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Introduction
The hearing system is responsible for collecting, conducting, and amplifying sounds 
and converting them into electrical energy, and transmitting to specific centers in the 
brain [1]. The auditory organ consists of three parts: the outer ear, the middle ear, and 

Abstract 

Purpose:  Mastoid abnormalities show different types of ear illnesses, however inad-
equacy of experts and low accuracy of diagnostic demand a new approach to detect 
these abnormalities and reduce human mistakes. The manual analysis of mastoid CT 
scans is time-consuming and labor-intensive. In this paper the first and robust deep 
learning-based approaches is introduced to diagnose mastoid abnormalities using a 
large database of CT images obtained in the clinical center with remarkable accuracy.

Methods:  In this paper, mastoid abnormalities are classified using the Xception based 
Convolutional Neural Network (CNN) model, with optimizer Adamax into five catego-
ries (Complete pneumatized, Opacification in pneumatization, Partial pneumatization, 
Opacification in partial pneumatization, None pneumatized). For this reason, a total of 
24,800 slides of 152 patients were selected that include the mastoid from most upper 
to the lowest part of the middle ear cavity to complete the construction of the pro-
posed deep neural network model.

Results:  The proposed model had the best accuracy of 87.80% (based on grader 1) 
and 88.44% (based on grader 2) on the 20th epoch and 87.70% (based on grader 1) 
and 87.56% (based on grader 2) on average and also significantly faster than other 
types of implemented architectures in terms of the computer running time (in sec-
onds). The 99% confidence interval of the average accuracy was 0.012 which means 
that the true accuracy is 87.80% and 87.56% ± 1.2% that indicates the power of the 
model.

Conclusions:  The manual analysis of ear cavity CT scans is often time-consuming and 
prone to errors due to various inter- or intra operator variability studies. The proposed 
method can be used to automatically analyze the middle ear cavity to classify mastoid 
abnormalities, which is markedly faster than most types of models with the highest 
accuracy.
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the inner ear and the temporal bone is comprised of four parts including the squamous, 
mastoid, petrous, and tympanic parts. The petrous part surrounds the inner ear and the 
squamous part forms the mastoid appendage in the middle ear [2]. The mastoid append-
age is formed by the attachment of the squamous part of the temporal bone [2]. Cells 
that form in different parts of the temporal bone all originate in the middle ear [3]. In 
general, the mastoid air cells are either pneumatized or none pneumatized. in the case of 
none pneumatization, it could have either opacification or sclerosis [4]. Mastoid air cells 
illustrate a comprehensive system of interlinking air-filled cavities surrounded by walls 
of the mastoid antrum and middle ear [5]. The mastoid part of the temporal bone has a 
significant role in terms of absorbance and scattering of kinetic energy through lateral 
trauma to the temporal bone, decreasing the occurrence of the fraction in the settling of 
direct trauma [6]. The concept of the grade of pneumatization of the temporal bone is so 
momentous in terms of surgical contemplations and pathophysiological care of numer-
ous temporal bone illnesses [7]. Some range of the inflammatory, neoplastic, vascular, 
fibro-osseous, and traumatic changes have been illustrated by opacification at the mid-
dle ear and mastoid which help specialists to diagnose ear diseases [8]. One of the most 
prevalent complications of acute otitis media after tympanic membrane perforation is 
otomastoiditis which has risen over recent decades [9, 10]. Mastoiditis is an inflamma-
tion of the mastoid bone that is caused by inflammation of the middle ear and acute oti-
tis due to the connection between the mastoid cells and the middle ear [11]. Because the 
middle ear is connected to the Eustachian tube on one side and to the mastoid cells by 
the aditus and anter on the other, whenever an infection reaches the middle ear and the 
tympanic membrane, this infection and inflammation may spread to the mastoid cells 
[12]. Therefore, the presence of mastoid pneumatic cells and the conjunction between 
the cells and the middle ear and the Eustachian tube is one of the proper ways that the 
infection and inflammation spread not only to the mastoid appendage but also to differ-
ent parts of the temporal mastoid bone [12, 13]. In addition, the patients who were given 
chemotherapy or underwent organ transplantation surgery are mostly immunocompro-
mised which caused the enhancement of the of otomastoiditis [9, 14]. If treatment for 
acute or chronic ear infection fails, the infection can spread to other areas of the head 
and neck. Even mastoid infections of the ear can be life-threatening disorders such as 
meningitis, subdural infections, brain abscesses, petrosal infections located between the 
inner and middle ears, temporal bone infections, and paralysis of the face [8]. The con-
cept of the degree of pneumatization of the temporal bone is very important in terms of 
surgery and pathophysiological care of many temporal bone diseases [8]. A wide range 
of inflammatory, neoplastic, vascular, fibrous, and traumatic changes with opacification 
in the middle ear and mastoid have been shown to assist specialists in diagnosing ear 
disease [8]. Sclerosis and opacification of the middle ear and mastoid air cells are key CT 
features of various ear diseases including acute otomastoiditis, necrotizing otitis externa, 
chronic otomastoiditis and cholesteatoma [8]. There are some other key CT features of 
mentioned ear diseases, for instance: CT features of acute otomastoiditis are middle ear 
and mastoid opacification with liquid levels and probably bone demolition [8]. Vast soft-
tissue inflammation with middle ear and mastoid opacification and skull base osteomy-
elitis leading to bony demolition is the key CT features of necrotizing otitis externa [8]. 
For chronic otomastoiditis there are middle ear and mastoid opacification with mastoid 
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trabeculae inspissating, sclerosis, and cell sabotage, probably ossicular chain abrasion 
[8]. Also, cholesteatoma causes middle ear and/or mastoid soft-tissue opacification with 
ossicular, caul tympani, or scutum abrasion, probably labyrinthine fistulas [8]. Mastoid 
process involved in some other diseases for instance, covid19 [15]. There is a poor corre-
lation between mastoiditis on CT imaging with the clinical diagnosis which emphasizes 
the importance of CT images [13]. Clinical intervention for opacification in the mastoid 
process is very crucial after a diagnosis [16]. In some cases, we witness the discrepancies 
between CT reports and surgical findings regarding middle ear opacification which is 
mostly caused by misdetection of radiologists in imaging [17].

To find the solution for usual issues in clinical actions such as eruptively radiologists’ 
workloads and innate challenges of explicating of medical images, the usage of deep 
learning has been explored by many studies in order to find the best model in terms of 
analyzing them.

There are so many achievements by using deep learning methods in diverse functions 
of computer vision for instance image classifications, object recognition, localization, 
and segmentation in natural images [18]. Convolutional Neural Networks (CNN) are 
used in medical images for detecting and evaluating illnesses [18]. Diagnosis of unique 
traits of medical images is customarily carried out by experts for detecting diseases. 
Neural networks or deep learning in various medical fields have shown great success. 
Automated diagnosis by artificial intelligence has recently been the focus of specialist 
physicians due to the significant decrement in error and high speed of diagnosis [18]. 
In some fields, the results were excellent compared to those of specialists [19, 20]. The 
main problem with generating CNN is its need for large number of training data which 
is not feasible in most cases [21]. Alternatively, pre-trained public CNN models for natu-
ral images could be utilized and fine-tuned to a particular usage which is named Trans-
fer learning [21]. Transfer learning is the concept of dominating the cloistered learning 
template and using knowledge obtained for one task and solving related ones. In transfer 
learning, most of the network layers are transferred to the new model. But the difference 
is in the Fully-connected layers which are changed based on the new set of classes [21]. 
Previous studies have shown that the use of transfer learning in medical imaging has 
better results than building CNN from scratch [19, 21].

Some recent studies were performed for automatic diagnosis of ear diseases by using 
endoscopic images. A study was conducted in for diagnosing otitis media and they got 
81.58% accuracy via decision and 86.84% via neural networks [22]. The other study 
performed by Cha et al. [23] in which the otoendoscopic images were used via public 
convolution-based deep neural networks to categorize common ear illnesses (Normal, 
Attic retraction, Tympanic perforation, Otitis externa ± myringitis, Tumor) [23]. Some 
ear disorders only can be diagnosed by computed tomography scans. The most rele-
vant study conducted regarding mastoid abnormalities was introduced in radiographic 
images [24]. Since the mastoiditis incidence is mostly occurred in under two years old 
children who are very susceptible to radiation exposure [24]. With using multiple views, 
the area under the curve of their proposed algorithm was 0.971, 0.978, and 0.965 for the 
gold standard, temporal, and geographic external test sets, respectively [24]. And also 
the sensitivity and specificity of their method were 96.4% and 74.5% respectively [24]. 
However, the most detailed abnormalities in tiny parts of the middle ear such as petrosal 
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and sigmoid sinus can’t be detected in the radiographic images, and the use of radiogra-
phy has obsoleted [25]. The most general technique utilized to elicit the details of images 
of the ear cavity is computed tomography scan (CT scan) [25]. The processing of mas-
toid air cells is only partially represented on a CT scan by Olivier Cros [26]. In [27] a 
two-class (normal and abnormal) classifier based on convolutional neural networks deep 
learning model was introduced. The proposed model has an accuracy of 98.10%, how-
ever, this study classifies only normal and abnormal mastoids.

In this paper the first and robust deep learning-based approaches is introduced to 
diagnose mastoid abnormalities in five groups (1. Complete pneumatization, 2. Opaci-
fication in pneumatization, 3. Partial pneumatization, 4. Opacification in partial pneu-
matization, 5. None pneumatized). The proposed method can reduce the analysis of the 
large and complex CT images which may be a tedious and complex task for clinicians.

This paper is organized as follows. In Section “Materials and methods”, we explain the 
used dataset and also our proposed deep learning-based method. The results and perfor-
mance evaluation are presented in the “Results” section. Finally, the paper is concluded 
in the “Conclusion and discussion” Sections.

Material and methods
Materials

In this paper, 24,800 B-Scan images from 152 temporal CT scans (512px by 512px) in 
DICOM format of patients(84 female and 68 men) who have been referred to the Imam 
Reza hospital Center in Tabriz, Iran from the year 2017 to 2020 at the request of an ENT 
specialist have been obtained. The various types of abnormal mastoids were shown in 
Fig. 1. The mastoid air cells were classified by an ENT specialist and a radiologist physi-
cian into five classes.

(1)	 Complete pneumatization: Normal pneumatization and there is no Sclerosis or 
opacification.

(2)	 None pneumatized: Completely sclerotic, there is no air or opacification.
(3)	 Opacification in Complete pneumatization: There is no sclerosis, only opacification 

in the mastoid.
(4)	 Opacification in partial pneumatization: opacification in the partially pneumatized 

mastoid.
(5)	 Partial pneumatization: There is no opacification but the mastoid is partially pneu-

matized.

It should be noted that the age of all patients are more than 10 years and all images are 
scanned under the same conditions, with a specific device. The interval for each scan 
was 0.5 mm and depending on the patient’s gender, age, and skull size, the number of 
selected images was between 60 and 90 scans per ear.

To segment the right and left mastoid with predefined coordination which is covered 
all parts of the mastoid on all scans, we initially pre-processed images and the region of 
interest (ROI) of images have been extracted. For these regions, we use Otsu’s method 
(which chooses the threshold to minimize the intraclass variance of the black and white 
pixels) to compute a global threshold (level) that can be used to convert an intensity 
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image to a binary image. Then opening and hole filling morphological operators [28] are 
used to generate a binary mask. The left and right binary masks to segment the mastoid 
region are shown in Fig. 2.

The frequency distribution for each category based on ENT and radiologist diagnosis, 
is illustrated in Fig. 3.

Figure 3 shows the percentage of intergrader agreement and the proposed model has 
been trained and evaluated based on both Graders.

Methods
Proposed methodology

In this paper sixteen common CNN networks (Xception [29], VGG16 [30], VGG19 [30], 
ResNet50 [31], ResNet101 [31], ResNet152 [31], ResNet50V2 [32], ResNet101V2 [32], 
ResNet152V2 [32], InceptionV3 [33], InceptionResNetV2 [34], MobileNet [35], Mobile-
NetV2 [36], DenseNet121 [37], DenseNet169 [37], and DenseNet201 [37]) with seven 
common optimizers (SGD [38], RMSprop [39], Adagrad [40], Adadelta [41], Adam [42], 
Adamax [42], and Nadam [43]) based on public CNN models which are pre-trained with 
the ImageNet database [44], are evaluated and are pre-trained with ImageNet database 
which learned with categorizing 1000 natural objects and is used for training to classify 
normal mastoid and its abnormalities. All 112 types of models have been trained and 
tested with a quarter of the dataset which was extracted from the entire dataset with the 
same ratio as shown in Fig. 4 (to reduce elapsed time) for five times on stage one in order 

Fig. 1  Various types of abnormal mastoids were presented. a Normal mastoid pneumatization on both right 
and left ear (class 1), b None pneumatization on both sides as yellow arrows indicate that there are no air cells 
(class 2), c Opacification in Complete pneumatization on the right mastoid which is shown by red arrows, 
left mastoid is normal, complete pneumatized, and there is no sclerosis on both sides (class 3), d Yellow 
arrows present none pneumatized parts of the mastoid on both side and the rest parts of the mastoid have 
opacified which is pointed by red arrows (class 4), e The right mastoid is partially pneumatized. The yellow 
arrow shows the sclerotic part of the right mastoid, while the left side is normal and completely pneumatized 
(class 5)
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to find a suitable network/optimizer with the highest accuracy. The batch size was 8 and 
the number of epochs for each model was selected to be 20. Eighty percent of the dataset 
is devoted to training and the others are considered for validation of data. In this study, 
the Keras library in python over a Graphics Processing Unit (GPU) with dual RTX 2080 
was used. All the raw images were transferred to grayscale and normalized between 0 
and 1 with Keras Image Data Generator library. At this library, the shear range and zoom 
range was 0.2, and also the horizontal flip was true for training data, but in order to 
evaluate the accuracy in original data, there was not any data generating for data valida-
tion. Figure 5 illustrates our proposed classification method based on the transfer learn-
ing method.

System model

Xception architecture that involves depthwise Separable Convolutions is used and trans-
ferred into a new model. The last layer of the model was altered with a new Fully-con-
nected layer which has five nodes based on five classes. This model is chosen due to 
outperform than other networks [29] and also the great results in comparison to other 
used architectures in terms of accuracy rate. The activation of the last layer for this 
model was Softmax and the optimizer used was Adamax (AdaMax has higher perfor-
mance in comparison to other optimizers which are mentioned above). The schematic 
architecture of Xception model is shown in Fig. 6.

Experimentation and results
Experimentation

Performance of the proposed approach is assessed by comparing the classification 
results with ENT and radiologist diagnosis as ground-truth labeled images. For this 

Fig. 2  A binary segmentation mask to extract mastoid region. a Original image, b Global thresholded image, 
c Use of the opening operation, d shows the result of applying the hole filling operation to the image (c). e, f 
Left and Right binary mask to segment L&R mastoid region
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purpose, two performance measurements, namely accuracy and confidence inter-
val were calculated. One of the most common metrics in multi-class classification is 
accuracy. It is straightly calculated from the confusion matrix as follow [45]:

where (TP: true positive, FP: false positive, FN: false negative, TN: true negative)
And the Confidence Interval is the probability that a parameter will fall between a 

pair of values around the mean [46]. It estimates the rating of uncertainty or certainty 
in a sampling method and is defined as follows:

where : X  is the mean, Z is chosen from the Table 1, s is the standard deviation and n is 
the number of observations.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Confidenceinterval = X ± Z
s

√
n

Fig. 3  Frequency distribution for each category based on ENT and radiologist diagnosis. a Statistics of the 
categories on a percentage based on ENT diagnosis, b based on radiologist diagnosis c Number of scans on 
each category based on ENT (Orange) and radiologist diagnosis (Blue)



Page 8 of 14Khosravi et al. Journal of Big Data            (2022) 9:62 

Fig. 4  Distribution of each category in the quarter of dataset

Fig. 5  A simple diagram of our proposed transfer learning-based classification method

Fig. 6  The schematic architecture of Xception model
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Results

After running the model for 20 epochs on the whole dataset, the results of our pro-
posed method based on both graders (grader 1 was ENT specialist, and grader2 was 
Radiologist) in terms of accuracy and the average elapsed time has illustrated in 
Table  2. The confidence of the accuracy is also has been shown in this table which 
indicates the power of the model.

The stability of this model with both graders is depicted in Fig. 7, which indicates 
that increasing the number of epochs does not rise the accuracy and the model 
reached the best performance of itself in terms of the number of epochs.

Table 1  Critical Z value in calculation of confidence interval

In this study the Z value is chosen 99% which is commonly used in most classification problems

Confidence level (%) Critical (z) value to be used in 
confidence interval calculation

50 0.67449

75 1.15035

90 1.64485

95 1.95996

97 2.17009

99 2.57583

Table 2  The results of our proposed method include 20% of the whole dataset

Grader’s 
diagnosis

Proposed 
model /
optimizer

The highest 
accuracy (%)

Accuracy of 
the last epoch 
(%)

Average 
accuracy 
(%)

Average time 
of each epoch 
(Seconds)

The 99% 
confidence 
interval of 
the average 
accuracy

Grader 1 (ENT) Xception_
Adamax

88.65 87.80 87.70 4399 0.012

Grader 2 (Radi-
ologist)

Xception_
Adamax

88.78 88.44 87.56 4398 0.012

Fig. 7  The accuracy plot of Xception model with optimizer Adamax on the whole dataset. a Based on grader 
A (ENT). b Based on grader B (Radiologist)
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Discussion and conclusion
Discussion

As we mentioned, 16 CNN networks with 7 optimizers which makes 112 types of dif-
ferent medels ran in this paper. All proposed models trained for 20 epochs on the quar-
ter of dataset for five times each. The average accuracy for validation data indicated in 
Table 3.

Based on Table  3, seventeen appropriate network/optimizer with greater accuracy 
were trained and tested on the whole dataset. Table 4 shows the results of these methods 
which have been sorted from high to low accuracy of the first stage.

As shown in Table 4, although the InceptionV3 model, trained markedly faster than 
Xception using Adamax, the Xception model with optimizer Adamax has the highest 
accuracy (average accuracy of 20 epochs) 87.70% on the whole dataset and are selected 
as a suitable deep learning-based model for classification of mastoid abnormalities. This 
accuracy is 86.33% for model InceptionV3 with the same optimizer. Xception stands for 
“Extreme Inception” that takes the axiom of inception shows better performance than 
inception as expected. It emphasizes the importance of depthwise separable convo-
lutions which Xception model is constructed based on it. In terms of optimizers, the 
AdaMax is outperformed almost with most of the other architectures. Therefore, the 
model Xception with AdaMAx optimizer have chosen as the best method which is used 
as the main and the best method. the results of this method have been shown in Table 2.

Performance comparison

In this paper the first and robust deep learning-based approaches is introduced to diag-
nose mastoid abnormalities from CT images in five groups. While there are some studies 
have focused on mastoid images processing [22–24], none of them deal with CT images.

Table 3  The average accuracy of the last epoch for each network with different optimizers after 20 
epoch (%)

Name of architectures Optimizers

SGD RMSprop AdaGrad AdaDelta Adam AdaMax Nadam

1 Xception 83.24 82.16 82.31 85.30 82.68 85.13 81.29

2 VGG16 81.47 72.26 70.48 69.27 48.15 78.39 48.15

3 VGG19 81.73 68.47 69.92 60.73 48.15 74.03 48.15

4 ResNet50 80.42 74.03 73.63 77.34 77.50 79.83 73.87

5 ResNet101 81.35 68.31 75.24 77.82 76.77 77.02 77.18

6 ResNet152 80.65 73.39 76.13 76.13 75.81 76.69 75.40

7 ResNet50V2 81.24 73.79 77.02 76.37 75.32 78.16 74.44

8 ResNet101V2 80.45 68.87 76.81 77.21 76.61 78.34 75.73

9 ResNet152V2 80.36 70.73 67.10 70.65 70.48 77.74 70.81

10 InceptionV3 81.40 78.84 80.18 82.53 80.11 85.58 77.02

11 InceptionResNetV2 82.45 81.26 82.14 84.37 82.05 82.42 79.93

12 MobileNet 75.48 79.03 80.55 81.34 78.87 82.24 80.19

13 MobileNetV2 76.85 78.31 76.05 80.29 78.52 79.61 77.11

14 DenseNet121 82.48 76.29 75.00 80.98 81.08 81.70 73.95

15 DenseNet169 82.42 76.05 73.39 80.07 77.42 81.68 75.08

16 DenseNet201 84.22 76.69 77.50 81.54 77.50 80.48 77.02
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Conclusion

Manual diagnose of mastoid abnormalities is time-consuming and could be labor-inten-
sive and inaccurate diagnose could lead to inessential surgeries. This study presents the 
first machine-learning-based model with a high rate of accuracy to diagnose mastoid 
abnormalities from CT images in five groups.

In conclusion, Adamax shows better results in comparison to other optimizers, and in 
terms of selecting models, Xception is the best choice. The opacification of the mastoid 
air cells can occur in some circumstances and can include aspects of neoplastic, vas-
cular, inflammatory, fibro-osseous, and traumatic changes. It would be better for ENT 
surgeons to have background knowledge of the mass of the opacification in the mastoid. 
After detection of mastoid abnormalities, these regions could be segmented by machine 
leaning approaches.

Future works

In this study, mastoid air cells were classified into 5 classes using CT scan images. Since 
mastoid air cell abnormalities represent a wide range of various middle ear disorders, 
for further studies, mastoid CT scans can be used to detect different types of ear dis-
eases such as Acute otomastoiditis, Necrotizing otitis externa, Chronic otomastoiditis, 

Table 4  Results of selected seventeen types of models/optimizers that have been selected based 
on average accuracy

Name of the 
architecture with its 
optimizer

Results in the 
quarter dataset 
based on Table 2 
(%)

Results in the whole dataset

The highest 
accuracy (%)

Accuracy of the 
last epoch (%)

Average 
accuracy 
(%)

Average time 
of each epoch 
(Seconds)

1 InceptionV3_
Adamax

85.58 87.54 85.99 86.33 2928

2 Xception_AdaDelta 85.30 88.93 86.69 87.58 4588

3 Xception_AdaMax 85.13 88.65 87.80 87.70 4399

4 Inception-
ResNetV2_
Adadelta

84.37 87.86 86.01 85.73 6833

5 DenseNet201_SGD 84.22 87.38 85.52 85.78 7292

6 Xception_SGD 83.24 87.64 86.75 86.75 4230

7 Xception_Adam 82.68 87.68 86.01 86.42 4489

8 InceptionV3_
Adadelta

82.53 87.34 86.73 85.81 3135

9 DenseNet121_SGD 82.48 88.15 85.58 86.14 4594

10 Inception-
ResNetV2_SGD

82.45 86.87 85.75 85.83 5997

11 Inception-
ResNetV2_Adamax

82.42 87.68 84.76 85.77 6308

12 DenseNet169_SGD 82.42 88.08 86.41 86.72 5926

13 Xception_Adagrad 82.31 88.81 87.38 87.32 4345

14 MobileNet_
Adamax

82.24 85.99 84.50 84.55 1930

15 Xception_RMSprop 82.16 87.80 85.93 85.19 4399

16 Inception-
ResNetV2_Adagrad

82.14 88.02 86.59 86.13 6284

17 Inception-
ResNetV2_Adam

82.05 87.84 84.62 85.96 6599
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Tympanosclerosis, Cholesterol granuloma, and Cholesteatoma. As a result, in addition 
to the classifying of abnormal classes, the type of disease is also could be diagnosed. 
Also, by increasing the number of data using data enhancement methods, it is possible 
to improve the performance of networks.
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