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Introduction
Traffic flow forecasting is an important technology for alleviating urban traffic con-
gestion, and one of the great challenges is to adequately adapt the supply of public 
transport to demand. Hao et  al. [1]  took the fitness function as the measurement 
standard and used the differential evolution algorithm to optimize the parameters 
of the radial basis function to obtain the optimal short-term traffic flow prediction 
value, thereby improving the short-term traffic flow prediction accuracy. Fang et  al. 
[2]  introduced an attention mechanism that assigns different weights to different 
inputs in a long short-term memory (LSTM) network, helping the network model to 
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make accurate predictions. Rajalakshmi et  al. [3]  reduced the prediction error rate 
by mixing convolutional neural network (CNN) and LSTM models. However, none 
of them considered the impact of regional events on the forecast. In traffic planning, 
traffic demand forecasting for special events is a well-known challenge. Transpor-
tation systems are usually designed according to habitual demands, and only very 
large events (eg concerts, major festivals, olympic games, world cups) receive special 
attention, and thus face great challenges in interpreting non-habitual transportation 
demand scenarios. In this scenario, in order to explain the reasons for non-habitual 
traffic demands, certain background knowledge is needed to discern the explanation, 
so this paper fully considers the impact of events in the predictive modeling process.

Previous studies have shown [4–6] that the information contained in real-time 
online resources such as announcement websites and social networks does have prac-
tical value for urban traffic demand forecast modeling. The abundance of informa-
tion on public events on the Internet helps explain observed real-world phenomena, 
such as non-habitual overcrowding scenarios. With the advent of the era of big data, 
the Internet has become a valuable data source for traffic flow modeling. For exam-
ple, predicting customer churn behavior through twitter [7], using social media data 
to identify the distribution of relief material needs [8], and studying the impact of 
multimodal information and social network information on travelers’ commute mode 
choices [9]. People can understand various event information in real time through the 
Internet, not only know what is happening now, but also know what may happen in 
the future. But getting the model to understand event information and predict traffic 
flow demand well is a challenging problem.

Over the past few decades, deep learning has achieved success in multimodal clas-
sification or clustering tasks such as video classification [10, 11], event detection [12, 
13], sentiment analysis [14, 15] and visual question answering [16] good effect. Suc-
cesses in these areas demonstrate that deep learning can handle heterogeneous data 
well. Of course, there is no exception in the field of traffic flow forecasting. Xiao et al. 
[17] fused various heterogeneous information such as historical traffic flow and loca-
tion semantics through gating layers and hierarchical adaptive graph convolutional 
networks to learn spatiotemporal interactions and traffic correlations in different lev-
els of spatial dimensions. Yu et al. [18]. proposed a cross-attention fusion spatiotem-
poral multi-graph convolutional network model to fuse temporal and spatial features 
separately to reduce the prediction error of traffic flow prediction. Rodrigues et  al. 
[19]  proposed a fully connected layer deep learning (DL-FC) network for event area 
taxi demand prediction. Using the Internet as a contextual information resource for 
special events, the proposed deep learning architecture can significantly improve the 
quality of predictions.

Existing traffic flow prediction methods mainly focus on using the short-term cor-
relation of recent observation patterns [2, 20, 21] to capture the periodic movement 
trend related to habit / routine behavior. However, when trying to model time series, 
we often ignore the valuable text information in the form of unstructured data. To solve 
this problem, this paper considered the impact of unstructured text data describing 
events on regional traffic flow demand, and proposed a deep separable convolution FFN. 
Compared with DL-FC network, this network has fewer learning parameters, higher 
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efficiency of information representation and better prediction effect. The contributions 
of this paper are as follows:

1.	 The depthwise separable one-dimensional convolution (SConv1D) was employed to 
learn multi-word patterns describing event text. First, the word embedding dimen-
sions were separated and an independent spatial convolution is performed on each 
dimension. Then, point-by-point convolution was performed on the spatially con-
voluted tensor to mix the information in the embedding dimension. This effectively 
alleviated the problem of too many convolutional layer parameters due to too long 
word sequences and too large word embedding dimensions.

2.	 An interaction mechanism between unstructured text data and structured temporal 
data was established. We explored the use of temporal and other structured data to 
drive the text feature representation in the early, middle and late stages respectively, 
and obtained the "reset" text abstract feature representation. Experimental data show 
that the text representation in this interactive mode is more efficient.

3.	 Detailed incremental experiments were designed to quantify the impact of differ-
ent components on fusion prediction results. At the same time, the contribution of 
different modal information sources to the model was evaluated. The importance of 
considering the textual information describing the event in the taxi demand predic-
tion problem in the event area was highlighted.

The rest of this article is organized as follows. In the next section, the relevant litera-
ture for this work is reviewed. In “Proposed methodology” section, the neural network 
architecture for fusing structured data and unstructured text data is introduced. “Exper-
iments” section describes the dataset used for the experiments and discusses the experi-
mental results. The paper concludes with a conclusion (“Conclusion” section).

Related work
Urban flows and special events

Urban mobility demand forecasting has always been a challenging problem, and typical 
methods can only understand habitual behaviors and cyclical trends. However, our city 
is "dynamic", especially when some large-scale public events happen [22], which often 
leads to a surge in the demand for local taxis. The largest proportion of special activities 
is generally a variety of small and medium-impact activities. Their impact on mobility 
is difficult to measure, especially when multiple activities occur simultaneously, which 
undoubtedly poses a huge challenge to the task of traffic flow prediction.

From traffic planning’s point of view, Chen et al. [23] introduced artificial neural net-
work to predict traffic flow in different periods. Kuppam and Chang et al. [24, 25] pro-
posed a conventional 4-step model to forecast special events’ demands. Their model is 
highly dependent on manual survey data and does not include explicitly the event fea-
tures that may impact the flows. Noursalehi et  al. [26] proposed a single-variable and 
multi-variable state-space model, which is capable of simulating the impacts of exter-
nal sources (such as soccer matches), and predicted in real-time the short-term traveler 
arrival volume. Yao et al. [27] proposed an exploratory method of digging twitter mes-
sages to understand the impact of people’s activity patterns in prior evening/mid-night 
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on the flow on the next day morning. However, most of these works do not take into 
account the modeling of text information describing special events.

In reality, most of the information describing events is presented in the form of 
unstructured text. Due to the unstructured attributes of the text, the text cannot directly 
participate in the modeling of the character set whose variable type is required to be 
numerically related in data mining, but the text can be used as an important variable 
after processing. This paper integrates the text information describing events into the 
time series modeling, models the cross modal heterogeneous information, and fully con-
siders the impact of special events on taxi demand forecasting.

Multi‑modal data fusion

Multimodal data fusion [28] refers to various forms of combination of two or more 
modal data. For each source or form of information, it can be called a modality. Different 
modal data have different levels of knowledge expressivity to different degrees. There-
fore, researchers have begun to focus on how to fuse data from multiple fields to achieve 
the complementarity of multiple heterogeneous information.

In view of the universality of multi-modal data fusion, there are many solutions for 
multi-modal data fusion in different fields. For instance, in a task of sentiment analy-
sis, Zadeh et al. [29] proposed to fuse the voice, video, and audio modals into a tensor, 
which consists of the products of the specific feature vectors from all models, thereby 
exploiting the inner and intra sentimental dynamics. Fukui et al. [30] proposed to fuse 
the lingual and image modals using the multi-modal compact bi-linearity. They approxi-
mate by randomly projecting the images and texts onto space of higher dimensions and 
conduct effective convolution of these two vectors through elemental product in the 
FFT space. Liu et al. [31] proposed a multi-modal low-rank fusion method, which per-
forms low-rank matrix decomposition on the weights and uses the low-rank tensors in 
the multi-modal fusion so as to improve fusion efficiency. Wu et al. [32] proposed multi-
modal cyclic fusion method, which transforms the feature vectors into a cyclic matrix 
and fully utilize the interactions between the textual feature elements and visual feature 
elements. However, the abovementioned work contains comparatively few investigations 
on the fusion of time series data and textual information.

From the perspective of multi-modal data representation, deep multi-modal represen-
tation learning methods are generally divided into three frameworks [33]: joint repre-
sentation, coordinated representation, and encoder-decoder. This paper adopts a joint 
representation strategy to input text data and temporal etc. data into different parts of 
the model at the same time, and uses the dependency between features to integrate dif-
ferent types of heterogeneous features to improve prediction performance. One of the 
advantages of joint representation is that it can easily integrate multiple modes, without 
explicitly coordinating the modes, and has strong versatility.

Proposed methodology
Textual representation based on SConv1D

The text is associated with the vector by using pre trained word embedding, that is, the 
embedded vector is loaded from the pre calculated embedded space Commonly used 
precomputed word embedding databases were word2vec [34], GloVe [35], etc. This paper 
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used GloVe embeddings. The prepared GloVe matrix was loaded into the embedding 
layer in Keras to obtain 3D word embedding vectors. The length of each sample sequence 
of this vector was 350 (after padding or clipping), and the dimension of each word 
embedding was 300, that is, the embedding layer returned a three-dimensional floating-
point tensor with shape (samples, sequence_length = 350, embedding_dim = 300).

The sequence length of the above word embedding vector was very long and the word 
dimension was very high, which brought a large number of learning parameters to the 
text representation learning using neural network. In order to solve this problem, this 
paper did not use the traditional one-dimensional convolution method to learn text 
information, but used SConv1D [36] to extract text information.

Compared with ordinary convolutional layers, SConv1D can make the model lighter 
(fewer learning parameters) and faster (fewer floating-point operations). This layer car-
ried out deep convolution and point-by-point convolution on the word embedding vec-
tor respectively. Firstly, the embedded dimensions (equivalent to "depth" or "channel" 
in CNN) are separated, and one-dimensional depth convolution is carried out on each 
embedded dimension, so as to learn multiple groups of local features between words. 
Secondly, each separated embedded dimension is spliced and then convoluted point by 
point to learn the inter channel mode, as shown in Fig. 1a.

The schematic diagram of the network structure is shown in Fig. 1b. After the embed-
ding layer, the word embedding dimension is compressed. One-dimensional convolution 
with 30 convolution kernels of 1 was used to reduce the embedded dimension size. This 
was to reduce the learning parameters of SConv1D in the next recognition sequence.

Compressed text tensors passed through three SConv1D blocks in sequence. The 
internal details of the SConv1D block are shown in Fig.  1c. Each SConv1D contained 
a series of 1D convolutional filters that captured variable-length patterns in input text 
sequences of arbitrary size. Each one-dimensional convolutional layer used the tanh 
activation function instead of the relu activation function, in order not to lose infor-
mation less than zero. A max pooling layer (Maxpooling) and a random dropout layer 
(Dropout) were also added after each layer. By subsampling the feature map and tak-
ing the maximum value as the feature corresponding to this particular filter. The size of 
Maxpooling was the same as the size of the previous 1D convolution filter kernel. Drop-
out dropped the feature representation of the previous layer with a 50% probability to 
reduce overfitting.

Fig. 1  a Details of the SConv1D; b Schematic diagram and network structure; c Details of the SConv1D block
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Temporal guided textual representation

Unstructured text data often contains contextual interpretations of many patterns in 
traffic data. This makes it possible to establish a relationship between unstructured text 
data and structured temporal data. To better capture the salient underlying abstract fea-
ture representations of text in the taxi flow prediction task, temporal guided textual rep-
resentation (TGTR) was proposed. TGTR guided the model to obtain important textual 
information for the current task as needed. A subset of text feature vectors at the corre-
sponding stage was selected through structured temporal and other data, and secondary 
features were selectively filtered out, as shown in Fig. 2.

In the figure, X ∈ Rd is the comprehensive information tensor obtained from the con-
catenation of time series information, weather information, and additional event infor-
mation; d is the dimension after the concatenation of the features; Y ∈ Rm×d′ is the 
textual tensor; m is the length of word sequence; d′ is the dimension of word embedding, 
d < d

′;⊙ denotes dot product; ⊗ denotes elemental multiplication; ⊕ denotes elemental 
addition.

Specifically, X first went through the batch normalization (BN) layer, the FC layer, and 
the BN layer in sequence. Then, did a dot product with Y to get α. BN used the mean and 
standard deviation of the mini-batch to adjust the network intermediate output, improv-
ing the stability of the intermediate layer output while minimizing overfitting. W in FC 
was a transformation matrix, which was also a linear correlation matrix. Secondly, sig-
moid activation was performed on the result α of the dot product operation to obtain 
the class probability score β of each word. Each element in β represented a class prob-
ability that provided information conditioned on α, and words with outstanding contri-
butions were given a larger class probability, and vice versa, a smaller class probability. 
Then, β went through the Permute layer, and the RepeatVector layer performed dimen-
sion transformation to obtain a tensor of the same dimension as Y, and multiplied it ele-
ment-wise with Y. Finally, the residual connection obtained the "reset" textual abstract 
feature representation.

Taxi flow fusion forecast network

A schematic diagram of the entire network structure is shown in Fig. 3. It can be seen 
intuitively from the figure that the entire prediction network is a dual-input single-out-
put type. The output is the predicted result under this input. Inputs include unstructured 

Fig. 2  Working mechanism of the TGTR​



Page 7 of 16Yu et al. Journal of Big Data            (2022) 9:83 	

data (text descriptions of events) and structured data (time series, weather information, 
and additional event information). The output is the predicted result under this input.

Specifically, the text data was represented in the C module. The text feature repre-
sentation learned by each SConv1D block corresponds to the early feature represen-
tation, mid-term feature representation, and late feature representation of the text, 
respectively. They detected specific patterns in text at different levels of abstraction. 
TGTR established an interaction between unstructured textual data and data such as 
structured tense. TGTR was applied to learn text feature representations at an early 
stage and obtained "reset" textual abstract feature representations. Then, the final text 
representation was obtained through mid- and late-stage pattern learning.

In module E, two parts of latent abstract features from module C and module D 
were concatenated to obtain a joint feature representation tensor. Finally, the taxi 
traffic demand prediction in the event area was performed by fusing joint features at 
the FC layer.

Experiments
Data description

The base dataset is a large-scale public dataset of 110 million taxi trips from New 
York. This dataset was published by the NYC Taxi and Limousine Commission (TLC) 
on its website, which published individual taxi records within the city of New York 
from January 2009 to June 2016 [37]. On the basis of this data, a range of about 500 m 
near Terminal 5 [38] in the center of Manhattan was selected as the research object, 
and the taxi trip data in this range was explored.

The textual data for the experiment came from information about cyber incidents 
in the area around Terminal 5. 315 event information in similar time periods were 
recorded, including event date, specific time, title and corresponding text description. 
Part of the event information is shown in Table 1.

Fig. 3  FFN (SConv1D + earlyTGTR) schematic diagram and network structure
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In addition, events that occurred in different time periods had different degrees of 
influence on the demand for taxis the next day. For example, an unexpected event in the 
middle of the night may lead to a surge in demand for taxis the next day, so depending 
on the time period of the event, an additional event feature was added, that is, whether 
there was an event in that time period.

At the same time, considering the influence of weather information on taxi travel in 
real life, factors such as rain, snow, temperature, etc. will change people’s travel mode to 
a certain extent, so these features contain some weather characteristics. Weather data 
came from measurements at New York’s Central Park Weather Station. As shown in 
Table 2, partial weather information for 10 consecutive days from January 10, 2013 to 
January 19, 2013 was displayed.

Hyperparameters and loss function

The training of the entire end-to-end neural network is done in the Keras environment. The 
mean squared error (MSE) was chosen as the training loss function, defined by Eq. (1). The 
RMSprop (lr = 0.001, roh = 0.9, epsilon = 1e-08) optimizer was used. Backpropagation was 
performed on a mini-batch of size 64 to train the fusion prediction network. Each train-
ing was performed for 700 iterations and the optimal weights of the validation set during 

Table 1  Event information acquired from internet

Title Description

Walk the Moon at Terminal 5 on 4/14 WALK THE MOON at Terminal 5 on 4/14 (Sold Out) All Ages

Local Natives & with Charlotte Day Wilson Charity: Local Natives believe in equality, safety, and dignity of all 
people. They have partnered with Plus 1 so that $1 from every ticket 
is going to support gender-based violence intervention…

Ringling Bros. Circus Witness the Greatest Show On Earth one last time! Be a part of the 
last curtain call when Ringling Bros. and Barnum & Bailey presents 
Out Of This World, coming to Barclays Center…

Arcade Fire Due to overwhelming demand, Grammy Award-winning band, 
Arcade Fire, announced additional dates for the highly-anticipated 
REFLEKTOR TOUR in support of its international #1 album…

2014 NBA Playoffs—Nets vs. Heat -Game 3 Its Game 3 of the second round of the NBA Playoffs, Saturday, May 
10 when the Brooklyn Nets take on the Miami Heat at Barclays 
Center…

Table 2  Part of the weather data for 10 consecutive days

Date Min-temp(F) Max-temp(F) Rain-drizzle Precipitation(mm) Snow-ice

2013/1/10 39.9 48 0 0 0

2013/1/11 37 44.1 1 0 0

2013/1/12 42.1 46.9 1 0.57 0

2013/1/13 43 48.9 0 0.02 0

2013/1/14 48 72 0 0 0

2013/1/15 35.1 50 1 0.09 0

2013/1/16 32 37.9 1 0.63 1

2013/1/17 36 43 0 0.09 0

2013/1/18 25 39.9 0 0 0

2013/1/19 28 51.1 0 0 0
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the iterations were retained. In addition, some locations on the network also added drop-
out (Dropout ratio = 0.5). L2 regularization (L2 = 0.05) was added to the nonlinear FC layer. 
These works were mainly aimed at reducing overfitting.

In the formula, ym represents true value of the samples in the training set; ⌢ym represents 
the predicted value of the samples in the training set; M is the number of samples in the 
training set.

Performance metrics

In order to evaluate the performance of various models, the regression error statistics of 
the test set were performed from the following perspectives, including mean absolute error 
(MAE), relative absolute error (RAE), root mean square error (RMAE), relative root square 
error (RRSE), mean absolute percentage error (MAPE) and judgment coefficient (R2). The 
specific formula is shown in Table 3.

Among them, yn denotes the true value of samples in testing dataset; ⌢yn denotes the pre-
dicted value of samples in testing dataset; yn denotes the mean of the true values of samples 
in testing dataset; N denotes the number of samples in testing dataset.

Implementation

Time series detrending

Detrending the nonlinear non-stationary data is an important step in data analysis. There 
is a clear cyclical trend in traffic flow prediction, which is caused by daily habitual behav-
ior. Helps improve forecasting performance by eliminating repetitive trends contained in 
the data. First, the historical average for each day of the week was calculated based on his-
torical data, as in Eq. 2. Historical averages represented a fixed cyclical trend. Then, the data 
was centered by the historical mean, and then scaled by the standard deviation, as shown 
in Eq.  3. The goal of a predictive model was to learn to predict residuals resulting from 
detrending.

(1)loss(MSE) =
1

M

M∑

m=1

(ym −
⌢
ym)

2

(2)xi =
1

D

D∑

d=1

xi

Table 3  Evaluation index

MAE = 1

N

N∑
n=1

∣∣∣yn −
⌢
yn

∣∣∣
RAE =

N∑
n=1

∣∣∣∣
⌢
y n−yn

∣∣∣∣
N∑

n=1

|yn−yn|

RMSE =

√
1

N

N∑
n=1

(
yn −

⌢
yn

)2

RRSE =

√
N∑

n=1

(
yn−

⌢
y n

)2

N∑
n=1

(yn−yn)
2

MAPE = 100

N

N∑
n=1

∣∣∣∣
yn−

⌢
y n

yn

∣∣∣∣
R2 = 1−

N∑
n=1

(
yn−

⌢
y n

)2

N∑
n=1

(yn−yn)
2



Page 10 of 16Yu et al. Journal of Big Data            (2022) 9:83 

In the formula, i ∈ [0, 6][0, 6] , 0 to 6 represent Monday to Sunday; D represents the 
number of samples of i in the historical data; σ represents the overall standard deviation.

Experimental design

In order to evaluate the effects of several key components of FFN, "ablation" experiments 
were designed to quantify the influence of different components on the fusion predic-
tion results. Key components of FFN were replaced or removed while keeping other 
parameters constant. Secondly, in order to quantify the degree of influence of different 
data sources on the prediction results, "incremental" studies were carried out, that is, 
adding different data sources in sequence to the input of the prediction network. Finally, 
the following sets of models were given.

(1)	 TGTR was embedded in the early text features, mid-term text features and late text 
features of the fusion prediction network, respectively, and other network struc-
tures remained unchanged. FFN(SConv1D + earlyTGTR), FFN(SConv1D + mid-
dleTGTR) and FFN(SConv1D + lateTGTR) were designed to explore the effect of 
TGTR on textual information at different stages.

(2)	 FFN (SConv1D + none) was a sub-network that removed TGTR and kept other 
structures unchanged, where none represented that TGTR was not added. This was 
done to assess the effects of TGTR components.

(3)	 FFN(Conv1D + none) replaced the SConv1D layer with a regular one-dimensional 
convolutional layer (Conv1D).

(4)	 The advanced model mentioned in [19].
(5)	 The influence of different information sources on the prediction results was evalu-

ated in the FFN (SConv1D + earlyTGTR) network. L represents time series infor-
mation, W represents weather feature information, E represents information about 
the existence of an event, and T represents text information describing the event.

(6)	 FFN was compared with three popular time series forecasting methods, support 
vector regression (SVR), gaussian process (GP) regression, and autoregressive inte-
grated moving average (ARIMA).

Performance evaluation and comparison

The processed data was divided into three parts: training set, validation set and test set. 
The data of 2013 and 2014 is the training set. The data in 2015 is the validation set. The 
remaining data from 2016 was used for testing. The corresponding sample numbers are 
730, 365, and 170, respectively. The test results of different methods on the test dataset 
are shown in Table 4.

From the perspective of various evaluation indicators, the FFN (SConv1D + earlyT-
GTR) network has the best performance. Among all methods, the FFN (SConv1D + ear-
lyTGTR) network has the lowest MAE with relatively few training parameters. It can be 
seen that the TGTR application has the best prediction performance in the early text 
representation. This is mainly due to the guidance of data such as temporality, which 

(3)x′i =
xi − xi

σ
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enables the model to filter secondary features well and capture the most salient text rep-
resentations at an early stage. In addition, the effect of TGTR applied in the mid-late text 
representation is not as good as that in the early text representation, and the prediction 
results are gradually worse. By comparing the results of FFN (SConv1D + lateTGTR) 
and FFN (SConv1D + none), we find that TGTR has a disturbing effect on the later text 
representation.

As can be seen from Table  4, in the absence of TGTR components, SConv1D has 
great advantages over conventional Conve1D. Compared with the Conve1D network, 
the prediction performance of this model is improved, and the MAE is reduced from 
154.4 to 151.6. Furthermore, the evaluation results of FFN (SConv1D + earlyTGTR) 
outperform other state-of-the-art prediction methods. Compared with the DL-LSTM 
model, the optimal model FFN (SConv1D + earlyTGTR) proposed in this paper reduces 
the MAE by 12.1, and the prediction performance is significantly improved. Although 
the MAE of FFN (SConv1D + earlyTGTR) is only 3.9 lower than that of the DL-FC 
model, the number of training parameters is reduced by 40,212. The performance 
of FFN(SConv1D + earlyTGTR) on the test set does not lead to insufficient model fit-
ting effect due to the reduction of training parameters. This is the advantage of FFN 
(SConv1D + earlyTGTR) over the DL-FC model.

In order to evaluate the contribution of different information sources, different infor-
mation sources were sequentially added to the network. The results are shown in Table 5. 
Each time a modal information is added, the prediction performance of the model is 
improved to varying degrees, especially after adding event information, the MAE of the 
model reaches 148.7. The experimental results show that compared with the prediction 
network that only considers traffic data, the fusion prediction network reduces MAE by 
26.5%, RMSE decreases by 11.6%, and R2 increases by 26.4%. The textual information 

Table 4  Comparison of the performance of different methods on the test data set

Method(L + W + E + T) MAE RAE
(× 100)

RMSE RRSE
(× 100)

MAPE R2
(× 100)

Trainable params

FFN(SConv1D + earlyTGTR) 148.7 63.0 	 227.7 67.8 15.5 54.1 198101

FFN(SConv1D + middleTGTR) 150.0 63.5 228.6 68.0 15.7 53.7 197641

FFN(SConv1D + lateTGTR) 152.1 64.4 231.0 68.7 16.0 52.8 197641

FFN(SConv1D + none) 151.6 64.2 229.3 68.2 15.9 53.4 196911

FFN(Conv1D + none) 154.5 65.4 230.2 68.5 16.4 53.1 205821

DL-LSTM [19] 160.8 – 233.5 – 16.7 51.7 –

DL-FC [19] 152.6 64.6 232.1 69.1 16.1 52.3 238313

Table 5  TFFN (SConv1D + earlyTGT) performance on the test set under different information 
sources

FFN(SConv1D + earlyTGTR) MAE RMSE R2(× 100)

L 188.1 254.2 42.8

L + W 184.8 252.9 43.4

L + W + E 168.9 242.9 47.8

L + W + E + T 148.7 227.7 54.1
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of events in different modal information sources contributed the most to the improved 
model. These results clearly highlight the importance of fusing time-series data with tex-
tual informative data, especially for the taxi traffic demand forecasting problem in the 
event region considered in this paper.

Figure  4 shows the prediction curves of network test samples under different input 
information. As can be seen from the figure, considering the textual information 
describing the event in the prediction network can improve the prediction accuracy. 
This is consistent with real scenarios, as textual information often contains contextual 
interpretations of the multimodalities observed in temporal data. For example, if a sta-
dium is preparing for a football game, taxi traffic in the area may be much higher than 
usual. The fusion prediction network considers the impact of special events and dynami-
cally predicts traffic demand.

Furthermore, FFN (SConv1D + earlyTGTR) was compared with SVR and GP regres-
sion (Fig. 5), two popular time series forecasting methods. The SVR method used two 
kinds of kernel functions, linear kernel and radial basis function (RBF). The hyperpa-
rameters of SVR performed an exhaustive search using all possible combinations of 
the set {0.001, 0.01, 0.1, 1.0, 10, 100}. The randomly selected hyperparameters were 
brought into the network for training and testing, and the optimal model obtained by 
the search was saved with the optimal accuracy of the validation set as the indicator, 
and then the corresponding hyperparameters were returned. GP regression used the 
RBF kernel function. The corresponding hyperparameters of SVR and GP are shown 
in Table 6.

Finally, the method in this paper was compared with the ARIMA model. In ARIMA 
(p, d, q), AR is "autoregression", p is the number of autoregressive items; MA is "mov-
ing average", q is the number of moving average items; d is the number of differences 
made to make it a stationary series (order). This paper sets the option set of ARIMA 
hyperparameters as follows: p ∈ {0, 1, 2, 3, 4}, q ∈ {0, 1, 2, 3, 4}, d ∈ {0, 1, 2}. The minimum 
bayesian information criterion (BIC) is used as the evaluation index to select the optimal 
hyperparameters of the ARIMA model, and the results are shown in Fig. 6.

As can be seen from the figure, under the training set, the BIC of the ARIMA (p = 3, 
d = 1, q = 1) model is the lowest. Test results of ARIMA (p = 3, d = 1, q = 1) model: 

Fig. 4  Prediction results of the FFN (SCon1D + earlyTGT) model on the test set with different information 
sources
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Fig. 5  Incremental experiments with different methods

Table 6  Hyperparameter settings

Method Kernel Hyperparameters

SVR Linear C = 100

RBF C = 10
gamma = 0.01

GP RBF length_scale = 1

length_scale_
bounds = (0.01, 
1000)

Fig. 6  BIC of ARIMA model with different hyperparameters a d = 0; b d = 1; c d = 3
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MAE is 167.2, RMSE is 241.0, and R2 is 0.486. Even though the ARIMA model is 
carefully tuned, its MAE is still 18.5 higher than the best results of our FFN, and its 
RMSE is 13.3 higher. It can be seen that the method proposed in this paper has strong 
competitiveness. Meanwhile, experimental results show that considering the impact 
of event information is very important for predicting taxi traffic near special event 
areas.

Conclusion
This paper focused on the impact of event information on traffic flow demand, and pro-
posed FFN combining special event information and traffic flow information. The light-
weight SConv1D reduced the learning parameters of the model by performing depth 
convolution and point-by-point convolution on the three-dimensional floating-point 
tensors of the input text respectively; temporal and other data-driven networks were 
used to obtain the class probability score of word features, so as to "reset" the represen-
tation of text abstract features and apply it to each stages of text coding; a simple and 
easy to implement splicing and fusion strategy was used to fuse multimodal features. 
Extensive experimental results show that the information source that has the greatest 
impact on the prediction performance of different methods is the information about 
events; by using the textual information of regional events, the proposed deep network 
framework significantly outperforms other popular time series forecasting methods that 
do not consider textual information modeling.

In future work, we aim to explore how to use advanced deep learning techniques to 
allow models to better understand the various types of information describing events; 
develop a city-wide spatiotemporal model to account for all event information pairs 
occurring across the city The impact of traffic forecasts.
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