−1
i,k , else.

(12)
ptm,d ← pt−1

m,d+ut−1
i,1

(

errt−1
m,n q

t−1
n,d − ut−1

i,2 pt−1
m,d

)

, qtn,d ← qt−1
n,d +ut−1

i,1

(

errt−1
m,n p

t−1
m,d − ut−1

i,3 qt−1
n,d

)

.

(13)xti,k =







uti,k , if the particle changed, f
�

uti,k
�

< f
�

xt−1
i,k

�

,

xt−1
i,k , else.

Page 9 of 18Li et al. Journal of Big Data (2022) 9:95 	

Time complexity

To train the latent factor matrices in ADMA, the following steps are sequentially per-
formed at each iteration: cosine anneal for each dimension, mutation, crossover, evalua-
tion screening, evaluation, and replace for particles, whose total time complexity is:

where C is a constant, D represents latent feature dimension, NC denotes the particles
in DE algorithm. From (14) we know that the size of the known entry set |Λ| major can
affect the overall time consumption, but it is far less than the size of entity size |M| and
|N|.

Space complexity

Large-scale data processing requires high storage space in most cases. Therefore the
space complexity is another significant indicator of the algorithm. As for the ADMA
algorithm, there are latent factor matrices and differential evolution particles that
take the most space to store. More specifically, the dimension of the target latent fac-
tors P and Q, the dimension of the parameters, and the number of the particles are
the primary source of storage costs, which is confirmed as follows:

where D is the latent feature dimension and |M| and |N| are the entity size of users and
items. The result in (15) indicates that the storage space of ADMA is far less than that of
the original rating matrix.

Experimental results and analysis
General settings

Evaluation metrics

Numerical comparison for predicting missing data in HDI matrices commonly per-
forms via two evaluation measures: mean squared error (RMSE) and mean absolute
error (MAE) [6, 38], which are:

where ẑm,n is the approximation of zm,n ∈ Γ. It is worth noting that from the previous illus-
tration of function (13), the evaluation function is consistent with the RMSE and MAE
evidencing the affinity of the evaluation function and metrics.

Experimental design

To illuminate the exploration and exploitation abilities of the proposed method, a
standard scheme with a fundamental model SGD and its modified one Moment SGD
are compared to show the searching ability. And to describe the adaptive searching
efficiency, a general adaptive model ALF, and the standard DE adaptive model DELF

(14)
TADMA = �(C × (NC × (|�| × D + |Ŵ| + D + 3K)+ K)) ≈ �(|�| × NC × D × C).

(15)SADMA = (|M| + |N |)× D + 3NC + 2D + 12 ≈ (|M| + |N |)× D + NC .

RMSE =

�

�

�

�

�





�

zm,n∈Ŵ

�

zm,n − ẑm,n

�2





�

|Ŵ|,MAE =





�

zm,n∈Ŵ

�

�zm,n − ẑm,n

�

�

abs





�

|Ŵ|;

Page 10 of 18Li et al. Journal of Big Data (2022) 9:95

are also compared in this part. Datasets from industrial applications with different
density under 0.54% are adopted in our experiments. These sparse data form the tar-
get high-dimensional and incomplete matrix to be analyzed.

Datasets

As shown in Table 2, five popular datasets of industrial HDI matrices, including Dou-
ban, MovieLlens 20 M (ML20M), Flixter, Yahoo-R2, and Epinion [39–42] are used in
this paper. Detailed information is described as follows:

1)	 D1: Douban. It is composed of 16,830,839 ratings from 58,541 items in a large Chi-
nese website Douban where 129,490 users grade the movies, music, books, etc. The
data density of Douban is about 0.22% that subjects to an HDI matrix.

2)	 D2: MovieLens 20 M (ML20M). There are 26,744 movies in the MovieLens sys-
tem constituted by GroupLens. Within the ML20M dataset collected in the system,
138,493 users grade the movies 20,000,263 times scaling from 0.5 to 5, whose density
is 0.54% and size is 20 M.

3)	 D3: Flixter. The Flixter commercial website dataset has 8,196,077 ratings ranging
from 0.5 to 5 on 48,794 movies graded by 147,612 users. The data density of the data-
set is around 0.11%.

4)	 D4: Yahoo-R2. Yahoo-R2 termed Yahoo is a large dataset that contains 200,000 users
who rate 136,736 songs with 76,344,627 ratings ranging from 1 to 5. Its density is
0.28%.

5)	 D5: Epinion. In the website Trustlet, Epinion dataset is collected in which 120,492
users grade 775,760 articles with 13,668,320 known entries. Notably, the density of
Epinion is only 0.015%.

Conventional data assignments are also implemented in this paper that randomly
divide the data into ten independent parts on average and allocate the train, valida-
tion, and test part into a ratio of 7:1:2.

Moreover, each model on these datasets are conducted ten times. Then, the aver-
ages of ten experimental results under the same conditions are analyzed in the end,
which can dismiss the possible outliers.

Table 2  Statistics of the studied datasets

* Density denotes the percentage of observed entries in the dataset

No. Name #User #Item #Interaction Density*

D1 Douban 129,490 58,541 16,830,839 0.22%

D2 MovieLens 20 M 138,493 26,744 20,000,263 0.54%

D3 Flixter 147,612 48,794 8,196,077 0.11%

D4 Yahoo-R2 200,000 136,736 76,344,627 0.076%

D5 Epinion 120,492 775,760 13,668,320 0.015%

Page 11 of 18Li et al. Journal of Big Data (2022) 9:95 	

Model settings

We compare our model with five representative state-of-the-art SGD-based LFA
models on HDI datasets are compared in the following part. M1 (SGD) and M2
(Moment SGD) are LFA methods based on traditional SGD. M3 (Adam), M4 (ALF),
M5 (DELF) [37, 38], and M6 (ADMA) are methods of parameter adaptive SGD-based
LFA models. All model descriptions are illustrated in Table 3

The experimental parameter settings in the aforementioned methods are set in
advance as follows:

1)	 For all models, latent factor features in an LFA model are constructed with a fixed
dimension D = 20, which can both maximize the representation ability and balance
the computing effects.

2)	 In M1–M4, their hyper-parameters are set as the optimal value of each model, for
instance, λP = λQ = 0.03 in M1-M4; η = 0.003 in M1 and M2; the adaptive boundary
of the learning rate η is from 2–12 to 2–8 in M3 and M4; For PSO mechanism in M4,
model parameters are c1 = c2 = 2, the number of particles is set as 20, and the velocity
boundary is vmax = 1, vmin = -−1 etc.

3)	 In M5-M6, the learning rate η and regularization constants λP and λQ are all self-
adaptive. Other parameters used in the adaptive learning process are empirically
set asγ = μ = 0.1, Pselect = 0.7, NC = 20, iselect = NC/4, xmax,1 = 2–8, xmin,1 = 2–12, and
xmax,2 = xmax,3 = 2–3, xmin,2 = xmin,3 = 2–7.

4)	 Experimental termination criteria is the best evaluation value unchanged in five
rounds or the reach of the maximum iteration number—1000.

Performance comparison

Experiments intuitively show the numerical performance of SGD (M1), Moment SGD
(M2), Adam (M3), ALF (M4), DELF (M5), and our method GASL (M6) on indus-
trial datasets Douban (D1), ML20M (D2), Flixter (D3), Yahoo (D4), and Epinion (D5).
Table 4 and Table 5 report all their results regarding total iterations, total training time

Table 3  Summary of the compared models

Parameters Models Descriptions

fixed η and
λ (λP = λP) model

M1 SGD. A fundamental SGD-based LFA model that converges very fast with the
resilience for the HDI data analysis

M2 Moment SGD. For a better update of the current one in the process of the SGD-
based LFA model, it incorporates the previous updates into the current one in
the way of momentum

M3 Adam. This adaptive moment estimation SGD method further considers expo-
nentially decaying of square average and past stochastic gradients average

η-λ-(λP = λP)
adaptive
model

M4 ALF. An adaptive SGD-based LFA model that adopts standard PSO to adjust the
learning rate in the model

M5 DELF. Differential evolution-based LF analysis model employs original differen-
tial evolution to conduct an SGD-based LFA model adaptively

η-λ-(λP ≠ λP) adaptive
model

M6 The proposed ADMA. Compared with DELF, the proposed model ADMA
improves the original DE algorithm for a more precise prediction in an SGD-
based LFA model with limited time

Page 12 of 18Li et al. Journal of Big Data (2022) 9:95

with variance, and the prediction precision evaluated by RMSE and MAE respectively.
Noticeabley, the precision and total training time are in bold in each experiments. Their
training processes are compared in Fig. 2 and Fig. 3 with RMSE and MAE respectively.
The follwing observations can be made based on these results:

1)	 Our model ADMA predicts the missing data in an HDI matrix more accurately than
both adaptive and non-adaptive LFA models. Overall, Table 4 illustrates that the
RMSE evaluation results of M6 are more accurately than M1-M5 on all five data-
sets D1-D5. And from Table 5, the MAE evaluation results of our model M6 are also
more accurately than M1-M5 on D1-D4, and M2-M3 on D5. Take the non-adap-
tive model M2 as an example, the prediction accuracy is 2.648%, 1.494%, 0.7289%,
1.027%, and 0.2983% lower than that of our model on D1-D5 respectively in RMSE
results. Andcompared with the adaptive model M3, the MAE prediction errors of
our model M6 are 3.959%, 3.661%, 3.464%, 3.019%, and 0.7723% more accurately on

Table 4  Mean RMSE results

Dataset Method RMSE and computational efficiency measures

RMSE Iteration number Total time (s) Per time (s)

D1 M1 0.7213 ± 1.849E–04 143.9 ± 7.379E-01 240.8 ± 1.172E + 01 1.674 ± 8.591E-02

M2 0.7363 ± 2.298E–04 234.9 ± 3.542E + 00 793.2 ± 2.143E + 01 3.377 ± 6.292E-02

M3 0.7252 ± 3.741E–03 291 ± 0.000E + 00 1607 ± 2.048E + 03 5.523 ± 2.048E + 00

M4 0.7232 ± 1.231E–04 7.000 ± 0.000E + 00 303.7 ± 2.755E + 01 43.39 ± 3.936E + 00

M5 0.7193 ± 2.558E–03 24.30 ± 1.477E + 01 1114 ± 6.864E + 02 45.64 ± 1.383E + 00

M6 0.7168 ± 7.518E–04 24.30 ± 5.926E + 00 1011 ± 2.474E + 02 41.62 ± 1.101E + 00

D2 M1 0.7807 ± 2.030E–04 120.9 ± 1.287E + 00 221.9 ± 6.055E + 00 1.835 ± 4.187E-02

M2 0.7898 ± 2.547E–04 210.3 ± 2.541E + 00 770.7 ± 1.111E + 01 3.665 ± 2.210E-02

M3 0.7804 ± 1.781E–04 271 ± 0.000E + 00 1900 ± 1.504E + 03 7.010 ± 1.504E + 00

M4 0.7826 ± 1.292E–04 6.000 ± 0.000E + 00 320.9 ± 2.892E + 01 53.50 ± 4.820E + 00

M5 0.7796 ± 1.392E–03 21.10 ± 8.006E + 00 1097 ± 4.187E + 02 51.94 ± 1.242E + 00

M6 0.7780 ±1.286E–03 18.70 ± 5.618E + 00 912.3 ± 2.920E + 02 48.56 ± 2.521E + 00

D3 M1 0.9506 ± 2.439E–04 202.8 ± 1.751E + 00 149.7 ± 3.050E + 00 0.7380 ± 1.325E-02

M2 0.9467 ± 5.613E–04 260.6 ± 2.066E + 00 389.9 ± 1.308E + 01 1.496 ± 5.253E-02

M3 0.9581 ± 8.206E–04 466 ± 0.000E + 00 1293 ± 7.030E + 01 2.774 ± 7.030E-02

M4 0.9523 ± 2.134E–03 10.8 ± 3.615E + 00 222.0 ± 7.531E + 01 20.54 ± 5.005E-01

M5 0.9447 ± 2.557E–03 35.60 ± 6.207E + 01 827.5 ± 1.426E + 03 23.52 ± 5.334E-01

M6 0.9398 ± 1.257E–03 21.60 ± 2.989E + 00 507.6 ± 6.981E + 01 23.51 ± 2.679E-01

D4 M1 1.062 ± 2.223E–04 65.30 ± 6.749E-01 765.8 ±2.323E + 01 11.73 ± 3.386E-01

M2 1.071 ± 2.933E–04 227.6 ± 1.350E + 00 6353 ± 4.055E + 01 27.91 ± 1.879E-01

M3 1.061 ± 3.330E–04 93.60 ± 8.600E + 01 7304 ± 6.493 + 01 78.02 ± 4.600E-01

M4 1.064 ± 2.617E–04 3.700 ± 4.830E-01 1090 ± 1.985E + 02 292.7 ± 2.031E + 01

M5 1.062 ± 3.834E–03 8.800 ± 2.741E + 00 2889 ± 9.334E + 02 327.6 ± 4.029E + 00

M6 1.060 ± 1.257E–03 10.10 ± 1.729E + 00 3171 ± 5.463E + 02 313.9 ± 1.996E + 00

D5 M1 0.7357 ± 1.072E–04 1000 ± 0.000E + 00 2171 ± 5.503E + 01 2.171 ± 5.503E-02

M2 0.7376 ± 1.465E–04 684.8 ± 4.341E + 00 2810 ± 3.148E + 01 4.104 ± 4.440E-02

M3 0.7364 ± 6.200E–05 438.0 ± 4.150E + 00 2027 ± 8.028E + 01 4.627 ± 2.400E-01

M4 0.7364 ± 8.703E–05 16.90 ± 3.162E-01 731.5 ± 3.394E + 01 43.28 ± 1.701E + 00

M5 0.7358 ± 2.201E–03 41.40 ± 2.899E + 01 1671 ± 1.336E + 03 39.40 ± 3.203E + 00

M6 0.7354 ± 5.410E–04 47.10 ± 6.574E + 00 1775 ± 3.674E + 02 37.59 ± 5.182E + 00

Page 13 of 18Li et al. Journal of Big Data (2022) 9:95 	

Table 5  Mean MAE results 

Dataset Method MAE and computational efficiency measures

MAE Iteration number Total time (s) Per time (s)

D1 M1 0.5609 ± 1.084E-04 151.6 ± 6.992E-01 274.9 ± 5.715E + 00 1.813 ± 3.958E-02

M2 0.5686 ± 2.007E-04 238.5 ± 4.720E + 00 777.6 ± 2.052E + 01 3.260 ± 4.937E-02

M3 0.5791 ± 1.086E-04 303 ± 0.000E + 00 1938 ± 1.816E + 03 6.397 ± 1.816E + 00

M4 0.5666 ± 1.038E-04 7.000 ± 0.000E + 00 279.6 ± 9.736E + 00 39.95 ± 1.038E-04

M5 0.5613 ± 2.672E-03 19.20 ± 4.614E + 00 870.4 ± 2.043E + 02 45.44 ± 1.261E + 00

M6 0.5579 ± 1.640E-03 21.40 ± 5.948E + 00 885.7 ± 2.510E + 02 41.32 ± 1.165E + 00

D2 M1 0.5963 ± 9.869E-05 128.4 ± 8.433E-01 263.0 ±6.029E + 00 2.049 ± 4.572E-02

M2 0.5998 ± 3.005E-04 225.5 ± 3.567E + 00 799.7 ± 1.455E + 01 3.547 ± 4.325E-02

M3 0.6128 ± 2.573E-04 76.00 ± 0.000E + 00 500.8 ± 1.434E + 03 6.590 ± 1.434E + 00

M4 0.6011 ± 4.181E-04 6.000 ± 0.000E + 00 273.6 ± 2.009E + 01 45.60 ± 4.181E-04

M5 0.5967 ± 4.362E-03 17.10 ± 1.135E + 01 894.0 ± 5.889E + 02 52.39 ± 2.867E + 00

M6 0.5943 ± 2.424E-03 15.20 ± 4.872E + 00 740.6 ± 2.421E + 02 48.64 ± 1.740E + 00

D3 M1 0.6711 ± 1.759E-04 259.0 ± 4.761E + 00 213.7 ± 1.067E + 01 0.8250 ± 3.851E-02

M2 0.6689 ± 3.549E-04 299.5 ± 3.308E + 00 449.2 ± 1.688E + 01 1.500 ± 5.042E-02

M3 0.6871 ± 5.071E-04 453.0 ± 0.000E + 00 1374 ± 3.067E + 02 3.032 ± 3.067E-01

M4 0.6733 ± 2.933E-03 13.30 ± 4.473E + 00 279.0 ± 1.068E + 02 20.81 ± 1.273E + 00

M5 0.6659 ± 4.917E-03 29.30 ± 2.028E + 01 687.8 ± 4.763E + 02 23.40 ± 4.113E-01

M6 0.6633 ± 3.314E-03 19.60 ± 3.534E + 00 464.1 ± 8.557E + 01 23.66 ± 2.061E-01

D4 M1 0.8120 ± 1.606E-04 78.00 ± 4.714E-01 972.0 ± 3.236E + 01 12.46 ± 4.360E-01

M2 0.8114 ± 3.939E-04 275.9 ± 2.331E + 00 7656 ± 1.063E + 02 27.75 ± 2.023E-01

M3 0.8109 ± 2.370E-04 109.6 ± 1.730E + 00 8863 ± 1.626E + 02 80.84 ± 3.300E-01

M4 0.8158 ± 6.763E-05 4.000 ± 0.000E + 00 1117 ± 6.113E + 01 279.5 ± 1.528E + 01

M5 0.8115 ± 2.468E-03 9.200 ± 3.327E + 00 2999 ± 1.109E + 03 325.3 ± 4.388E + 00

M6 0.8095 ± 1.308E-03 11.90 ± 2.558E + 00 3741 ± 7.906E + 02 314.6 ± 2.360E + 00

D5 M1 0.3482 ± 1.278E-04 471.00 ± 3.801E + 00 945.4 ± 1.824E + 01 2.008 ± 4.811E-02

M2 0.3587 ± 1.840E-04 658.9 ± 4.954E + 00 2706 ± 4.296E + 01 4.107 ± 6.820E-02

M3 0.3663 ± 1.180E-04 103.0 ± 2.630E + 00 461.7 ± 1.361E + 02 4.482 ± 3.200E-01

M4 0.3500 ± 1.716E-04 19.40 ± 5.164E-01 773.9 ± 4.180E + 01 39.87 ± 1.439E + 00

M5 0.3500 ± 2.653E-03 25.20 ± 1.314E + 01 982.4 ± 4.826E + 02 39.66 ± 3.189E + 00

M6 0.3518 ± 4.571E-03 29.30 ± 5.100E + 00 1075 ± 2.453E + 02 36.60 ± 4.395E + 00

(a) D1 (b) D2 (c) D3

(d) D4 (e) D5

0 80 160 240 320

0.74

0.76

0.78
M1
M2
M3
M4
M5
M6

R
M

SE

Number of iterations
0 60 120 180 240 300

0.78

0.79

0.80

0.81

R
M

SE

Number of iterations
0 100 200 300 400 500

1.14

1.16

1.18

1.20

1.22

R
M

SE

Number of iterations

0 70 140 210 280 350
1.05

1.06

1.07

1.08

1.09

1.10

R
M

SE

Number of iterations
0 250 500 750 1000

0.825

0.850

0.875

0.900

R
M

SE

Number of iterations

Fig. 2  RMSE Comparison of M1 to M6 on D1 to D5

Page 14 of 18Li et al. Journal of Big Data (2022) 9:95

D5, D1, D3, D2, and D4 respectively. Although there is an inferior MAE performace
of M6 on D5, its RMSE performace is superior. Resonalble explaination for the pre-
cise prediction is that the physical mechanism annealing helps the model overstep its
local saddle points, thereby achieving a desirable performance in terms of prediction
accuracy.

2)	 ADMA saves a great deal of computational time without degrading prediction accu-
racy. From the total training iterations shown in Table 4 and Table 5, the iteration
time of ADMA plummets from previous researches, which is neither too much
to be trained fully, nor too little to save the computational time. From the average
results, the RMSE iteration number of our model M6, as shown in Table 4, is less
than 84.53% of M1-M3 on D1-D5 without degrading the performances of predic-
tion accuracy. Similarly, the MAE iteration of our model M6, as shown in Table 5, is
less than 80.00% of M1-M3 on D1-D5 except for the iteration time of M3 on D5 that
is also less than 71.55% with fast convergence. Although, the iteration of our model
M6 is slightly more than that of M4, our model breaks the bottleneck of the prema-
ture shortcoming in M4 that makes the model stop early before reaching its optimal
value.

3)	 ADMA is increasing rapidly in convergence with relatively higher computational effi-
ciency. Another advantage of an ADMA is that it converges fastly. From the con-
vergence curves drawn in Fig. 2 and Fig. 3 for RMSE and MAE training process
respectively, the yellow triangle convergent curves represents our model M6, which
is plummeting with limited number of iterations in a relatively short time on all
HDI datasets. On the contrary, M1-M3 colored as purple, light blue, and blue have
a slower rate of convergence on D1-D5, where the preset maximun is even reached
forcing to stop training untimely and resulting in suboptimal prediction accuracy.
The M4 that adapts the learning rate of an LFA model colored as brown in Fig. 2 and
Fig. 3 is the fastest converged algorithm. Unfortunately, the accuracy of M4 is lower
than our model M6 and other models in a number of cases.

(a) D1 (b) D2 (c) D3

(d) D4 (e) D5

0 80 160 240 320

0.57

0.60

0.63

0.66

M1
M2
M3
M4
M5
M6

M
A

E

Number of iterations
0 50 100 150 200 250

0.59

0.60

0.61

0.62

M
A

E

Number of iterations
0 100 200 300 400 500

0.76

0.77

0.78

0.79

0.80

M
A

E

Number of iterations

0 80 160 240 320 400
0.804

0.808

0.812

0.816

0.820
M

A
E

Number of iterations
0 200 400 600

0.40

0.41

0.42

0.43

M
A

E

Number of iterations

Fig. 3  MAE Comparison of M1 to M6 on D1 to D5

Page 15 of 18Li et al. Journal of Big Data (2022) 9:95 	

4)	 Compared with traditional DE algorithm, the improved DE algorithm in ADMA
avoids its premature convergence while at the same time requiring less training time.
One typical improvement of an algorithm is to avoid premature convergence, thus
reducing total training time. Surprisingly, they are both realized in our method M6.
From the RMSE results in Table 4, the convergence time of M6 is 16.84% and 38.66%
smaller than that of M5 on D2 and D3 respectively, while its prediction error is also
0.5878% and 1.313% on each data. The same situation is also shown in Table 5, the
MAE convergence results of M6 is lower 17.16% and 32.52% lower than M5 on D2
and D3 respectively, while its prediction error is lower 1.131% and 1.485% on each
data. It shows that the physical mechanism cosine annealing dose help the original
DE-based model overstep its local saddle points, and the improved differential evolu-
tion (DE) mechanism achieves a desirable prediction efficiency.

Summary

The aforementioned results show that the proposed model ADMA (M6) can balance the
exploration and exploitation well, and has better prediction accuracy when solving latent
factor analysis (LFA) on HDI matrices. It also helps reduce a great number of iterations
without degrading prediction accuracy. Moreover, the convergence of an ADMA is
increasing rapidly, thereby maintaining a relatively higher computational efficiency. The
model overstep its local optimum effectively with the support of the annealing mecha-
nism. And the improved DE algorithm in ADMA avoids its premature convergence. The
resulting ADMA is an efficient parameter self-adaptive HDI data analysis model.

Discussion
On the one hand, ADMA adaptively learn latent factors by the use of DE algorithm
firstly. Although the basic offspring random selection operation in mutation mechanism
restricts its exploration and exploitation abilities, we innovatively control the internal
operation by a periodic equilibrium mechanism thereby improving its search and con-
vergence abilities. Compared with other non-adaptive and adaptive related methods,
the proposed method has better properties in terms of predicting the missing data in
HDI matrices with reasonable overhead. On the other hand, ADMA estimates param-
eters basically under the stochastic mechanism. However, the SGD mechanism is easy
to fall into the local optimum. Therefore, other learning mechanisms like Newton meth-
ods, alternating least squares (ALS), and alternating direction method (ADM) can be
employed to dismiss the disadvantage of the mechanism used in ADMA. We plan to
explore these alternative mechanisms to further enhance our model ADMA in our
future work.

Conclusion
An efficient annealing-assisted differential evolution for multi-parameter adaptive
latent factor analysis (ADMA) is proposed in this paper. By incorporating the physical
mechanism annealing, it efficiently improves the fundamental differential evolution (DE)
mechanism and helps the latent factor analysis (LFA) model analyze high-dimensional

Page 16 of 18Li et al. Journal of Big Data (2022) 9:95

and incomplete (HDI) matrix adaptively. Experiments on five popular industrial HDI
datasets show that our proposed model ADMA has better performance in terms of pre-
diction accuracy and convergence speed. Integrating the annealing mechanism, ADMA
assists the model overstep its local optimum and the improved DE algorithm effec-
tively, which is increasing rapidly in convergence and reduces a great number of itera-
tions without degrading prediction accuracy. Although on some datasets, ADMA has
relatively longer training time, it substantially increases the prediction accuracy without
requiring the extremely costly multi-parameter computing. As a result, ADMA outper-
forms the state-of-the-art in terms of predicting missing data in HDI matrices in real
industrial applications.

In the future, there are at least three research directions worth studying. First, with
time perspective, this method focus on a periodic equilibrium mechanism. To further
improve particles searching accuracy, space related accelerate mechanisms can also be
analyzed and incorporated into the method. Second, as regard to adaptive learning effi-
ciency, we employ DE algorithm as the main update strategy. Meanwhile, other state of
the art algorithms that have different advantages is worth studying according to different
tasks. And last, but certainly not least, fundamental stochastic gradient descent mecha-
nism, generally used in the HDI data analysis methods, could also be improved, and then
strengthen the big data analysis field.
Acknowledgements
We thank Chongqing University of Posts and Telecommunications, Singapore Management University, and Chongqing
Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology for
financing this study. Then we thank all the staff members of Chongqing Key Laboratory of Big Data and Intelligent Com-
puting, Chongqing Institute of Green and Intelligent Technology. Finally, I want to thank my parents and friends who
always accompany and support me.

Author contributions
QL: Investigation, conceptualization, visualization, formal analysis, methodology, software, validation, writing- original
draft preparation, writing-reviewing and editing. GP: writing-reviewing and editing, supervision. MS: resources, data cura-
tion, supervision, funding acquisition. All authors read and approved the final manuscript.

Funding
This research is supported in part by grants from the Key Cooperation Project of Chongqing Municipal Education Com-
mission (HZ2021017) and nsfc 62072429. The collaborative fund is from Chongqing University of Posts and Telecom-
munications, and Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and
Intelligent Technology.

Availability of data and materials
The dataset has no restrictions that all the data can be acquired in the related site.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 December 2021 Accepted: 27 June 2022

References
	1.	 Thudumu S, Branch P, Jin J, Singh JJ. A comprehensive survey of anomaly detection techniques for high dimen-

sional big data. J Big Data. 2020;7(1):1–30.

Page 17 of 18Li et al. Journal of Big Data (2022) 9:95 	

	2.	 Angskun J, Tipprasert S, Angskun T. Big data analytics on social networks for real-time depression detection. J Big
Data. 2022;9(1):1–15.

	3.	 Tarus JK, Niu Z, Mustafa G. Knowledge-based recommendation: a review of ontology-based recommender systems
for e-learning. Artif Intell Rev. 2018;50(1):21–48.

	4.	 Peng S, Wang G, Xie D. Social influence analysis in social networking big data: opportunities and challenges. IEEE
Network. 2016;31(1):11–7.

	5.	 Giatrakos N, Alevizos E, Artikis A, Deligiannakis A, Garofalakis M. Complex event recognition in the big data era: a
survey. VLDB J. 2020;29(1):313–52.

	6.	 Luo X, Liu H, Gou G, Xia Y, Zhu Q. A parallel matrix factorization based recommender by alternating stochastic gradi-
ent decent. Eng Appl Artif Intell. 2012;25(7):1403–12.

	7.	 Bisot V, Serizel R, Essid S, Richard G. Feature learning with matrix factorization applied to acoustic scene classifica-
tion. IEEE/ACM Trans Audio Speech Lang Process. 2017;25(6):1216–29.

	8.	 Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art
and possible extensions. IEEE Trans Knowl Data Eng. 2005;17(6):734–49.

	9.	 Y. Chen, X. Hu and Y. Hui. Correlation filter network model performance analysis. 2020 International Conference on
Computer Network, Electronic and Automation (ICCNEA), 2020. P. 254–258.

	10.	 Song Y, Li M, Luo X, Yang G, Wang C. Improved symmetric and nonnegative matrix factorization models for
undirected, sparse and large-scaled networks: a triple factorization-based approach. IEEE Trans Industr Inform.
2020;16(5):3006–17.

	11.	 Luo X, Zhou M, Li S, Wu D, Liu Z, Shang M. Algorithms of unconstrained non-negative latent factor analysis for
recommender systems. IEEE Trans Big Data. 2021;7(1):227–40.

	12.	 H. Bong, Z. Liu, Z. M. A. Ren, Smith, V. Ventura, and R. E. Kass. Latent dynamic factor analysis of high-dimensional
neural recordings. In: NeurIPS, 2020.

	13.	 Li Q, Xiong DW, Shang MS. Adjusted stochastic gradient descent for latent factor analysis. Inf Sci. 2022;588:196–213.
	14.	 Wu D, Luo X, Shang M, He Y, Wang G, Zhou M. A deep latent factor model for high-dimensional and sparse matrices

in recommender systems. IEEE Trans Syst Man Cybern Syst. 2021;51(7):4285–96.
	15.	 Price KV. Differential evolution. Handbook of optimization. Heidelberg: Springer; 2013. p. 187–214.
	16.	 Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1(4):28–39.
	17.	 Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm Intell. 2007;1(1):33–57.
	18.	 DT Pham, A Ghanbarzadeh, E Koç, S Otri, S Rahim, and M Zaidi. The bees algorithm—a novel tool for complex

optimization problems. Intelligent production machines and systems. Amsterdam: Elsevier Science Ltd. 2006.
	19.	 Shi YH, Brain storm optimization algorithm in objective space. IEEE Congress on Evolutionalry Computation (CEC).

Sendai. 2015;2015:1227–34.
	20.	 Choi K, Jang D, Kang S, Lee J, Chung T, Kim H. Hybrid algorithm combing genetic algorithm with evolution strategy

for antenna design. IEEE Trans Magn. 2016;52(3):1–4.
	21.	 Das S, Suganthan PN. Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput.

2011;15(1):4–31.
	22.	 Zhou Z, Abawajy J, Shojafar M, Chowdhury M. DEHM: an improved differential evolution algorithm using hierarchi-

cal multistrategy in a cybertwin 6G network. IEEE Trans Industr Inform. 2022;18(7):4944–53.
	23.	 Baldassi C. Recombinator-k-means: an evolutionary algorithm that exploits k-means++ for recombination. IEEE

Trans Evol Comput. 2022. https://​doi.​org/​10.​1109/​TEVC.​2022.​31441​34.
	24.	 Deng W, Shang S, Cai X, Zhao H, Song Y, Xu J. An improved differential evolution algorithm and its application in

optimization problem. Soft Comput. 2021;25(7):5277–98.
	25.	 Zhang X, Ge Z. Local parameter optimization of LSSVM for industrial soft sensing with big data and cloud imple-

mentation. IEEE Trans Industr Inform. 2020;16(5):2917–28.
	26.	 Zhang Q, Yang LT, Chen Z, Li P, Bu F. An adaptive dropout deep computation model for industrial IoT big data learn-

ing with crowdsourcing to cloud computing. IEEE Trans Industr Inform. 2019;15(4):2330–7.
	27.	 Fikri N, Rida M, Abghour N, Moussaid K, El Omri A. An adaptive and real-time based architecture for financial data

integration. J Big Data. 2019;6(1):1–25.
	28.	 Taheri S, Goudarzi M, Yoshie O. Learning-based power prediction for geo-distributed Data Centers: weather param-

eter analysis. J Big Data. 2020;7(1):1–16.
	29.	 Miao Y, Zhao M, Lin J. Identification of mechanical compound-fault based on the improved parameter-adaptive vari-

ational mode decomposition. ISA Trans. 2019;84:82–95.
	30.	 Xiao X, Liu B, Warnell G, Fink J, Stone P. Appld: Adaptive planner parameter learning from demonstration. IEEE Robot

Autom Lett. 2020;5(3):4541–7.
	31.	 El-Naggar KM, AlRashidi MR, AlHajri MF, Al-Othman AK. Simulated annealing algorithm for photovoltaic parameters

identification. Sol Energy. 2012;86(1):266–74.
	32.	 Na J, Xing Y, Costa-Castelló R. Adaptive estimation of time-varying parameters with application to roto-magnet

plant. IEEE Trans Syst Man Cybernetics Syst. 2021;51(2):731–41.
	33.	 Yang C, Jiang Y, He W, Na J, Li Z, Xu B. Adaptive parameter estimation and control design for robot manipulators

with finite-time convergence. IEEE Trans Industr Elect. 2018;65(10):8112–23.
	34.	 Kapetina MN, Rapaić MR, Pisano A, Jeličić ZD. Adaptive parameter estimation in LTI systems. IEEE Trans Automatic

Control. 2019;64(10):4188–95.
	35.	 Kumar A, Kumar A. Adaptive management of multimodal biometrics fusion using ant colony optimization. Inform

Fusion. 2016;32:49–63.
	36.	 Luo X, Yuan Y, Chen S, Zeng N, Wang Z. Position-transitional particle swarm optimization-incorporated latent factor

analysis. IEEE Trans Knowled Data Eng. 2020. https://​doi.​org/​10.​1109/​TKDE.​2020.​30333​24.
	37.	 Li Q, Shang M. BALFA: A brain storm optimization-based adaptive latent factor analysis model. Inf Sci.

2021;578:913–29.

https://doi.org/10.1109/TEVC.2022.3144134
https://doi.org/10.1109/TKDE.2020.3033324

Page 18 of 18Li et al. Journal of Big Data (2022) 9:95

	38.	 S. -L Chen, Y. Yuan, and J. Wang. An adaptive latent factor model via particle swarm optimization for high-dimen-
sional and sparse matrices. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019. p.
1738–1743.

	39.	 M. Shang, Y. Yuan, X. Luo and M. Zhou. An α -β -Divergence-Generalized Recommender for Highly Accurate Predic-
tions of Missing User Preferences. In: IEEE Transactions on Cybernetics, 2021.

	40.	 Luo X, Qin W, Dong A, Sedraoui K, Zhou M. Efficient and high-quality recommendations via momentum-incorpo-
rated parallel stochastic gradient descent-based learning”. IEEE/CAA J Automatica Sinica. 2020;8(2):403–11.

	41.	 Takács G, Pilászy I, Németh B, Tikky D. Scalable collaborative filtering approaches for large recommender systems. J
Mach Learn Res. 2009;10:623–56.

	42.	 Koren Y, Bell R, Volinsky C. Matrix-factorization techniques for recommender systems. IEEE Comput. 2009;42(8):30–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	An efficient annealing-assisted differential evolution for multi-parameter adaptive latent factor analysis
	Abstract
	Introduction
	Related work
	Peliminaries
	Problem statement
	An SGD-based LFA model
	Differential evolution

	Methods
	An annealing-assisted differential evolution algorithm
	An ADMA model
	Algorithm design and analysis
	Time complexity
	Space complexity

	Experimental results and analysis
	General settings
	Evaluation metrics
	Experimental design
	Datasets
	Model settings

	Performance comparison
	Summary

	Discussion
	Conclusion
	Acknowledgements
	References

