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Introduction
Broad availability of significant amounts of data created great opportunities for solving 
complex, so far untouchable problems. However, the huge scale of input information is 
often an obstacle for efficient data processing, especially if human interaction is required 
[1]. One of the fields in which artificial intelligence (AI) will surely soon outperform peo-
ple and their senses is computer vision [2]. Nowadays, convolutional neural networks 
(CNN) are commonly used for image recognition tasks [3]. The classification accuracy 
presented by CNN architectures grew over time, starting with LeNet-5 appliance to zip 
codes reading in US postal offices [4]. Then over a dozen years later, the winner of the 
2012 ImageNet competition AlexNet [5], initiated a rapid increase of new CNN archi-
tectures such as GoogleNet [6] and ResNet [7].
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In recent years, there has been a growing impact of the big data field on artificial intel-
ligence algorithms. Unprecedented growth of information produced by people every 
day, coming from smartphones and the expanding market of Internet of Things (IoT) 
devices [8], generates an enormous demand for data classification and analysis tech-
niques [9]. This creates an inseparable relation between big data and machine learning 
as AI requires massive amounts of data to thrive. The growing volume of input data, that 
needs to be processed by computational devices, imposes not only technical but also 
financial challenges when it comes to available resources. Additionally, there is a strong 
tendency for productizing AI applications for various business use cases with the aims of 
generating company growth and cost reductions [10]. While storing the data itself might 
be cheap, processing it with complex algorithms requires a significant amount of mem-
ory and processing power. Taking these constraints into consideration, multiple meth-
ods such as processing parallelization, grid computing and hardware modifications have 
been proposed [11]. In order to enable a less computationally expensive neural network 
(NN) training approach, based on big data, authors of this paper focus on NN floating-
point parameters representation in order to enable widely available and less computa-
tionally expensive data processing.

Access to sufficient amounts of training data is a key factor in most machine learn-
ing tasks. Currently we can observe two general obstacles when it comes to big data 
utilization. First is the lack of well classified data for specialized recognition tasks. This 
problem occurs especially in the case of supervised learning and opens an area for mul-
tiple data augmentation techniques to artificially increase the amount of accessible data 
[12]. Second problem is contradictory to the first one and revolves around the excess of 
input data that requires extensive analysis and cleanup before appliance of neural net-
work models [13]. The growing need for energy and computational power is mutual for 
both mentioned cases, no matter how the input data have been prepared. This opens 
an interesting field for machine learning methods efficiency improvements, focusing on 
data and the power expensive training step.

The common factor, characteristic for the majority of neural network architectures, 
was a rapidly expanding consumption of computational power and operational memory. 
Moreover, training required a significant amount of input information, hence more stor-
age capacity was mandatory [3]. Access to big data enforced both deeper architectures 
and more time required for processing data through NN [14]. Growing number of artifi-
cial neurons and layers in NN designs, encouraged researchers to leverage graphic pro-
cessing unit (GPU) cores to speed up the time-consuming training process [15]. Such 
shift to deep NN (DNN) architectures, besides increased classification accuracy, brought 
also disadvantages in the form of huge number of power-consuming floating-point 
operations and memory indispensable to store data and network parameters, implying a 
need for introducing quantization techniques [16]. Not only creates it resources related 
issues, but also implies development difficulties such as increased time for design and 
difficult debugging.

NNs are commonly present on mobile and low power devices where computational 
limitations are still a significant factor. Dedicated AI chips are often provided externally or 
integrated into the newest hardware by the market leaders such as Google, Intel, Nvidia 
or Qualcomm in order to enhance device’s computational capabilities [17]. Variety of 
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applications such as phrase recognition, voice translation, image augmentation or data 
aggregation cause increased demand for AI solutions on mobile devices. Growing number 
of smart assistants, embedded Digital Signal Processing (DSP) units or IoT devices creates 
significant constraints on neural network models sizes or their power usage [18]. In most 
cases mobile devices are used for model inference, due to mentioned hardware limita-
tions, or exchange data over network to leverage capabilities of an external infrastructure. 
Such limitations are extremely important in case of NNs that utilize user’s private data or 
information from embedded sensors which often cannot be shared via network for NN re-
training due to privacy reasons [19, 20]. Improving computational capacity of a device itself 
would enable both hardware producers and software developers to overcome these issues 
and adjust pre-trained NN models locally on the device.

Reducing complexity of operations executed during the inference process is already a 
well-known method to limit NN resource consumption [21]. Currently available machine 
learning frameworks provide specific tools for neural network inference on mobile devices 
which shows growing demand for low-power AI applications [22]. Such solutions focus on 
both quantization techniques and limiting bit count of models’ parameters. In a similar way, 
limiting the size of network parameters gives a chance to save precious resources during the 
training phase and make it applicable to a wider range of low power devices.

This article is structured in the following way, the second chapter briefly presents theory 
concerning NN and floating-point numbers. In the third section authors familiarize read-
ers with related study and other research results important to the subject. Chapter four 
describes limitation experiments conducted by the authors on floating-point based NN 
parameters. The fifth segment shows modifications introduced to the floating-point format 
in order to save original accuracy of a tested network despite conducted bit count limita-
tions. Closing chapters depict promising opportunities for future work and conclusions 
derived from the presented research.

Theory
In general, a neural network is a mathematical structure that approximates the relation 
between input and output data. The mechanism aims, with a degree of simplification, to 
resemble processes that occur in a human brain [23]. In most cases, NN requires a signifi-
cant amount of input data for the training procedure. Based on relations found in previ-
ously analyzed samples, a network shapes itself to classify or forecast unseen data. Figure 1 
gives an example of a simple DNN structure with two hidden layers.

The network’s layers consist of multiple artificial neurons, which store their current state. 
Under the typical scenario, each of them can be characterized by three features: weights, 
biases, and activations [25]. Once input is provided to a neuron, it calculates the weighted 
sum of given input values with the addition of its bias. This operation takes the shape of the 
following equation.

where y—output of the neuron, xi—input of the neuron, wi—weight assigned to the 
input of the neuron, b—bias.

(1)y =

(

n
∑

i=1

xi · wi

)

+ b
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When the output of the neuron is calculated, a special function is used for its acti-
vation. In such a way the network can adapt and respond to generalized input based 
on gathered data [26]. Likewise, output of previous layers is processed throughout the 
whole network. Figure 2 illustrates the structure of a single artificial neuron.

In order to achieve optimal neurons parameterization to a given problem, the net-
work needs to be adjusted during the process of training. The key element of this sce-
nario is a mechanism of backpropagation, which is an indispensable step in training 
of DNN [27]. In addition to feedforward pass through the network, backpropagation 
uses accuracy of the given output to reward or punish neurons to adapt their weights 
to a proper result. Unfortunately, this step, due to the significant number of floating-
point operations required, makes training much more resource and time consuming 
in comparison to inference.

Floating-point multiplication is a key element of nearly all operations performed 
within NN. Unfortunately, due to binary representation in computers’ memory there 
is a number of issues and limitations in terms of precision and range of such numbers 
[28]. Moreover, floating-point operation implies longer and more power consuming 
calculations for processing units [29]. To save such values in computers’ memory a 
format with separation to exponent and mantissa is commonly used, representing the 
value with a method identical to the presented equation.

Fig. 1 Deep neural network with two hidden layers [24]

Fig. 2 Single artificial neuron with two inputs
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where x—floating-point number value, S—sign of the number, M—mantissa, B—base of 
the number system, two for binary, E—exponent.

There are two contradictory requirements with respect to the use of floating-point 
variables for NN. A broader range of numbers that can be represented by a given vari-
able allows to achieve improved output accuracy. However, the number of bits used for 
parameters increases computational power required for multiplication and memory 
needed to store the result. The common variable used for NN is a 32-bit floating point 
with 23 bits assigned to mantissa, 8 bits to exponent and 1 bit to sign. Figure 3 provides 
the structure of such a variable.

Limiting the bit range of variables used by NN can speed up the training process and 
reduce demand for computational power. Furthermore, low bit range variables utilize 
less storage space in the device’s memory. It needs to be stated that applicability of modi-
fied or limited parameters may impose hardware changes as standard floating-point 
implementation in general use hardware and most popular software AI frameworks do 
not provide flexible implementation of floating-point variables. In such cases use on-
chip or external AI accelerators might be necessary to take full advantage of all benefits 
provided by limited variables representation. It is worth mentioning that such a shift to 
specialized hardware units [30], mainly for NN inference, is a common trend in recent 
years, examples of which are Google TPU, Habana Goya or Nvidia T4 [17]. It must be 
also remembered that reduction of floating-point variable bit count may impose an 
accuracy drop in the final training results. Hence, as this paper presents, sophisticated 
rounding and quantization techniques are often applied to both NN topologies and their 
parameters.

Related study
Multiple researchers have already investigated the subject of NN training with limited 
precision. Proposed methods can be divided into two general categories, software limi-
tation and hardware designs. Based on the literature review conducted during this work, 
a significant number of papers applying to the categories of “neural network” and “pre-
cision limitation” after 2015 focus on hardware acceleration for NN training speed up. 
Combining results of both software modification of floating-point variable structure 
and usage of dedicated hardware creates a promising area for rapid improvements and 
reduction of NN’s resource consumption.

Software or design changes to parameter types or NN architecture itself, aim to 
limit the number of time-consuming operations without compromising expected 

(2)x = S ·M · BE

Fig. 3 32-bit floating-point number representation
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accuracy. Gupta et  al. [31] examined 12-bit and 14-bit fixed-point variables for NN 
training with the addition of a stochastic rounding algorithm. Their work shows 
nearly identical results in comparison to 32-bit floating point variables, tested on 
both the MNIST [32] and CIFAR10 [33] datasets. Moreover, the authors proposed an 
energy-efficient hardware accelerator for low-precision fixed-point arithmetic with 
stochastic rounding.

Ortiz et al. [34] presented interesting results on training CNN with CIFAR10 data-
set. Their experiments showed inability to train CNN without accuracy degradation 
while using 12-bit fixed-point representation. Much more promising results were 
obtained for 12-bit floating-point variables with stochastic rounding, which showed 
network degradation of less than 2%. The best outcome was achieved with context-
based float variables, surpassing base 32-bit results by approximately 2%. The authors 
also proposed a power of two network implementation that, as the name suggests, 
uses only bit level operations to limit computational complexity and memory con-
sumption. All limitations were executed with use of 32-bit floating point as a base 
type.

Comprehensive solution proposed by Na and Mukhopadhyay [35] also combines 
proposals on the software and hardware side. It introduces a new mechanism of 
Dynamic Precision Scaling (DPS) which allows to dynamically adjust the precision of 
a network’s parameters based on a stored value. Such approach was also investigated 
by Taras and Stuart  [36] giving 98.8% accuracy on MNIST database with 14-bits pre-
cision for weights and 16-bits for activations. In addition to DPS Na and Mukhopad-
hyay [35] proposed multiplier–accumulator (MAC) design which was introduced to 
cover multiplication with flexible size of variables. According to the authors this solu-
tion has enabled them to train LeNet and AlexNet networks several times faster.

The solution proposed by Park et  al. [37] implements stochastic gradient descent 
with Kahan summation for the low precision parameters update. The validation 
included MNIST, CIFAR10 and SVHN [38] datasets. Leveraging the lazy update tech-
nique allowed authors to achieve accuracy resembling the use of 32 bits floating-point 
variables on 8-bit signed integers.

Fuketa et  al. [39] leveraged a 9-bit floating point format with 5 bits for exponent 
and 3 bits for mantissa with hidden sign and the most significant bit. The NN training 
results were verified on AlexNet and ResNet-50 with ImageNet ILSVRC2012 data-
set. According to the authors, training results exceeded the accuracy of regular 16-bit 
floating point variables. In addition, estimated hardware size has been proposed for 
this method.

Although NN training with limited precision is still an open subject, there are 
plenty of solutions already using such a method for less resource-intensive inference. 
In this approach the network is trained on big data in full precision and then quan-
tized to lower bit count types in order to save operational memory, storage and com-
putational power. The aforementioned technique is already available in several NN 
related frameworks such as Tensorflow [40] or Pytorch [41].

Distinctive quantization-based approach presented by Onishi et  al. [42] focuses 
on limiting memory and power consumption during NN training leveraging lookup 
tables (LUT). Their solution was validated on LeNet-5 network with MNIST dataset. 
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The results showed that LUT-based training technique allowed researchers to limit 
memory usage up to 22% during forward pass and 60% for backpropagation. The 
overall number of multiplication operations have been limited by 11.7%. The pre-
sented improvements were achieved with 1.41% NN accuracy loss.

In the field of hardware improvements Lee et al. [43] proposed Unified Neural Process-
ing Unit (UNPU) which supports flexible precision from 1 to 16 bits for convolutional, 
fully connected, and recurrent layers of NN. Moreover, the proposed hardware limits the 
amount of off-chip memory access for additional speed up. According to authors such 
a design allows to reduce potential energy consumption and external memory access to 
about 50% for specific NN architectures.

Table  1 gives a concise summary of the presented limitation techniques, including 
the solution proposed by the authors. Provided comparison includes variable type lim-
itation, specific technique used during research and topologies with datasets used for 
experiments. As stated at the beginning of this chapter, classification for software and 
hardware solutions is also highlighted in the table. Although most of the papers defined 
accuracy results in relation to baseline training, there is a difficulty in direct compar-
ison between chosen techniques. There are major differences between NN topologies 
architecture, baseline accuracy of the model or number of epochs used during training. 
Taking that into consideration the authors decided to provide differences between given 
baseline accuracy and, where it was possible, the one achieved after the limitation step. 
Such a measure can be used for preliminary evaluation of the proposed solutions.

Floating‑point limitation
As indicated in chapter 2, floating-point operations are one of the most demanding cal-
culations from the perspective of modern computers. Consumed computational power 
and memory are correlated with the size of floating-point variables used during multipli-
cation. The first stage of the conducted work aimed to investigate the decrease of CNN 
accuracy while limiting bit count available for network parameters. In order to achieve 
such results a benchmark LeNet CNN has been implemented and trained with various 
limited bit ranges for both exponent and mantissa. The detailed structure of the network 
is presented in Table 2.

Due to available hardware all limitation steps were carried out in software layer only, 
in a similar manner to the work of Ortiz et al. [34]. The experiments used generally avail-
able 32-bit hardware with full 32-bit floating-point variables as network parameters. 
The limitation of weights, biases and gradients has been simulated at each step of the 
network execution and stored in the full-size variables. The development environment 
leverages python with the Pytorch framework used for NN implementation. In order to 
overcome python limitation while dealing with floating-point variables bits manipula-
tion a separate, custom C++ library has been created. Boost framework was used to link 
python to the aforementioned library. After every step of the network calculations, layer 
by layer, each parameter has been cut to fit the given bit count of exponent and mantissa. 
A similar approach has been executed for gradient parameters. The diagram presented 
in Fig. 4 gives an overview of the used environment.

The training process leverages MNIST dataset which consists of 60,000 training and 
10,000 test examples of hand-written digits [32]. It is a common input data used across 
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various CNN verification or testing tasks. Choice of the dataset and network architec-
ture was dictated by its relative simplicity and commonness with various research and 
how-to examples, which should significantly help with the experiment results reproduc-
tion by other parties.

The network limitation phase covered various bit ranges of exponent and mantissa. 
The 32-bit floating-point variable, which was used as a base type, enforced exponent 
limitation to values between 1 and 8 bits, mantissa covered bit counts from 1 to 23. As 
previously stated, the limitation included weights, biases and gradients at each stage of 
NN execution. The baseline training phase was limited to 10 epochs which allowed us to 
achieve 96% accuracy on 32-bit floating point. Figure 5 presents accuracy of the trained 
NN across all examined bit counts for both exponent and mantissa.

Based on the results illustrated by Fig.  5, there is a clear increase of the network 
accuracy along with a growing bit range of the network’s parameters. This behavior is 
expected because a higher number of bits makes it possible to store a wider range of 
values in each of the network’s parameters. As in the previously discussed research, 
we can confirm that 16-bit floating point is enough for training the network (Fuketa 

Table 2 LeNet-5 structure used for experiments

Item Parameters

1st convolutional layer Input channels: 1
Output channels: 6
Kernel: 5

2nd convolutional layer Input channels: 6
Output channels: 16
Kernel: 5

3rd convolutional layer Input channels: 16
Output channels: 120
Kernel: 1

1st fully connected layer Input: 120
Output: 84

2nd fully connected layer Input: 84
Output: 10

Activation function (all layers) TANH

Classifier Log_softmax

Neural Network
Floating-point variables 

limitation library

C++

Input data

MNIST

Training dataset

Test dataset

PyTorch (Python)Limited floating-point 
numbers

Neurons output values

Weights, biases, activation function variables

Fig. 4 Overview of the environment used for NN parameters limitation
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et  al. [39]). The decrease in accuracy with this number of bits is negligible while 
smaller coefficients size helps to significantly limit memory used for network storage.

The presented results show that setting exponent bit count below 3 bits is not 
enough to train the network without significant decrease of accuracy. It can be 
observed that a network with 1-bit exponent is unable to approximate data classifi-
cation and maintains 10% of accuracy for all mantissas’ bit counts. In case of 2-bit 
exponent, Fig.  5 shows an irregular behavior with inconsistent accuracy up to 70% 
for 19-bit mantissa with poor 42% for 23-bit mantissa. Such behavior suggests that 
2-bit exponent is not sufficient for the training process and inconsistent results for 
increasing mantissa’s bit counts may depend on model parameters initialization val-
ues. Interestingly, limitation to as low as 3-bit exponent provides satisfactory results 
achieving 95% accuracy starting from 12-bit mantissa. Even better outcome can be 
observed for 4-bit exponent, it is vivid that in this case limitation provides a regu-
larization mechanism that not only helps to achieve the expected accuracy with lower 
mantissa bit count but also exceeds standard 32-bit accuracy by above 2% for 23-bit 
mantissa and 1% for 12-bit mantissa.

Apart from the accuracy of the trained network, an interesting observation can be 
spotted once we investigate bits utilization for both exponent and mantissa in each 
parameter type. In the case of exponent, it is clear that only negative values are used 
while training the analyzed NN. This means that half of them are not used, and these 
values are generally wasted. Naturally, this situation may vary depending on the net-
work architecture or activation function used. Figure 6 depicts exponent utilization 
for all layers in the tested network. Each histogram presents exponent values gath-
ered for every weight parameter in a particular layer across all training batches. The 
data has been logged and depicted with usage of Pytorch Tensorboard [44]. Axis X 
describes values of the parameter’s exponent and axis Y stands for batch number in 10 
epochs training process. Starting from the first layer to the last fully connected layer, 

Fig. 5 Neural network accuracy in various exponent and mantissa bit count scenarios
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we can observe that only negative values of exponent, in the range of − 22 to − 2 are 
stored in network parameters for each batch iteration. Taking into consideration that 
the 8-bit exponent allows for values ranging from − 128 to 127, there is an underuti-
lization of available bits in the exponent domain. The same statement is also true for 
biases stored in the network. A similar situation is observed for weights’ gradient val-
ues which are used for the backpropagation step, presented in Fig. 7. In this case only 
exponent values in the range of − 30 to − 4 are stored in gradient parameters.

As mentioned before, exponent utilization in the network omits its positive values. 
Taking into consideration that biased exponent splits its range in half to negative and 
positive values, there is a promising expectation that leveraging unused values of expo-
nents may increase accuracy of a network trained with limited floating-point parameters.

Experiments
Several research [31, 34, 37] and results presented in the previous chapter show that lim-
itation of neural network’s parameters is, in many cases, followed by a rapid degradation 
of its final accuracy. Nevertheless, sophisticated rounding techniques or regularization 
methods may help to minimize this effect. Encouraged by previous experiments with 
parameters limitation, the authors focused on implementation of a method involving 

1st convolutional layer 2nd convolutional layer 3rd convolutional layer

1st fully connected layer                                      2nd fully connected layer

Fig. 6 Weights exponent values utilization during training of the network (per training batch) [44]

st nd rd

1st fully connected layer 2nd fully connected layer

1st convolutional layer 2nd convolutional layer 3rd convolutional layer

2nd fully connected layer

Fig. 7 Weights gradient exponent values utilization during training of the network (per training batch) [44]
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asymmetric exponent representation in order to fully utilize its bit count available dur-
ing NN training.

The study of the use of exponent bits, carried out in the previous section, showed that 
a significant number of exponent values have been unused during the training process. 
The histograms presented in Figs. 6 and  7 clearly indicate that only negative exponent 
values are stored in the validated network’s parameters. In this case it is possible to uti-
lize twice as many exponent values for the same bit count. The authors decided to follow 
this path and change the exponent range in the specified bit count, creating a floating-
point variable with an asymmetric exponent. Based on current bits utilization, a new 
type of floating-point variable has been implemented to use all available exponent bits 
for negative values only. The new type was applied to weights and biases in each layer 
of the network. In all instances, mantissa was cut to match the given bit range. The pre-
viously described software environment has been adjusted to implement the required 
limitation.

During initial research asymmetric exponent has been also applied to limited gradi-
ent values. However, further experiments have shown that usage of a regular symmet-
ric exponent format in case of gradient values significantly improves network accuracy 
for lower mantissa bit counts. Considering this, the authors decided to not apply asym-
metric exponent format to limited gradient values. Table  3 presents the comparison 
of accuracy for a network with the limitation, described in the chapter 3 of this paper, 
asymmetric exponent and asymmetric exponent excluding limited gradient values. All 
results are presented for a 3-bit exponent as it has given the best increase in accuracy 
after application of the asymmetric exponent method.

The use of the asymmetrical method on a 3-bit exponent gives a similar value range 
to the regular 4-bit exponent. Nevertheless, the comparison of NN accuracy results, 
especially on smaller mantissa’s bit counts, shows significant advantage of asymmetric 
approach. Table 4 presents the comparison of 3-bit exponent with asymmetric approach 
and regular 4-bit exponent. In both cases mantissa’s bit counts are the same.

Table 3 Comparison of neural network accuracies with 3-bit exponent

Bit counts Network accuracy

Bit count Exponent Mantissa Limitation 
only (%)

Limitation with 
asymmetric 
exponent (%)

Limitation with asymmetric 
exponent (excluding gradients) 
(%)

5 3 1 12.08 10.09 9.80

6 3 2 9.39 8.92 14.29

7 3 3 10.42 9.58 57.31

8 3 4 6.63 10.10 75.89

9 3 5 7.17 22.42 85.97

10 3 6 16.37 41.32 89.31

11 3 7 54.61 66.52 90.27

12 3 8 71.45 86.98 95.01

13 3 9 85.77 91.34 94.07

14 3 10 91.06 94.54 97.13

15 3 11 93.26 95.93 97.76

16 3 12 94.77 97.29 97.32
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Based on the above results the authors decided to cross-check all available limita-
tion bit counts. Figure 8 provides a summary of the network accuracy for the described 
method.

The presented results show that both 3-bit and 4-bit exponent values with asym-
metric approach are sufficient to train the network. Accuracy equal to 32-bit floating-
point number is achieved for much smaller mantissa ranges, 12-bit value is sufficient 
for achieving 95% network accuracy. In addition, this approach allows to train the net-
work and reach 75.89% accuracy for as small parameters as 8-bit floating-point which 
was presented in Table  3. It should be noted that, in contrast to the previously pre-
sented research, no rounding algorithms have been applied for the asymmetric exponent 
method. This leaves an additional margin for possible method improvements leveraging 
quantization and rounding techniques.

Table 4 Neural network accuracy comparison between 4-bit exponent and 3-bit asymmetric 
exponent

Mantissa’s bit count 4-bit regular exponent (%) 3-bit asymmetric exponent 
(%)

Accuracy 
improvement 
(%)

4 10.10 75.89 65.79

5 10.10 85.97 75.87

6 39.21 89.31 50.10

7 66.72 90.27 23.55

8 87.28 95.01 7.73

9 91.29 94.07 2.78

10 94.12 97.13 3.01

11 95.88 97.76 1.88

Fig. 8 Neural network accuracy with asymmetric exponent (excluding gradients) in various exponent and 
mantissa bit count scenarios
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Future work
Considering the promising results of the presented research, the authors are work-
ing on additional methods to verify and improve floating-point numbers limitation 
for NN training. Leveraging sophisticated rounding algorithms along with the asym-
metric exponent method might be necessary to improve presented NN accuracy even 
further. A similar in-depth investigation is currently being conducted for AlexNet uti-
lizing CIFAR10 dataset with preliminary results confirming applicability of the asym-
metric exponent method to more complex, deeper networks. In addition to deeper 
NN topologies, the authors are verifying other use cases of limited CNN topologies 
in the audio domain. Key phrase detection or speech recognition are common func-
tions implemented on embedded devices that may benefit from reduced computa-
tional complexity or power consumption. Another research direction pursued by the 
authors is verification of floating-point limitation with the asymmetric exponent for 
Recurrent NN (RNN) in order to confirm robustness of the proposed technique for 
other types of NN. As a final step, authors consider usage of custom FPGA imple-
mentation to estimate potential power savings resulting from the proposed calcula-
tion simplification.

Conclusion
Challenges created by a rapid increase of data and complexity of related problems 
require more and more computational power. In such cases, it is critical to ensure that 
provided resources are optimized and utilized efficiently. The presented work touches on 
this issue with a thorough study of floating-point variables utilization in NN parameters. 
Bit count usage for multiple exponent and mantissa configurations have been presented 
based on a LeNet network along with the data required to reproduce the experiments. 
A novel method of asymmetric exponent has been described giving extremely promis-
ing results of NN accuracy after its parameters limitation. The method achieved 95% 
accuracy with usage of 12-bit floating-point parameters without any additional round-
ing which is similar to results of 32-bit floating-point variables. Moreover, 8-bit float-
ing-point variables were sufficient for reaching over 75% network’s accuracy. Based on 
the asymmetric exponent method, this work presents new types of variables that could 
be utilized by specific hardware in order to save both memory and energy consumption 
during NN training and state a solid base for research continuation.
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