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Nigeria fine-tuned deep Convolutional Neural Networks (CNNs) for automatic faulty com-

ponent inspection and inventory in an Electric power transmission network (EPTN).
This study investigated the capability of the Single Shot Multibox Detector (SSD), a
one-stage object detection model on the electric transmission power line imagery

to localize, detect and classify faults. Our proposed neural network model is a CNN
based on a multiscale layer feature pyramid network (FPN) using aerial image patches
and ground truth to localise and detect faults through a one-phase procedure. The
SSD Rest50 architecture variation performed the best with a mean Average Precision
(mAP) of 89.61%. All the developed SSD-based models achieve a high precision rate
and low recall rate in detecting faulty components, thus achieving acceptable balance
levels of F1-score and representation. We have established in this paper that com-
bined use of UAV imagery and computer vision presents a low-cost method for easy
and timely electricity asset inventory, especially in developing countries. This study
also provides the guide to various considerations when adopting this technology in
terms of the choice of deep learning architecture, adequate training samples over
multiple fault characteristics, effects of data augmentation, and balancing of intra-class
heterogeneity.
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Introduction

Recently, Nigeria’s development agenda has been anchored in a vision that identifies
energy as one of the vital infrastructural enablers for development. With the realisation
that for them to successively make a significant positive transition in development, there
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must be an efficient, reliable, vast, and environment-friendly energy source, transmis-
sion, and distribution. This means that majority of the burden of energy demand is on
power companies to provide and transmit quality energy services to consumers. Against
this backdrop, investors in their transmission lines need accurate, cost and time-efficient
methods to carry out existing asset inventory of the transmission lines for well-informed
decisions and investment. In view of this, our hypothesis is that deep learning on high-
resolution Aerial images should provide a cost and time-effective solution for power line
assets inventory and studies, study fields.

Regular inspection of electric power lines has become an essential concern because
virtually all human activities, infrastructure services, and businesses will collapse with-
out electricity [1]. Generally, in many developing countries, the available electricity is
unreliably characterised by households and businesses experiencing long and frequent
power outages resulting from electricity demand exceeding available electricity supply
caused by load shedding and/or technical failures [2, 3]. For example, Electric Utilities
in Nigeria claimed that: some sections of the grid are outdated with inadequate redun-
dancies; regular vandalization of the lines associated with a low level of surveillance and
security on all electrical infrastructure, and the serious lack of required modern technol-
ogies for communication and monitoring is causing more and more power outages [4,
5]. To tackle these challenges, there are different approaches that have been developed
for fault detection on the power transmission lines. Among these methods is the use
of Machine Learning techniques on Very High Resolution (VHR) satellite imagery. This
method has proven to be more efficient and outperform manual inspection and tradi-
tional data analysis approaches for detecting faults in power transmission lines at large.

Remote sensing techniques have been very efficient in power line corrosion and
mechanical loss detection. Inspection of the electricity power transmission network
(EPTN) especially in remote areas using remote sensing techniques requires very high-
resolution images such as those obtained from aerial surveys, UAV images, and Lidar
point clouds data. Unmanned Aerial Vehicle (UAV) surveillance has become the state-
of-the-art in power line inspection for defects and damage [6]. Many studies have also
demonstrated the efficacy of high-resolution remote sensing techniques in power line
inspection and monitoring. For example, Xue et al. [7], utilized SAR imagery to measure
electricity towers’ damage caused by landslides. The use of high-resolution TerraSAR-
X imagery to track power line damages in natural disaster situations has also been dis-
cussed in [8-10].

Studies using optical remote sensing have focused on fault diagnosis for the differ-
ent EPTN components themselves because the ground sample data (GSD) is usually
less than the individual components’ size, especially for those caused by the adjoin-
ing environment. As a result, most power line inspection studies using optical remote
sensing are fixated on vegetation encroachment and minimum height and clearance
distance [11-13]. Apart from vegetation encroachment, a variety of papers addressed
automatic inspection of insulators’ condition. These techniques aimed to take images of
the insulators periodically and use automated classification methods to identify dam-
aged insulators. Reddy et al. [14], for example, used fixed cameras on poles. Jiang et al.
[15], using a photogrammetric method, addressed flashover faults—pollution-related
flashes affecting insulators. In the experiment, a sensing camera placed on a tripod was
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used. However, most remote optical sensing techniques are primarily restricted by the
atmosphere.

Despite extensive studies on powerline inspection and fault detection, the advantages
of using remote sensing in sub-Saharan Africa remain unseen due to the data unavail-
ability and peculiarity of the power line in this region. Many utility companies and
investors rely on poorly collected data from ground-based surveys, multispectral visible
colour images, and most recently video surveillance of transmission line fault inspection
and monitoring [16]. UAV monitoring offers high-spatial multispectral images that deal
with the limitation of other remote sensing methods because of the ability to capture
accurate images of transmissions components at closer proximity [17]. UAVs are able to
detect small-scale defects such as broken fittings and missing knobs and can be incor-
porated with other modes of remote sensing. In comparison to manual methods, with
limited resources and man-hours, inspecting and monitoring long transmission line cor-
ridors for potential faults and damages becomes almost impossible.

For cost and time-effectiveness, electricity infrastructure inspection, and fault diag-
nosis especially in transmission lines, the combination of UAV data and deep-learning
techniques is imperative [6]. The advent of deep learning, which uses not only spectral
information but also spatial, topological, spectral, and geometric properties of objects
in images, is at the forefront of these developments. Deep learning has demonstrated
potential promising advances in power line extraction and other study fields. Currently,
improved algorithms and multilayer networks such as Convolution Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and reinforcement learning have dem-
onstrated more outstanding performance than standard approaches, particularly in
power line identification, transmission components detection, as well as in, vegetation
encroachment prevention [18]. Conversely, the traditional approach for pattern recogni-
tion depends on the continuous engineering of parameters that are well built by humans.
Hence, making the manual extraction process inefficient, unfavourable, inadequate for
generalization necessities, and time-consuming. With deep learning algorithms, visual
perception to extract feature hierarchies and generalization ability is enhanced on sev-
eral levels [19]. These algorithms have demonstrated that conventional learning meth-
ods are sluggish and unreliable; they require substantial post-processing attempts to
differentiate between transmission infrastructure [20]. Succinctly, power transmission
network mapping and fault inspection require a more advanced adequate hybrid classi-
fier that is way beyond task-based approaches, promoting the improved performance of
visual recognition tasks and successfully adapts learning from multimodal data sensors

for object detection.

1. Taking all these considerations into account, the use of deep learning technologies,
together with the advantages of Unmanned Aerial Vehicles (UAVs), can play a fun-
damental role in relieving the current limitations of traditional power transmission
monitoring, which are mainly based on manual operations such as electricity pole
climbing, foot patrols, vehicle inspections, and field verification reports [21, 22].
Nevertheless, the operational applicability of Deep learning techniques on UAV sur-
veillance has not yet been addressed in the context of power infrastructure inspec-
tion in developing countries, which is precisely the gap that motivates this work. This
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paper explores the use of deep learning techniques for power line fault detection
and inspection from UAV imagery through the lens of a case study in Nigeria. The
major contributions of this paper are: the development of a single-phase deep learn-
ing model for power line faulty component detection and classification pipeline for a
series of faults (multiclass) that typically exists in power transmission components.
Based on the comprehensive review work in [18], very little research has been car-
ried out in this area with the context of helping investors in a developing country like
Nigeria for time and cost-effective EPTN inventor [18].

2. Exploring the feasibility of low-cost drone equipment to monitor electricity trans-
mission infrastructure for faulty-component detection.

3. Empirical and comparative analysis of hyperparameters in CNN backbone archi-
tectures consisting of more than one electricity power line component-fault type to
evaluate the effectiveness of our proposed approach.

Related work

Most widely used models in literature for fault detection in power line components pri-
marily involve clustering, mathematical-based techniques such as Hough transform,
Gabon filters, knowledge-based techniques, and traditional pattern recognition tech-
niques or low-level filters. For instance, in detecting broken transmission line spacers, a
Canny edge detector combined with Hough transform was used by Song et al. [23]. First,
a scan window was formed in the path of the conductor and during the convolution pro-
cess, if there are a candidate’s spacers, they are recognized in all sliding windows. Finally,
the shape configuration parameter is structured to decide whether the sensed spacer was
broken based on the measurement of linked parts. A study by Zhai et al. [24] exploited
a pattern descriptor (variable) using the Saliency Aggregating Faster Pixel-wise Image
(FPISA) for insulator extraction. Based on the colour channel in the Lab colour space,
the observed insulator’s flashover region was extracted. The system was tested using 100
flashover fault insulating images and obtained a detection rate of 92.7%. Utilising a simi-
lar concept, Zhai et al. [25] and Han et al. [26] detected the faults associated with the
missing cap of insulators based on saliency and adaptive morphology (S-AM), a combi-
nation of shape and pattern parameters. Concentrating on the merits of the preceding
investigations, while demonstrably great accuracies were acquired, especially for single
EPTN components; however, these approaches are cumbersome, time-consuming, and
the processing of the data necessitates a certain degree of competence. Additionally, the
methodology is insufficient for multi-class classification, individual location, and iden-
tification of faults, particularly in complicated natural environments, as is the case with
EPTN components.

Alternatively, drones are becoming more prevalent, and their adoption enabling
remote sensing is becoming increasingly desirable in places with technological lim-
its, owing to their low cost and rapid deployment in a variety of settings. UAVs can
be equipped with increasingly sophisticated sensors such as hyperspectral (HS) and
LiDAR to distinguish ETPN components from their associated faults, and the combina-
tion of these sensors has resulted in high accuracy. However, these sensors are typically
quite expensive, and data processing requires a certain amount of skill and computing
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capacity that is not always available. Recent advancements in drone technology and low-
cost sensors have cemented a critical role for UAV monitoring of EPTN components.
Furthermore, experts express that the most challenging type of faults to detect in power
transmission lines line are faults on EPTN components appearing as tiny aspect ratio in
the captured images, for instance, power line fitting such as missing pin, nut, bolts, and a
small degree of fault severity on some large components.

Since the majority of drones now include a standard high-resolution RGB camera, uti-
lising these cameras for minuscule EPTN fault identification is advantageous in places
where EPTN component overloading is an issue but funding for more advanced sen-
sors is not easily available, and maintenance is heavily required. To detect such faults,
aerial images are captured with the RGB cameras close to the exact components con-
taining the faults or the components (or faults) cropped from the original image manu-
ally [22], automatically, or via segmentation [27]. Fu et al. [28] implemented a dynamic
model for the missing pin type of faults. The fitting is a combination of multiple sections,
which include pin and nut. The haar-like attribute and Adaboost classifier was used to
detect each part of the fitting. The methodology involved first extracting the segmented
region and circles with LSD and Hough transform, respectively, to identify the missing
pin. The missing pin fault was finally obtained and then observed based on the distance
limit between the centre of the circle and the pin section. Other methods in particular
machine learning methods majorly Adaboost [28], and SVM [29] have been applied to
an abundance of imagery for the automatic identification and monitoring of the elec-
tric power transmission network (EPTN) component faults to augment and infer addi-
tional information in recent years. These techniques have contributed to the detection
of EPTN components faults with successful results. However, since they often include
additional feature engineering, they become less attractive, especially for the RGB drone
imagery dataset.

With the introduction of computer vision, the limitations of RGB cameras and tra-
ditional approaches to detecting and classifying EPTN faults are gradually being
addressed. One of the earliest works on fault detection using deep learning was detect-
ing surface discoloration due to flashover on an insulator using CNN classifier with
pre-trained AlexNet published by Zhao et al. [30]. The experiments achieved a score of
98.71% mean Average Precision (mAP) on 1000 samples. The proposed architecture out-
performed the conventional handcrafted approach but was limited to just insulator con-
dition inspection image classification, which demanded significant feature engineering.
Additionally, Faster R-CNN was presented by Liu et al. [31] to identify insulators with
missing caps. The system was tested for three different voltage transmission line levels
with 1000 training samples and 500 research samples prepared for each level. About 120
photographs (80 for training) were used to test the diagnosis of missing cap faults. The
study also highlights the possibility of overfitting due to the small dataset and employs
data augmentation to physically extend the dataset. To handle similar faults as in [31]
across multi-scale level drone imagery, Jiang et al. [32] developed a novel approach using
SSD as the meta-architecture for multi-level perception (low, mid, and high perception)
based on ensemble learning to extract the missing insulator fault from the image resolu-
tion of 1920 x 1080-pixel. The middle and high-level perception images are made via the
Region of Interests (ROIs) Union Extraction (RUE) image pre-processing. The proposed
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approach’s absolute precision and recall rates were 93.69% and 91.23% respectively on
the test image dataset with various perception levels containing missing cap insulator
problems. However, these papers considered the contextual characteristics of one type
of fault inspection that affect the insulator component across the transmission cor-
ridor neglecting other defects that coexist. In most cases, the features derived by such
methods may not adequately reflect the insulators, and these approaches may need the
imagery modified.

Generally, convolutional layers have been shown to reliably predict specific EPTN
component faults using more than just spectral indices. Deep learning successfully
incorporates additional criteria such as shape and texture (semantic representations)
to provide more accurate predictions about EPTN component faults. Nonetheless, one
particular issue in power line fault detection using deep learning CNN is data insuffi-
ciency. This is because the DL model is required to generalize the solution at the end of
the training. To achieve this, a robust and large amount of dataset is usually required. In
the previous papers to circumvent potential data shortages and expedite the creation of
a reliable predictive model, attempts were made to synthesize the images (e.g., in [33])
and data augmentation (e.g., in [31, 34]). Other researchers have examined the use of
transfer learning and few-shot learning to identify fault types. For instance, for lack of
sufficient training images, Bai et al. [35] utilized a transfer learning process using the
ImageNet data kit, which included a 1.2 million samples dataset. This model was then
trained, i.e., fine-tuned by the limited data set acquired containing the surface fault of
insulators based on the Spatial Pyramid Pooling networks (SPP-Net) with transfer learn-
ing approaches. This allowed the weight optimization to begin at the top layers (where
there is a different feature complexity from the original training data utilized) in the 3D
CNN of the SPP-Net adopted rather than for the whole model. The result showed the
better performance of SPP-Net architecture with transfer learning over the RGB imagery
in a short computation time. Although this model proved sufficient, the result was lim-
ited to a classification problem involving just the insulator fault.

In recent years, there have been few efforts to develop a deep learning approach, to
identify several power lines faults simultaneously. Typically, a two-step object detec-
tion technique is commonly utilized: first, to identify the component, and second, to
detect the fault in those components. In this light, Tao et al. [33] developed two separate
backbone models, Defect Detector Network (DDN) DDN and Insulator localizer Net-
work (ILN) based on the Visual Geometry Group (VGG) model and Residual Network
(ResNet) model respectively, on the domain knowledge of the EPTN component’s struc-
ture. To find a missing cap fault, a cascading architecture combining a custom-developed
ILN and a DDN model was utilized. The ILN identifies all the insulators in the aerial
image and then cuts the detected areas and feeds them into the DDN. A total of 900 reg-
ular images were collected from UAVs for this experiment and 60 defective images. Data
insufficiency was tackled by segmenting the image using the U-net algorithm to divide
the output of the ILN into insulator and background. The segmented insulator was then
combined with distinct images of different backgrounds to mimic real-life background
situations concerning insulator position. The result of this was then merged as input for
the DDN model. Finally, about 1956 pictures for ILN (1186 for training) and 1056 images
with missing caps (782 for training) were prepared. The DDN detection precision and
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recall are 0.91and 0.96. The resulting accuracy outperformed the direct use of existing
frameworks. However, most related studies do not consider a single-phase approach and
do not detect more than one fault simultaneously, but rather focus on video surveillance
and single class fault detection on the transmission lines. Exploring the performance of
different object detection deep learning models, the SSD meta-architecture utilized by
Jiang et al. [32] performed well considering the multiscale camera imagery perception
and model characteristics.

Despite the capacity to exploit additional object attributes for object detection and
classification prediction, [32] demonstrated how such approaches have limitations. They
propose additional research into CNN models and their performance in landscapes
with a variety of vegetation patterns, complex backgrounds, and barriers. The trade-
off for increasing the spatial resolution of UAV imagery is that the total region covered
for EPTN fault monitoring decreases. As drones fly lower to capture higher-resolution
images, the total area they can cover decreases. SSD was mentioned as a less laborious
and rarely used model of object identification that is capable of detecting individuals
within object classes. By extracting additional detail and using it for EPTN component
monitoring, more detail may be extracted and employed. Additionally, the produced
objects could be utilized to estimate the location of the major EPTN component defect
on the ground. Accurate categorization maps can be constructed by combining raw RGB
images with supplementary products such as elevation and Structure for Motion 3D
data.

Given that this project’s objective is to investigate the use of drone RGB imagery for
monitoring EPTN component defects, the recommended SSD model is appealing for a
variety of reasons. To begin, it has been demonstrated that multiple CNN models work
effectively in detecting EPTN components and single class faults. Most studies concen-
trate on classification methods that are applied to distinct components across multiple
landscapes. A study of multi-class fault detection is offered to detect numerous EPTN
component faults in a single image. SSD is one of the few one-phase models that sup-
ports object detection, which is distinct from classification in that individual items are
denoted clearly. This is advantageous for monitoring EPTN component faults because it
enables the generation of approximated counts.

Table 1 summarises the various features of some of the related works and their pros
and cons with respect to our study. Our major contribution is that we developed a multi-
class Electricity Transmission Line fault detection model. Existing literature as summa-
rized in Table 1 were mainly focused on mono class fault detection models except Zhao
et al. and Li et al. that extended theirs to two distinct faults classes. However, our model
was developed and trained to detect multi-classes of faults beyond just 2 classes. Also,
many of these existing models required rigorous and complex feature engineering which
is made very simple with our SSD model for scalability purposes.

Study area and dataset

The “Study area” section provides background into the study area chosen for this
research. The second section (“Datasets” section) describes the electricity transmission
line dataset generated for this study. Finally, the four types of electricity transmission

line faults considered, are described in “Taxonomy of faults” section.
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Study area

The study area is made up of four different transmission line corridors in Nigeria. Differ-
ent transmission line corridors were explored for feasibility in this study with the help of
power-line engineers and photographs from reconnaissance surveys. Six transmission
line corridors were investigated in total, and four corridors were selected after recon-
naissance by the ground truth team. This decision was made based on the sites’ usability
for field experiments and based on the spatial resolution of the acquired imagery. These
transmission corridors virtually have a connection with all the 36 states in Nigeria and
the Federal Capital Territory. Nigeria lies between latitudes 4° and 14° N, and longitudes
2° and 15° E. The Nigerian power transmission network called the Transmission Com-
pany of Nigeria (TCN) is responsible for the transmission of power in two phases, the
330-132 kV and the 132-33 kV through the transmission lines (otherwise referred to as
conductors) [36]. In general, all transmission corridors in Nigeria share a similar struc-
ture, their infrastructure is radial and thus causes inherent problems without redundan-
cies [37].

Datasets

The DJI Phantom (DJI FC330) fitted with high-resolution cameras was flown across the
four transmission corridors namely, Shiroro-Kaduna, Lagos, Abuja, and Enugu overhead
transmission lines to capture pylons, conductors, other components of power line/pylon
accessories (e.g., insulators, fittings, cross arms) as well as the surrounding features (e.g.,
vegetation) from varying angles. The imagery is in three spectral bands (visible RGB)
with high spatial resolution. The aerial survey was conducted from October 12, 2020, to
October 22, 2020. Thousands of large images tiles of the study area can be characterised
as high-resolution oblique RGB images of dimension 4000 x 3000 pixels (72 dpi). The
mean pixel sensor resolution is 0.00124 m. Generally, within the images, the most prom-
inent objects are located and systematically distributed transmission conductors and
pylons with dirt roads, small patches of natural forest, and grasslands. We worked with
the Nigerian Transmission Company for this drone mission. Also, the dataset collection
was acquired in such a way that the different angle, distance, and depth adds to the dis-
tinctiveness, volume, and variety of the ‘Felect’ dataset. Although each inspection trans-
mission network location has its own photographic identity, the photographs all have a
comparable original pixel size of 4000 x 3000 pixels. Moreover, since the natural images
that contain all the transmission components’ faults are scarce, we create simulated
insulator missing faults images as a key step under the supervision of a power expert.
The simulated transmission components’ faults samples were achieved using Photoshop
software since a large amount of the fault taxonomy in aerial images is scarce. We next
develop a novel transmission component faults dataset, which is referred to as ‘Felect’ in
this study, and analyze it. The acquired images were explored for viability through visual
inspection. Blurred images, noisy images, and those with obstructions were discarded
during the visual inspection of the images and data annotation.

Taxonomy of faults
The main purpose of this process is to classify the faults found in the transmission
components. Each transmission line component like pylons, conductors, and pylon
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accessories or fittings (e.g., insulators, dampers, and fixtures), has different and unique
faults.

Transmission line pylons are used to extend the conductors over long distances, sup-
porting lightning safety cables and other transmission elements. They ensure the proper
electrical transmission process of the other components by preserving the original
design positioning and providing sufficient grounding against adjoining objects. Insula-
tors are critical elements in a transmission line as they protect conductors by allowing
lines to retain their expected electrical insulation strength [38]. As seen in Fig. 2, the
insulator has a repetitive, stacked cap structure. The colour, size, and string numbers of
the insulators vary based on the transmission capacity and manufacturing design (e.g.,
single string and double strings). The pylon accessories, also called fittings, are the con-
nectors of major components or elements seen in the electricity transmission lines. They
mainly serve as support, inhibitors, connectors to the other transmission components.
These include conductor clamps, dampers, splicing fitting, protective fittings, and guy
wire fittings.

Consequently, most of these individual components have many different types of
faults. For this research, the defects were divided taxonomically into four categories:
missing insulator, broken insulator, rusty clamp, and broken dampers according to the
contents of the captured aerial photographs. The detailed fault taxonomy discussed in
this study is as follow:

i. Missing insulator: these are glass insulators with a missing insulator cap (plate); see
Fig. 1.

Fig. 1 Missing glass insulator faults

Fig. 2 Broken insulator faults prominent with the porcelain or composite plate type insulator
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ii. Broken insulator: this applies to those insulators that are made of porcelain or
composite polymer plate or cap materials. In this case, the plate is incompletely
destroyed by pressure exerted by external forces such as weather, especially thun-
der-strike and thaw (Fig. 2).

ili. Rusty clamp: the conductor clamp (strain or suspension clamp) helps to hold all
components, especially the insulator, to the tower architecture based on its design.
A faulty clamp can lead to the insulator’s total malfunction, hence leading to trans-
mission collapse (Fig. 3).

iv. Broken fitting: broken fittings such as shown below in Fig. 4 where the vibration
damper is broken could cause conductor fatigue and strand breakage.

Methodology

This section outlines the approaches and considerations for developing the predictive
model for our case study transmission line fault detection from high-resolution imagery.
This section also provides the algorithm description and architecture workflow of the
single-shot detection models developed and designed for this study.

The proposed method is designed to detect four-class EPTN faults in a complex
aerial imagery. In order to achieve a multi-level perception taking account, the
small-scale problem and the depth of the convolutional neural network, the Single
shot detector with FPN architecture was adapted for this purpose. The Single shot

Fig. 3 Rusty strain (a) and suspension (b) clamp

Fig. 4 Broken fitting (vibration dampers)
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detector with FPN architecture aimed to identify electric power transmission net-
work faults based on an RGB drone imagery. The model analyzed the preprocessed
images together with its corresponding annotated ground truth layer to categorize
and detect the EPTN datasets into one of the four fault types: missing knob, miss-
ing insulator, broken insulator and rusty clamp. The output detection is a probable
detected EPTN components’ faults with an associated loss values and prediction
error. The model presents a multi-scale pyramidal space network in combination with
spatially informed aerial inputs to produce the detections. The development workflow
and algorithm from data preparation to fault detection are described in Fig. 5 and
Table 2 below.

Figure 5 describes the workflow to build the model to detect faults during EPTN
inspection. First, the input RGB image which is subsequently processed are used to gen-
erate the input dataset layers. At the same time, a ground truth bounding box is cre-
ated, in which the various EPTN component faults are identified in the images at pixel
level. Both the preprocessed EPTN datasets and the annotated bounding box are split
into training, validation, and test datasets. The SSD-FPN model uses the training dataset
as its input. The model (see “Network training” section) uses the created bounding box
to forecast if the current image frame contains a defective EPTN component in these
terms. At the same time, utilizing higher level semantic visual representations based on
contours extraction and subsequent size filtering, the bounding box and input image
are utilized to extract the Region Of Interest (ROI) of every fault region in the image.
This study selected three predefined backbone architectures. The three models were put
to test to see which architecture best generalizes, identifies, and detects EPTN compo-
nent failures, as well as to see how the spatially informed input affected the results. The
training and inference output is a distribution over the model coefficients that is then
engineered to determine the position of possible detections for each fault class for a par-
ticular processed image frame. The predictions are summed up to determine the final
detection and performance metrics (precision, recall and F1-score). The feature pyrami-
dal space is an approach designed to enhance the recall, multi-level perception, and

theoretical
framework
v model
" Geolocatedimages ' figuration (config)
/ C 1
o i ground truth S 9
/ UAV Imagery data
A (132kVEPTN) y
2 v
data PISpOcessNg extracted training,
mﬁ,@ validation and test / Training s
image patches via »/ image N
digital image / / Implementation
. [__patches  /
i processing p
Lo oG / validation
»/  image > experimental
/ patches / Inferencing and Tuning

data labelling

Y
image
transformation

Fig. 5 Methodology overview

P
/ testimage

» /
patches 7

Output

Accuracy Assessment

Page 13 of 34



Maduako et al. Journal of Big Data (2022) 9:81 Page 14 of 34

Table 2 Algorithmic workflow for the model development

Input: The image set, I,.g), (current RGB image frame), Ipounaing pox (ground truth annotation of actual components’
fault types), model (SSD model).
Output: Identification of feature vectors consisting of 4 classes of all EPTN fault types.
Transmission Inspection folder: count of total number of each fault type captured from the different transmission
lines’ components.
1. Ground truth collection and UAV data collection
2. Data processing of Ig; to extract input images of size 600 x 600
For each image, the following step are performed
Lrgy = hizary + azwy
Loy = Fsimutation (I13260)
Lizopy = split Iz to tiles of size 600 * 600
Lysky = resizegoosgo0 and pad (Izziy)
Merge both I3,y + I35y for data labelling
Image annotation to obtain Ipounding box
3. Splitting the preprocessed images into train (/,-), validation (I,,,) and test images (I, ) patches.
4. Initialization of variables: assign zero to variables i, j of the SSD network

5. while (i < transmission inspection folder) do /Read all the split TF record-oriented binary data and I,unding box

6. compute different multiscale output feature map sets from i by using the different backbone architectures.
7. while (j < feature map) do //Read and extract each feature layer and each position in it

8. divide j into equal parts using default grid to M x M

9. upsample j using the factor n using the feature pyramidal scale space

10. compute default boxes for j and generate prior /anchor box using listaspect ratio

11. compute positive and negative sample of EPTN fault’s location

12. compute the confidence value for EPTN_fault_class

13. compute coordinates of the detected bounding boxes for the EPTN_fault_class pairs using NMS
14. pick the Iounaing box With the biggest probability and remove all other having IoU > threshold
15. combine upsample with corresponding subsample and input images

16. concatenate EPTN_fault_class and I,unging box Prediction for multiple scale.

17. move to next feature map layer for EPTN dataset record increase the value by 1

18. end

19. move to the next TF data representing the image in the transmission folder increase the value by 1

20. end

21. Experimental Inferencing and Tuning on I,q and lyounding box 0f validation image

22. Using the Predictive model on the test image patches, I,

overcome small-scale problem, which will be detailed later. The model implementation
procedure is captured in an algorithmic workflow described in Table 2 below.

Convolutional neural networks

Convolutional Neural Networks (CNNs), which are specialized neural networks
developed to exploit the two-dimensional nature of images, have in recent years
advanced deep learning tasks (high-level vision) such as image classification, object
detection, and image segmentation, as well as low-level vision tasks such as edge
detection [39]. The deep learning task (deep convNet) was first developed for image
classification problems based on the performance of convolution layers to recognize
edges, patterns, context, and shapes resulting in a convolution feature map having
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spatial dimensions smaller and deeper than the original [40]. The progenitor of image
classification architecture otherwise known as feature extractor in object detection
problems is AlexNet with an 8-layer CNN, i.e., 5 convolutional layers + 3 fully con-
nected layers developed by Krizhevsky et al. [41] in Imagenet challenge of 2012. Many
improvements have been made to the architecture of Krizhevsky et al. [41] over the
years. These include using a narrower receptive window and increasing the network
depth.

Similarly, from the 2014 ImageNet contest, VGGNet metamorphosed intending to
improve the work developed by Krizhevsky et al. [41]. This CNN architecture took first
place in the localisation task and second place in the classification task. VGGNet’s break-
through is the mixture of kernel filters (3 x 3 filters) and deep neural networks (16—19
layers). The authors believed that 3 x 3 convolution layers have the same efficient recep-
tive area as the 7 x 7 convolution layer, however, VGGNet’s architecture is wider, with
larger non-linearities, and fewer parameters to update [42]. This solidifies the concept
that the best way to maximize the performance of CNNs is by increasing the depth and
width of the CNNs.

The complexity of image classification problems increasingly calls for larger CNNs.
However, deep CNNs with several layers can be difficult to train because of the prob-
lem of vanishing and exploding gradients. To handle this problem, the residual network
learning called ResNet gained traction. Residual networks were built with shortcuts to
whole networks inspired by VGG networks by the subject of skipping [43]. To dissociate
with the concept of increasing depth when creating CNN architecture, ResNet proposed
a shallower network using shortcut connections, i.e., directly connecting the early layer’s
input to a later layer. The significant ability to train very deep CNNs in 50, 101, and 152
layers with great successful connections are attributed to the regular cut-off connection
(skipping) among the Deep CNN blocks [43].

The general tendency for network speeds has been to go deeper and more complex.
This results in extended preparation and higher computing costs [44]. The aim of mak-
ing low-latency models for mobile and embedded devices led Howard and Wang [45]
to develop a lightweight deep neural network model referred to as Mobile networks
(MobileNets). MobileNets and their derivatives were implemented to substitute a much
deeper network constrained by the speed in achieving satisfactory output and real-time
applications. This design’s idea is that the regular neural network convolution layer is
broken down into two filters, depth-wise convolution, and pointwise convolution [45].
The usual convolutional filter is more computationally complicated than depth-wise and
pointwise convolutions. To achieve this model implementation, each channel is con-
volved with its kernel, called a depthwise convolution. Next, the pointwise (1 x 1) convo-
lution is processed to abstract and integrate the individual intermediate output from the
depth-wise convolution into a single feature layer.

Inspired by the success of CNNs in image classification and the need to adapt CNNs
for more complex tasks other than classification problems, the object detection approach
was conceived, which comprises the classification of objects and finding objects of inter-
est positions in the image via regression. In line with this thought, the Faster R-CNN
was developed utilizing a region-based CNN. Faster R-CNN performs object detec-
tion using two major modules: a Regional Proposal Network (RPN) proposing regions,
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and a Region-CNN (R-CNN) detector classifying regions and refining boundary boxes.
The model involves first the use of a base network, i.e.,, CNN architecture pretrained for
classification to generate the necessary activation feature map [46]. Then, the extracted
feature maps are passed through the RPN to generate an object proposal. Each object
proposal from the RPN, is then applied in the network by overlapping them over the
existing convolutional feature map. This extracts various fixed feature maps of the field
of interest for each proposal. The final Region-based CNNs (R-CNN) incorporate the
preceding output with class details based on the region’s proposal. Using the object pro-
posals extracted via RPN and the extracted features for any one of the proposals (via
ROI pooling), a final class and object localisation is achieved [46]. R-CNN is a model
which attempts to simulate the final phases of CNN classification where a flattened layer
is applied to generate a score for each conceivable object form [34]. R-CNN has two
separate objectives: classify the proposal and modify the bounding box for the proposal
according to the predicted class. Although faster R-CNN is extremely reliable, it is very
slow.

In the same vein, the Region-based Fully Convolutional Network (R-FCN) was devel-
oped by Dai et al. [47] to tackle the shortcomings of the initially designed Faster R-CNN
frameworks. Instead of using an inefficient sub-network for each region hundreds of
times, R-FCN adopts an entirely convolutional architecture over the whole image. In a
way that allows network convolutions to carry out one calculation in detail and accu-
rately, the R-FCN provides new location-sensitive scoring maps. Also, the issue between
translation invariance and translation difference in recognising objects is addressed
more effectively. Therefore, R-FCN integrates feature maps and applies convolution to
construct position-sensitive score maps, which enable convolutional networks to suc-
cessfully perform both classification and detection in a single evaluation. The position-
sensitive ROI pooling is used to produce a vote array of the output size for any ROI to
achieve a 2D score map of each class. For regression of the boundary box, another con-
volution filter is used to construct a 3D output map on the final feature maps. Then, the
ROI-pooling is used to measure a 2D array with each element that includes a boundary.
The sum of these elements is the final bounding box estimate [47]. RFCN presents new
position-invariant spatial scores which enable convolutional networks to successfully
perform both classification and detection in a single evaluation. R-FCN incorporating
these enhancements allows the framework to run faster about 2 to 20 times the speed
and have better accuracy; therefore, the frameworks are quick and precise but have com-
plicated pipelines.

To aid in real-time object detection maintaining a balance between time, speed, and
accuracy, many single-phase deep learning-based approaches, which detect multiple
objects in a single scan, have been proposed. The two most popular single-shot mod-
els are the “You Only Look Once’ (YOLO) and Single-shot detector (SSD) frameworks.
YOLO is a network that classifies bounding boxes in real-time [48]. To fulfil this, YOLO
combines area proposal and region classification to form a single network and does this
as the frame is simply regressing on box localization and related probabilities. YOLO
uses a grid that separates the input image. The grids evaluate the bounding box position,
assign confidence ratings, and conditional class probabilities. YOLO is incredibly fast
because it is single-threaded; however, YOLO lacks the precision seen in the two-phase
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frameworks such as R-FCN and Faster R-CNN previously discussed. The SSD is a bet-
ter approach as it is focused on a feed-forward-based convolution network generating
a fixed-size bounding box set and scores of object instances present in these boxes, and
a final detection process based on a Non-maximum Suppression (NMS) criterion [49].
The early network layers are constructed on a standard image-classification architecture
known as the base network (i.e., the classification layer without the flattened fully con-
nected layer).

SSD supersedes its counterpart, YOLO, by introducing several modifications: (i)
multi-feature maps from subsequent networking stage are predicted to allow multiscale
detection; (ii) object classes and offsets at bounding box locations are predicted using
regular sized small convolutional filter; and (iii) after deriving final feature map, different
predictors (classifiers) are used to identify objects at varying aspect ratios in the form of
feature pyramids [50]. SSDs comprise two main parts: a feature map extractor and the
convolution filter for object detection. SSD attaches additional convolutional layers (fea-
ture layers), i.e., multiscale features and default boxes, which causes a steady decrease
in size up to the end of the primary network [49]. Hence, the predictions of detected
objects are produced at multiple levels. Unlike YOLO, which uses a fully connected layer
to make predictions, the SSD adds a series of small convolutional filters to each added
feature layer (or an existing one in the base network optionally) and uses them in bound-
ary box positions to predict classes and offsets of objects [51]. These changes improve
both the speed and the accuracy of SSD over YOLO.

Undoubtedly, convolutional network tasks typically have a significant role in image
classification and object identification. One of how CNN achieves this high perfor-
mance is via the gradient-based learning process, more specifically loss computation and
the loss function [39, 52, 53]. This is believed to be the object’s real value, versus the
expected value. For instance, if the expected value ends up being 0.75, and the actual
value is 1, the loss would be 0.25. As iterations continue, the model will better approxi-
mate the object’s true value. In this respect, the optimisation process is employed so that
the prediction capacity can be maximized. Mathematically, this implies that for neural
networks, the loss is normally the sum of negative log probability and residual sum of
squares for the classification and regression part, respectively [54, 55]. After that, the key
goal is to mitigate the loss with respect to model parameters by modifying the weight
vector values using neural networks. For all object detection models, the loss function
is a combination of the localization (bounding box regression) and the confidence loss
(object classification).

Data pre-processing and labelling
Most of these individual components have many different types of faults. As this study
aims to identify common electrical faults in relation to common transmission compo-
nents, the dominant transmission components’ faults were established to be (1) miss-
ing insulator, (2) broken insulator, (3) rusty clamp, and (4) broken fittings. Although this
project undertakes to detect these four transmission components’ faults, the ability of
the model to also classify commonly occurring faults was investigated.

Ground truth collection consisted of field visits to the sites and convenient sampling
where there are no forest trees touching transmission networks were chosen and areas
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with obstruction were excluded. Identifying the most common transmission compo-
nents’ faults was determined and later analysed by power technicians and electrical engi-
neers working in the Transmission Company of Nigeria (TCN), who assisted to perform
a visual inspection of the aerial images to determine powerline components faults from
drone imagery. The labelling tool is used to label the locations of transmission compo-
nent faults, scanning through thousands of image tiles in order to establish the ground
truth of all faults recognized by the power specialist.

Further pre-processing of the dataset entailed a series of steps aimed at cleaning and
standardizing the raw data prior to modelling. Pre-processing is critical for increasing
the sensitivity of the model and validating any model that uses aerial imagery for trans-
mission line fault detection. The entire dataset is made up of 294 images. Due to the
small-scale problem identified in some research [56], the dataset (132 kV) was split into
about 817 tiles centred on at least one components’ fault of interest. For the other data-
set representing the other 33 kV transmission line, the non-destructive resize, i.e., resize
and pad approach, is applied to preserve the image aspect ratio to preserve the geomet-
ric and spatial information. Moreover, the split and resized RGB images were normal-
ized to the same size of 600 x 600 pixels following Huang et al. [50], combined to form
a total of 1027 ‘Felect’ dataset sample imagery. The data is divided into train, test, and
validation sets. It was assured that 17% of the original dataset was allocated for the test
dataset, and 83% of the dataset was reserved for training and validation. About 80% of
training was used as the training samples, while the remaining 20% was dedicated to val-
idation samples 2 displays the data slicing information. The drone captured the ‘Felect’
dataset with numerous characteristics, including diverse perspectives, sizes, occlusion,
background clutter, and intra-class variance.

Thus, a “stratified” data division is used, making the proportion of the faulty compo-
nents for the dataset similar to the number of images, as well as the average number of
components and the intraclass variation shared equally for samples with different types
of difficulties to be learnt and appropriately located and classified.

Data annotation was carried out to identify and label the training dataset for model
training. The bounding box approach and pixel-wise object segmentation are two
approaches that can be used to annotate the main object on the image manually [55]. To
annotate the faults, the ground truth annotation of actual components’ fault types was
generated as a rectangular bounding box was used. A tool called ‘Labellmg’ was used to
label the different component faults as shown in the taxonomy of faults. The details of
the image, bounding box, and object class, along with shared characteristics, were stored
as a VOC2007/extensible mark-up language (.xml) file. After annotating all the frames,
the whole split dataset containing image patches tensor and their output label were con-
verted into a TF record-oriented binary as depicted in Fig. 5 to help dataset initialization
and ease network architecture using the TFRecordWriter function.

Network training

As stated in “Data pre-processing and labelling” section, input patch images are first
translated to tensors (TF records) with a [600 x 600 x 3] form before feeding it into the
backbone architecture and are distributed by the action of the convolution layer to an
intermediate layer consisting of a convolutional activation map. The head of the network
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Fig. 7 Model architecture [59]

architecture (backbone network) typically follows the patch-based CNN architecture.
Therefore, image patches that contain either a single class of faults or a combination of
different components’ faults centred in the pixel of interest, also termed valid patches,
were extracted. For, backbone neural network ResNet50, MobileNet, or ResNetl101 are
utilized for the first part of the SSD network as the head to develop three models.

This head is made of CNN that detects smaller characteristics (patterns and corners),
and later layers detect higher characteristics successively. The image was resized first
into 640 px x 640 px x 3 (RGB) and then translated into a 38 x 38 x 512 characteristic
mapping through the backbone network passed to the Conv7 denoted as SSD 1 (auxil-
iary layer) in Fig. 6. In all experimentation cases, the input patch tensor was abstracted
into multi-level representations to classify the different faults after going through the
backbone architecture (Fig. 7: without a fully connected layer). As a deep neural net-
work, the backbone algorithm derives semantic significance from the image while main-
taining its spatial structure.

The series of auxiliary convolutional layers (SSD layers) introduced after the SSD
model’s backbone allows the extraction of features at different scales as the input feature
map decreases at each successive layer. This ensures the certainty of boundary variance
and class prediction of targets at various scales. For each decreasing successive auxiliary
layer (multi-scale feature maps), SSD networks grids the image and assign each grid with
the task of detecting objects (Fig. 8). After this, 3 x 3 convolution filters are applied to
each cell to make predictions. If no object appears, the context class is not considered,
and the location is ignored. Each cell in the grid will decide the location and shape of the

object inside it.
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Fig. 8 Inputimage patch and corresponding feature map generated by the feature extractor (backbone
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Fig. 9 The default boxes generation for one cell over the backbone network feature map

Immediately after gridding the auxiliary layer, i.e., feature map at multi-level, default
boxes are generated at each grid cell for each convolution layer level using a defined
scale value (Fig. 9).

This scale increases progressively towards the least spatial resolution feature map
level (SSD 5). Next, bounding boxes are generated via a process called default box
generation (prior). Default boundary boxes generated by feature maps are selected
explicitly, which are pre-computed, fixed-size boxes that closely fit the ground truth
boxes. The size of the default bounding boxes depends on the input size (W, H), scale
s_k of the kth layer, and aspect ratio, a_r € {> 1}. With the different experiment scale
value, s_k, and the aspect ratio, a_r € {1.0, 2.0, 0.5}, the default boxes sizes are built.
The size of default boxes (W_d, H_d) can be computed as:

Wa = Wsiv/ar,  Hg = Hsg /2y

To detect larger objects, SSD uses lower resolution layers such as the SSD 4 and
SSD 5 layers in Fig. 5. Each grid prediction composition includes a boundary box
defined by c_x, c_y, w, h, and four scores for each class, i.e., components faults, in
the prediction, with the highest-class score associated with the positioned default
bounding box. The class score, (c_1, [c) _2, c_3, c_4, c_background) corresponds

”» o«

to object classification labelled in this research as “broken insulator,” “missing insula-

” o«

tor,” “missing knob,” and “rusty clamp” Having these several forecasts at once and
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awarding class scores to each is referred to as the Multibox. There are four predic-
tions for every cell, regardless of the feature map’s spatial resolution, and an extra one
prediction to represent objectless.

To improve the SSD to detect small-scale faults type, the feature pyramid network
(FPN) training structure is used in conjunction with the most immediate output fea-
ture map activated from the base network architecture. This method also imbues
low-level CNN layers with more assertive semantic representation, such as layers
near its head to detect small-scale object labels. In particular, the default boxes are
chosen so that their Intersection over Union (IoU) is greater than 0.6.

The Sigmoid function is then performed on the output feature map generated by
the last CNN to obtain a class prediction score. Thereafter, the total loss is achieved
by combining the two losses obtained for backpropagation. The two new losses
measured by the network for each bounding box include:

a. The localisation loss is achieved using the weighted smooth-L, loss, calculated by
comparing the generated default boxes (prior) against GT labels.

N
Lloc(xr l,g) = Z Z xgsmoothu (llm —gj’”)

iePos meBox

~Cx

&= (g —az)yar i = (g7 - a)

h
g’ g
A,Wzlo ]7 ,Ahzlo L )

where [ refers to the predicted box, g meaning the ground-truth box, and d refers to
the default box, the 4 shape offsets m € {cx, cy, W, h} are defined as the center (cx, cy)
of the bounding box and its width (w) and height (%). Note that the predicted box and
the default box are corresponding one by one. The SmoothL1 is denoted as:

Smooth;1(X) = {0'5(X)2 if1Xl <1 },

|X| — 0.5 otherwise

where X = [} — g/".

b. The confidence loss is achieved using a similar method applied in image classifica-
tion, in this case, the weighted sigmoid focal.

Lconf = FL(pt) = _at(l _Pt)y log (Pt):

_Jp  ify=1
P 1 — p otherwise (’
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where y is 2.0 and « equals 0.25. p € [0,1] is the model’s estimated probability for
the class with label y € [0, 1]. (1 — p;)? is the modulating factor for the cross-entropy
loss. « is the balanced variant of the focal loss.

The default boxes that did not get scored against any ground truth boxes are
viewed as negatively matchboxes and are applied to only the confidence loss, while
the positive box is applied to the overall loss. This loss value is back propagated to
update the network parameters using different optimizers during experimentation.

The feature pyramid network

Feature pyramid network (FPN) integrates strong semantics with weak semantics, i.e.,
it takes the single-scale aerial images as inputs, generating proportionally sized feature
maps at multiple levels in a fully convolutional paradigm [57]. In this case, from the
initial output feature maps the architecture consists of two pathways: Bottom-up and
Top-down pathways. The input images, i.e., the output multi-scale feature maps (conv.)
derived from several layers as inputs first go through the bottom-up pathway (using
1 x 1 convolutions) and produce a feature map at each stage. The outputs from the con-
volutional network from the bottom-up pathways are combined with convolutional lay-
ers to produce inputs, which are then used for the top-down pathway. The convolution
from the bottom-up and that of the top-down are combined using a lateral link, they
have similar filter sizes/channels in their feature maps. This finally helps us merge low-
resolution features with high-resolution features so that we can upsample the feature of
improved resolution.

We naturally depict the higher-level employing lower-level pixel visual attributes. In
the convolution layer, the revised feature maps are concatenated with the original maps
and scaled to the accurate filters. Higher-resolution features are upsampled from coarser
but semantically more robust feature maps. The spatial resolution is doubled during
upsampling, and the nearest neighbour is utilized for simplicity. The bottom-up is con-
structed using two convolutional blocks consisting of 3 convolutional units (3 alternat-
ing convolutional and pooling layers in 3 units). The top-down pathway is composed of
six alternating layers of convolutional and pooling blocks, three of which are for pro-
jection and the remaining three for smoothing the combined lateral link and top-down
path to create the final feature map to mitigate the aliasing effect of upsampling. Finally,
the outputs of the two chunks are concatenated and fed to adjacent fully connected lay-
ers. The output of the last fully connected layer holds the box predictor and class predic-
tor and is compared to the associated labels to calculate the performance metrics.

Experimental design

i. The current projects’ fundamental problems were related to the number of com-
puting resources required and the dataset’s limited size. In this study, the experi-
ments—backbone architecture and meta-architecture were built on top of the deep
learning framework of TensorFlow Object Detection API (TF 1) Model Zoo. Two
separate outlets were utilized for execution, they include A physical computer with
AMD Ryzen 5 3550H with Radeon Vega Mobile Rfx processor CPU with 7.81 GB
for data processing, preparation, and model testing.
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Table 3 Data partition

Dataset #Components’ %Components’  #lmages %lmages  Missing Broken Missing Rusty
faults faults knob ins. ins. clamp
Train 1198 62.7 646 62.9 490 223 259 225
Validation 372 195 207 20 151 70 82 68
Test 340 178 154 16.8 142 75 49 73
Total 1910 100 1007 99.7 783 368 390 366

Table 4 Training hyperparameters settings for CNN models

Hyperparameters Values
Momentum 09

L, regularization 0.0004
Batch size 8
loU-threshold 0.6
Min and max scale 3-7

ii. Google Colab environment on the Google cloud server with 2 Intel(R) Xeon(R) @
2.20 GHz processor CPU with 13 GB RAM (200 GB free space disk) and 1 GPU
(Tesla K80) with 12.6 GB RAM for parallel processing for experimentation.

To ensure optimal experimentation with the data available, the validation dataset was
utilized for evaluating the trained network. Due to computation cost and speed, the k
fold cross-validation was not implemented. Hence, a hold-out validation with shuffling
was used to generate an average detection result for all the models.

The training and test sets were used for the network training and testing, while the
validation set as described in Table 3 below, was used to tune the hyperparameters.
In the NMS process, 100 detections and an IoU threshold of 0.6 were maintained for
each class. The momentum and the batch size were set as 0.9 and 8. The regularization
value was set to 0.0004 as shown in Table 4. The warm-up learning rate of 0.0001333
was used to assist in the weight optimization after 5000 training steps and at the end of
the training, the period decayed to zero. Batch normalization (BN) [60, 61] is used after
the convolution layer and before nonlinearity layers to avoid overfitting and to save time
during hyperparameter tuning [62]. During training, the data augmentation technique
was used to increase samples’ diversity because of insufficient training data. Six meth-
ods were employed for this data augmentation in the training phase: jitter boxes, hori-
zontal flip, vertical flip, crop, pixel value, and rotation. To ensure guaranteed detection,
the IOU confidence level is set at 0.6. Five measurements, including recall, precision, f;
score, average accuracy, and mAD, are applied to evaluate the components’ faults model

performance.

Result and discussion

According to previous research, a popular approach that is gaining popularity for EPTN
fault inspection and maintenance via remote sensing is the application of Deep Learning.
Most deep learning methods utilize the two-stage object detection architecture and are
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utilized for unary classification. While data augmentation has been used to alleviate the
data deficit, pre-trained models and unsupervised learning have also been tested. To pick
the suitable methodological components in this investigation, we considered the type of
input imagery (oblique optical imagery) and the intended number of detection (four EPTN
component faults). According to the literature review, we addressed the data shortage in
two unique ways: (1) enriching the dataset to make it acceptable for training a Deep Archi-
tecture, and (2) transfer learning with a benchmark dataset. Three distinct models were
then developed and compared. Through the introduction of FPN, faults that are predomi-
nantly seen as minute in EPTN components and captured as small aspect ratios on images
with low perception were appropriately recognized in the same way as those found in large
aspect ratios. To start with, a train, validation, and test set from the ‘Felect’ dataset were
utilized to determine the time required to run on a smaller dataset. The default hyper-
parameters were employed, with the learning rate, backbone, and pretrained weights from
benchmark datasets being the most critical. The model can be trained completely from
scratch, updating the weights for all layers in the process. However, other comparable
studies discovered that by freezing the training layers and using pre-trained MS Coco or
ImageNet weights, which are large-scale image datasets, the model’s ability to learn and
detect objects improved significantly [41, 43]. As a result, the term "transfer learning" was
coined and widely adopted. Transfer learning is the process of transferring knowledge
from a previously trained model to a new dataset [20, 31]. This also helps the model run
faster, as it makes inferences using weights from previously learnt objects. Both of these
benchmark datasets enable the model to start learning from an established machine learn-
ing checkpoint rather than from the beginning. Initial training with training images took
about 50 h to complete on a local CPU. This was found to be excessively time-consuming,
and a more suitable strategy for training the model was investigated.

The three different pretrained models (backbone architecture) were trained with the
same parameters and the same training, validation, and testing datasets and improved
using hyperparameters tuning (see “Data pre-processing and labelling” section). After
running hyperparameter refinement simulations, the most optimum value was recorded
and incorporated into each model to achieve the localisation and classification of the
different EPTN component faults. Using these proposed SSD models with different
backbones called SSD MobNet, SSD Rest101, and SSD Rest50, a four-class ETPN fault
object detection was performed on our testing dataset containing 142 missing knobs,
75 broken insulators, 73 rusty clamps, and 45 missing insulator plate faults. The mod-
els were tested using three separate metrics, including F1-score and mAP. As previously
mentioned in “The feature pyramid network” section, a holdout validation scheme was
employed to produce an average detection result for all the utilized models in the study
area. As observed, the CNN-based networks tested perform considerably well (regard-
less of the experimental setting considered), indicating CNN’s superior capability to
accurately detect faults on transmission assets in Nigeria using drone imagery. On the
one hand, CNNs’ remarkable ability to extract incredibly feature vectors from a neigh-
bouring region enables the generation of more precise detections for a given pixel. On
the other hand, the spatial resolution of drone imagery (in comparison to other conven-
tional -space-borne sensors, for example, Landsat and sentinel) may make these con-
volutional features even more informative for identifying and diagnosing faults in the
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Table 5 Assessment of SSD Rest101, SSD Rest50, and SSD MobNet on the test dataset

Models ETPN classes Precision Recall F1-score  AvgF1 mAP Models

SSD Rest101 Broken insulator 98.33 78.67 8741 8193 88.7 SSD Rest101
Missing insulator 100 67.34 80.49 SSD Rest101
Missing knob 96.51 5845 728 SSD Rest101
Rusty clamp 98.27 78.08 87.02 SSD Rest101

SSD Rest50 Broken insulator 100 72 83.72 82.54 89.61 SSD Rest50
Missing insulator 100 57.14 72.73 SSD Rest50
Missing knob 97.22 73.94 84 SSD Rest50
Rusty clamp 96.82 83.56 89.71 SSD Rest50

SSD MobNet Broken insulator 100 68 80.95 76.8825 82.98 SSD MobNet
Missing insulator ~ 95.83 46.93 63.01 SSD MobNet
Missing knob 95.83 65.24 77.64 SSD MobNet
Rusty clamp 93.55 7945 85.93 SSD MobNet

context of this work. This finding is consistent with previous research utilizing the SSD
meta-architecture for model training and evaluation. Jiang et al. [32] examined various
deep meta-architectures with their proposed ensemble model produced using SSD (one-
stage object detection model), concluding that the latter is more effective in monitoring
the condition of insulators via the detection network.

In this work, we have utilized three different optimizers (RMSprop, momentum,
Adam) and the best average results were always achieved with the momentum optimizer.
In general, it was observed that the momentum optimizer gave the best mAP across the
different models using the default hyperparameter settings. SSD Rest50, SSD Rest101,
and SSD MobNet achieved an mAP of 82.85%, 80.42%, 79.61%, respectively, using the
momentum optimizer. The SSD Rest50 gained the highest accuracy when compared to
the other two models. Also, the experiment showed that for the momentum optimizer,
the validation, and total loss converge optimally. Furthermore, it has been expressively
proven that the model’s convergence is affected by the optimizer utilized. We observed
that all the optimizers attain acceptable rates of accuracy, but one of the most glaring dif-
ferences is the value of training loss and validation loss as well as the model convergence,
i.e., the degree of loss range from zero. It can be inferred that the optimizer momentum
with cosine learning rate is the one that provides the best results and the quickest to
converge.

Using Momentum as the ideal learning algorithm, numerous learning rate settings
were checked to improve the model performance. After several preliminary evaluations,
it was confirmed that the best initial Learning rate (Lr) was 0.09. The first model, SSD
MobNet, reached an mAP of 73.94%, 71.56%, 79.61%, and 82.52%, with the learning
rate was 0.001, 0.01, 0.05, and 0.09, respectively, better performance of the model with
increasing learning rate value. Similarly, the remaining two models: SSD Rest50 and SSD
Rest101, demonstrated the greatest average mAP of 86.29% and 83.14%, with a learning
rate of 0.09, which is 3.44% and 2.72% higher than those obtained when set to 0.05. The
learning rate plays a significant role in the network’s performance and how easily it can
generalize [58]. Specifically, decreasing the learning rate beneath this value (0.09), which
gives the fastest convergence outcomes, will improve the mAP to generalize, particularly
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for large, dynamic cases. The learning rate used for all models was 0.09 as they all per-
formed better with this value.

The test results of the proposed single-phase components’ faults identification and
classification pipeline are shown in Table 5. It illustrates the precision, recall, f1 score,
and accuracy of the three models, respectively. As can be seen from Table 5, the SSD
ResNet holds the maximum overall mAP score of about 89.61% for the components’
faults detected and properly classified. Low precision rates suggest that a significant
number of false-positive samples of the different EPTN component faults are gener-
ated when using the models for fault classification [22, 32], which is not the case here
as the model generated fewer false-positive samples of EPTN faults; hence the reason
for the general precision rate being above 90.9%. By delving deeper into these results,
we can develop a greater understanding of the contextual factors between the models
and the various exploratory scenarios considered.

With regards to the research studies under consideration, there are more compo-
nent faults not identified than misclassified, causing a lower recall rate, especially for
the missing knob fault type as shown in Fig. 10. From Fig. 10, the recall rate of the SSD
Rest50 is 57.14%, 73.94%, and 83.56% for missing knob and rusty clamp fault classes,
respectively, which varies from about 15.50%, and 5.48% to that detected and classi-
fied by SSD Rest101. Alternatively, the recall rate for the SSD Rest 101 is the greatest
in identifying the broken and missing insulator faults. The SSD Rest50 achieved a bet-
ter recall rate for broken insulator cap, missing insulator cap, missing knob, and rusty
clamp component fault classes compared to SSD MobNet by 4.00%, 10.21%, 8.70%,
and 4.11%. The SSD MobNet performs the least in detecting and classifying the miss-
ing insulator fault class compared to that the SSD Rest101 and SSD Rest50 models.
Generally, all models had a satisfactory recall in detecting and classifying each fault
class, especially when identifying missing knob and rusty clamp faults. This reveals
that the experimental single-stage components’ fault detection and classification
pipeline can solve this identified problem by substantially increasing the model’s per-
formance in identifying and classifying the EPTN faults.

The SSD Rest101 is the second-best model with an overall mAP of 88.70%. Of the
object detection methods tested, the one that delivered the least prediction (82.98%)
was SSD MobNet. While the ResNet 101 derived model termed the SSD Rest101 has
been noted to be the best in principle [33, 43]; however, in this case, the SSD model
based on ResNet 50 contrasts conventional assumptions by revealing an improved
result. The complexity of the network architecture can indeed justify the explana-
tion behind the persistent lower results by the ResNet 101 model, which is made of
much deeper layers in contrast to the size of the training dataset; making the model
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characteristics over subsample and learns features; thus, affecting the performance
in detecting different components’ faults optimally. Furthermore, to intuitively reflect
the proposed model’s detection performance, the loss value graph was evaluated to
understand, rationalize, and justify the proposed models’ generalization ability. In
general, we can assess the proposed model’s performance using the loss graphs and
examine the group of classification, localisation, and regularization loss [53, 58]. Fig-
ure 11 gives snapshots of the loss value sensitivity over the training and validation
phase through the network trajectory.

A good performance is established based on the total and validation loss decrease
until it becomes stable and the difference between both loss values reaches a mini-
mum [58]. If the prediction errors are unbiased, the validation error should be near
zero, and the validation loss decreases with a decrease in training loss. This can be
seen distinctively by the loss graph of SSD Rest50, SSD Rest101, and SSD MobNet
model. The Rest50 model represents a Deep network, the SSD Rest 101 serves as a
super Deep Network, while the SSD MobNet is a shallow network.

The various weight optimizations associated with the training and validation of
the dataset based on the model architecture show that the loss value remained rela-
tively stable. In the experiments, the base and top CNN layers used the Rectified Lin-
ear Units (ReLUs) as activation functions over shuffled mini-batch gradient descent
(batch size of 8) with the Adam optimization algorithm. The final output uses a sig-
moid function for each decision node. Using the sigmoid activation, the final achieved
pair losses, i.e., [validation loss, training loss] for the SSD MobNet, SSD Rest50, and
SSD Rest101, were approximately equal to [0.281, 0.309], [0.378, 0.385] and [0.356,
0.342] respectively. In contrast to the SSD MobNet, SSD Rest50 and SSD Rest101
have higher orders of magnitude as they have more parameters due to having more
layers and more filters per layer. This allowed the model to learn more complex
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features than the shallow network can provide. In the SSD Rest101, it is observable
that the dataset was not sufficient to train the deeper network. The ResNet 50 back-
bone architecture, which represents the Deep Network, performs much better in
minimizing the loss values than either previous network, achieving train and valida-
tion losses of 0.378 and 0.385, respectively, after 15 epochs. To better understand the
algorithms proposed, some of the networks’ training and development images out-
put were examined. Finally, there is a strong link between training loss and validation
loss. They both decrease and then become stable at a constant value. This suggests
that the model is correctly trained and has a high probability of working well on any
dataset within this use case.

Overall, the proposed network consistently performs well in all tested scenarios, indi-
cating that it is suitable for detecting faults on power lines in Nigeria using UAV imagery.
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The primary advantage of the proposed architecture over alternative methods is the SSD
characteristic, which is based on its ability to effectively utilize a single-phase method
for fault diagnosis of electricity transmission tasks and on its ability to effectively bal-
ance contextual constraints. Figure 12 provides an example of all the output images
produced by all the models implemented. The sky-blue box denotes the missing insula-
tor; the green box denotes the broken insulator, the turquoise box denotes the missing
knob faults, while the white box bounds the rusty clamp defects. Each box is marked by
the components’ faults and its confidence score. The first column to the third column
depicts the implemented method’s performance, SSD MobNet, SSD Rest101, and SSD
Rest50, respectively (Fig. 13).

In the first row, the SSD MobNet (leftmost) gives an accurate detection of the miss-
ing insulator plate with a false positive identification of a broken insulator, SSD Rest101
(middle) gives no result even with the presence of a missing insulator plate and the SSD
Rest50 (rightmost) achieves the best result with no false prediction. In the second row of
Fig. 6, the SSD Rest50 method detects the broken insulator fault, while the other imple-
mented model leads to a wrong judgment with a false rate. In the third row, the mod-
el's performance behaves similarly to what is observed in the first row as the model is
affected by the convoluted background interferences. The fourth row shows that all the
implemented models had depicted the missing knob near perfectly with just one false

Fig. 13 Experimental results of the four components'faults. The first column to the third column depicts the
proposed method's performance in each row, SSD MobNet, SSD Rest50, and SSD Rest101
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positive of the missing knob faults for SSD MobNet (leftmost) and one false negative
(rightmost).

Conclusion and future work

This study has expounded the incredible potential of combining UAV surveillance
imagery and deep learning for automatic power transmission line inspection and fault
detection, especially in developing countries. To approximate a real-world situation in
which available RGB imageries are scarce, if not non-existent, the various explored pos-
sibilities address data scarcity and imbalance through the use of transfer learning strate-
gies, paving the way for a novel approach to the difficult problem of multi-class EPTN
fault identification based on limited data. The experimentation design of this study vali-
dates our proposed utilization of the deep learning model on UAV imagery for power
line fault detection. A comparative analysis of different state-of-the-art manual and deep
learning-based power line fault detection techniques was carried out.

The findings of this study allow for the drawing of several significant conclusions about
the general use of deep learning and UAV imagery for this application. First, transfer
learning provided a better strategy to achieve a robust performance for all fault classes,
being able to predict correctly more than half of their instances. Also, the adaptive
optimizer, momentum with mini-batch SGD, allowed for the faster convergence of the
proposed model and automatically predict the optimum learning rate. Second, it was
observed that a higher learning rate achieved better mAP values across all the models
implemented. When examined more closely, each of the three approaches has a unique
effect on each class, with SSDRest50 achieving the best performance. One could argue
that training a multi-class detection model on such a massive image dataset and the
egregiously skewed dataset is difficult and a ‘big data’ problem. Based on the practical
insight derived from comparing the detections of the models to the ground truth, we
may assume that additional work is required to build a generalized classifier utilizing the
SSD FPN meta-architecture that is faster and with higher precision and recall values.

With these considerations in mind, the presented modelling approach addresses the
challenges of using accessible UAV imagery in conjunction with data from develop-
ing countries to automate the monitoring of electrical power transmission faults in the
future, thereby contributing to more reliable and formative transmission companies and
power industry practices. In the future, the single-stage component identification and
classification pipeline should be expanded to account for faults in different components’
shapes and severity levels. Also, to measure the magnitude of the detected defects’ scale,
applying instance segmentation and using this knowledge to measure the scale and mag-
nitude of the faults might suffice. In the future, given the limited data available for the
fault inspection process, there are two methods to solve this problem. These include
foreground and background superposition using segmentation networks and image pro-
cessing techniques, and Generative Adversarial Networks (GANs) to create synthetic
images. Additionally, extending this work to cover real-time autonomous vision detec-
tion in the field incorporated with GPS-INS navigation.

The effect of increasing the training sample through data augmentation for a large
dataset to increase recall and precision has been identified as one of the future directions
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for this study, as there are various data configuration and severity levels associated with
EPTN components that can be incorporated to provide a more accurate benchmark for
EPTN faults object detection libraries. And because this involves a massive, large drone
image dataset, our future work also includes developing a process to automatically label
millions of image tiles in a systematic way other than the manual labelling process that
we went through in this study. The site inspection will also substantially benefit from
automatic professional labelling of publicly available drone imagery for use in future
deep learning object detection projects. Perhaps in the future, an image library of rel-
evant faults will be available for improved computer vision techniques incorporating
EPTN component maintenance. Natural habitat and generalizing flaws in varied ecosys-
tems remain a challenge in terms of taxonomy, cause and effect, and severity levels, SSD
FPN deep learning models in combination with more complicated data could potentially
offer solutions.

Abbreviations

CNNs Convolutional neural networks
EPTN Electric power transmission network
SSD Single Shot Multibox Detector
FPN Feature pyramid network

UAV Unmanned area vehicle

VHR Very High Resolution

SAR Synthetic aperture radar

GSD Ground sample data

DEM Digital elevation model

RNN Recurrent Neural Networks

ILN Insulator Localizer Network

VGG Visual Geometry Group

DDN Defect Detector Network

RPN Regional Proposal Network
RFCN Region-based Fully Convolutional Network
RCNN Region-based CNNs

RGB Red, Green, Blue

loU Intersection over Union

mAP Mean Average Precision

RelU Rectified Linear Units

SGD Stochastic gradient descent
GAN Generative Adversarial Networks
BN Batch normalization

NMS Non-maximum suppression
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