
Defining user spectra to classify Ethereum
users based on their behavior
Gianluca Bonifazi, Enrico Corradini, Domenico Ursino*  and Luca Virgili 

Abstract 

Purpose:  In this paper, we define the concept of user spectrum and adopt it to clas-
sify Ethereum users based on their behavior.

Design/methodology/approach:  Given a time period, our approach associates each
user with a spectrum showing the trend of some behavioral features obtained from a
social network-based representation of Ethereum. Each class of users has its own spec-
trum, obtained by averaging the spectra of its users. In order to evaluate the similarity
between the spectrum of a class and the one of a user, we propose a tailored similarity
measure obtained by adapting to this context some general measures provided in the
past. Finally, we test our approach on a dataset of Ethereum transactions.

Findings:  We define a social network-based model to represent Ethereum. We also
define a spectrum for a user and a class of users (i.e., token contract, exchange, bancor
and uniswap), consisting of suitable multivariate time series. Furthermore, we propose
an approach to classify new users. The core of this approach is a metric capable of
measuring the similarity degree between the spectrum of a user and the one of a class
of users. This metric is obtained by adapting the Eros distance (i.e., Extended Frobenius
Norm) to this scenario.

Originality/value:  This paper introduces the concept of spectrum of a user and
a class of users, which is new for blockchains. Differently from past models, which
represented user behavior by means of univariate time series, the user spectrum here
proposed exploits multivariate time series. Moreover, this paper shows that the origi-
nal Eros distance does not return satisfactory results when applied to user and class
spectra, and proposes a modified version of it, tailored to the reference scenario, which
reaches a very high accuracy. Finally, it adopts spectra and the modified Eros distance
to classify Ethereum users based on their past behavior. Currently, no multi-class
automatic classification approach tailored to Ethereum exists yet, albeit some single-
class ones have been recently proposed. Therefore, the only way to classify users in
Ethereum are online services (e.g., Etherscan), where users are classified after a request
from them. However, the fraction of users thus classified is low. To address this issue, we
present an automatic approach for a multi-class classification of Ethereum users based
on their past behavior.

Keywords:  Blockchain, Classification algorithm, Ethereum, User spectrum, Multivariate
Time Series, Eros distance, Extended Frobenius Norm, Etherscan

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Bonifazi et al. Journal of Big Data (2022) 9:37
https://doi.org/10.1186/s40537-022-00586-3

*Correspondence:
d.ursino@univpm.it
Department of Information
Engineering, Polytechnic
University of Marche, Ancona,
Italy

http://orcid.org/0000-0003-1360-8499
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00586-3&domain=pdf

Page 2 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

Introduction
In recent years, we have witnessed an impressive development of the blockchain tech-
nology [1]. It was initially introduced by Satoshi Nakamoto [2] to support the devel-
opment of the cryptocurrency Bitcoin [3]. Later, smart contracts were introduced in
Ethereum1 and this technology has spread to a variety of applications in the financial
sector. Finally, it is now starting to be adopted in an increasing number of sectors.

Anyone can participate to a blockchain network; therefore, different actors can be
identified in this ecosystem [4]. For example, if we consider a blockchain like Ethereum,
some actors (called miners) maintain the blockchain network, while others allow users
to trade different cryptocurrencies and/or make banking transactions. Some others deal
with auctions, others offer games or services, and so on. In some cases, there are online
systems that provide a classification of the users of a blockchain network, even if the
fraction of classified users is very small. The most known of such systems is Etherscan2,
which provides this service for Ethereum. Through Etherscan, the developer of a smart
contract can publish the corresponding code and request verification. Etherscan per-
forms such a task and, if positive, also provides a categorization of the corresponding
user3.

Knowing a user’s category can be extremely relevant in the context of blockchain net-
works [5, 6]. For example, such a knowledge allows us to find a set of competitors of a
user performing a certain activity (exchange, bancor, etc.). In addition, through appro-
priate analyses, it is possible to identify whether, within a category, there are backbones
of users connected to each other to avoid competing with one another or to gain domi-
nant positions over others. Again, thanks to even more complex analysis, it is possible to
understand the different strategies carried out by users of the same category and which
of them is the winning one.

Despite the importance of this knowledge, in the past literature, there exist very few
approaches that, given a user of a blockchain network, can automatically derive her cat-
egory [6–11]. Furthermore, the few categorization approaches currently existing are
usually tailored to the Bitcoin blockchain, while general ones have been tested on small
specific blockchains. As for Ethereum, several approaches to identify users belonging to
a certain category of interest have been proposed in the past. Instead, to the best of our
knowledge, no tailored classification approach, like the ones presented for Bitcoin, have
been proposed for Ethereum. As a consequence, the only current way to classify users
in this blockchain is based on the activity of providers of this service, like Etherscan.
However, they can classify at most those users who submit their smart contracts to them
for verification. Unfortunately, such users are only a small minority of those present in
Ethereum.

In this paper, we aim at filling this gap by proposing an automatic approach for clas-
sifying users in Ethereum. The starting point of our approach is that each Ethereum user
has an address in order to carry out her activities. It is an alphanumeric code allowing a

1  https://​ether​eum.​org/.
2  https://​ether​scan.​io/.
3  https://​ether​scan.​io/​label​cloud.

https://ethereum.org/
https://etherscan.io/
https://etherscan.io/labelcloud

Page 3 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

user to be identified in the blockchain network and to carry out transactions with other
users4. All the transactions made by a user in a certain time period allow us to recon-
struct, at least partially, her behavior in that period.

More specifically, in order to define user behaviors in a certain time interval, our
approach first builds a social network representing the users involved in Ethereum and
their transactions. Then, starting from this social network, it defines and computes a
set of features for each user. They are the number of incoming and outgoing arcs of the
node corresponding to the user, the number of incoming and outgoing transactions, the
amount of incoming and outgoing money (expressed in Ether, the Ethereum crypto-
currency), the clustering coefficient and the PageRank. The values of these features can
change over time. Given a time period T and a user uj , we call the spectrum of uj in T
the set of time series expressing the values of the features for uj in T. The spectrum of uj
provides a concise, but accurate, picture of the behavior of uj during T.

Having a spectrum for each user might lead to think that categorizing users is a sim-
ple task. In fact, in principle, one could build a spectrum for each class starting from
the spectra of the users belonging to it, identified from the training data. At this point,
given a new user, whose spectrum is known, she could be assigned to the class with the
spectrum most similar to her own. Although this procedure seems simple at an abstract
level, it is much more complex in reality. In fact, we have seen that the spectrum of a
user (and, consequently, the spectrum of a class) consists of a set of time series, one for
each feature. As a consequence, it is necessary to define a similarity measure between
two sets of time series. Furthermore, the various features are not totally independent
of each other. In fact, as we will see later, a correlation study on them showed us that
some features are totally or partially correlated. Therefore, the spectrum of a user must
be managed as a multivariate time series.

As a consequence, we must face a classification problem in which each element to
classify and each available class are represented by multivariate time series. To the best
of our knowledge, there is no out-of-the-box classification algorithm with these charac-
teristics. Thus, it is necessary to define a new one. The core of such an algorithm consists
of a metric capable of measuring the similarity degree between two multivariate time
series (which, in our case, are the spectrum of the user to be classified and the spectrum
of each class). Several metrics proposed for this purpose exist in the literature. Among
them, we mention the Dynamic Time Warping [12], the Weighted Sum SVD [13], and
the Eros distance, also known as Extended Frobenius Norm [14]. The latter has been
shown to outperform the other more traditional metrics [14]. Hence, it would represent
the natural choice in our case. Unfortunately, as we will see in "Evaluation" section, the
results obtained by applying the Eros distance to our reference scenario were not satis-
factory. However, we managed to define a variant of it. Even if more expensive in terms
of computation time (albeit, as we shall see, these costs are largely acceptable), this vari-
ant achieves a very high classification accuracy. It represents the core of our classifica-
tion approach and will be described in detail in this paper, from both a theoretical and
an experimental point of view.

4  In this paper, we do not consider the case in which different Ethereum addresses are handled by the same user. When
this happens, we investigate the addresses separately because we assume that the corresponding user could deliberately
show different behaviors in the different addresses.

Page 4 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

A more formal definition of the proposed approach involves structuring it into the
following steps:

•	 Construction of the support social network starting from the training set.
•	 Construction of the spectrum of each user from the data about her behavior

stored in the dataset and the social network built in the previous step.
•	 Selection of the classes of interest.
•	 Construction of the spectrum of each class from the spectra of the corresponding

users.
•	 Definition of a new version of the Eros distance tailored to our scenario.
•	 For each new user:

–	 Computation of the Eros distance between her spectrum and the one of each
class.

–	 Assignment of the user to the nearest class (or to no class, if her spectrum is
very far from the ones of all classes) based on the values of the Eros distance
computed in the previous step.

We highlight that our approach, albeit designed to classify Ethereum users, can be
easily extended to other blockchains. In fact, as we will see below, the social network-
based representation of a blockchain, the definition of the spectrum of a user or a
class, and the classification algorithm are characterized by a high abstraction level.
Therefore, they can be easily applied to many different blockchains.

In summary, the main contributions of this paper are as follows: (i) we define a
social-network based model to represent Ethereum; (ii) we introduce the concept of
spectrum of a user or a class of users; (iii) we propose a multivariate representation,
instead of a univariate one, of a user’s behavior; (iv) we introduce a modified version
of the Eros distance to measure the distances between spectra; (v) we propose an
automatic multi-class algorithm (instead of the single-class existing ones) for classify-
ing Ethereum users based on their past behavior.

The outline of this paper is as follows: In "Related literature" section, we present
the related literature. Then, in "Proposed method" section, we provide the descrip-
tion of the proposed approach. In "Experiments" section, we present some experi-
ments aimed to perform an Exploratory Data Analysis on our dataset and tune our
approach. In "Evaluation" section, we present the tasks we performed to evaluate our
approach and the results obtained. In "Discussion" section, we highlight the strength
of our approach, compared to the current state of the art described in detail in
"Related literature" section . Finally, in "Conclusion" section, we draw our conclusions
and highlight some possible future developments of our research.

Related literature
After the introduction of Bitcoin in 2008 [2], many cryptocurrencies have been cre-
ated and have spread [15]. This prompted researchers to investigate both the devel-
opment of this phenomenon and the issues related to it [16–21]. Indeed, while the

Page 5 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

growth of cryptocurrencies has opened new opportunities, it also led to new chal-
lenges to face and several problems to overcome.

As a matter of fact, malicious users have found in cryptocurrencies new opportunities
for profit by deceiving newcomers [22], thanks also to the fact that blockchains guaran-
tee a certain degree of anonymity [23, 24]. Many researchers have proposed approaches
to detect frauds, scams and, generally, illegal transactions on several cryptocurrencies,
such as Bitcoin and Ethereum [25–28]. Other ones have focused on tracking accounts
and people, or groups of people, who performed these illegal acts [29–31]. This last chal-
lenging issue has paved the way to the more general problem of classifying and charac-
terizing accounts, addresses and smart contracts in a blockchain [32, 33].

As for this topic, the authors of [7] propose to characterize an entity in the Bitcoin
blockchain by analyzing information revealed by the patterns of the transactions made
by its neighbors. Here, the term “entity” is used to denote the set of the addresses of a
single user. This way of proceeding is motivated by the fact that a user can have associ-
ated several addresses in the Bitcoin blockchain. The approach of [7] models the Bitcoin
blockchain as a directed weighted bipartite graph. Using the WalletExplorer website, the
authors of [7] obtain a final labeled dataset with 30,331,700 addresses, associated with
272 entities. These are divided into five categories, namely Exchange, Service, Gambling,
Mining Pool and DarkNet Marketplace. Classification is performed using 315 features
belonging to five different categories, namely address, entity, time, centrality and motif.
This approach achieves an overall accuracy of 0.85 with the Logistic Regression classifier
and 0.92 with the LightGBM one.

The authors of [6, 8] propose a multi-class service identification of Bitcoin addresses
based on a summarization of transaction history. Specifically, the authors of [6] consider
eight parameters to perform this task. Using WalletExplorer and Blockchain.info, they
identify seven types of Bitcoin-enabled services, along with a set of more than 26,000
addresses associated with them. Starting from this training set, they achieve a classifi-
cation accuracy of 0.70 (resp., 0.72) in the address-based (resp., owner-based) scheme
using a random forest classifier. The authors of [8] start from the approach proposed
in [6] but add two more parameters to support classification. Using a dataset of 13 mil-
lion transactions, they evaluate the new set of features with eight different classifiers.
Proceeding in this way, they manage to improve the results obtained in [6]. In fact, they
achieve a Micro F1 score equal to 0.87 and a Macro F1 score equal to 0.86 with the
LightGBM classifier.

The authors of [9] present a new approach to decrease the anonymity of Bitcoin
through entity characterization based on a cascade of machine learning models. This
approach uses data on entities, addresses and motifs as classification features. The simul-
taneous usage of several machine learning models, each inserted several times in a cas-
cade, allows the authors to reach a very high global accuracy, equal to 0.9968. This result
is obtained after an appropriate training of all the models involved that, de-facto, tailors
the overall model on the training data. The testing campaign was performed using the
WalletExplorer dataset and the Gradient Boosting model.

The authors of [34] propose an approach focused on the detection of entities belong-
ing to a single class, i.e., Exchange. First, they model the Bitcoin blockchain as a directed
hypergraph. Then, they use this hypergraph to build classification models capable of

Page 6 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

detecting a set of discriminating features. Finally, they employ these features to decide
whether an entity belongs to the Exchange class. The accuracy achieved by this approach
is equal to 0.80, which is lower than that of other ones. However, this approach has the
important advantage of exploiting only purely structural features of the hypergraph.

Finally, in [10, 11, 35], the authors propose two different methods that perform clas-
sification and clustering of addresses in a blockchain starting from the behavior of the
corresponding users. In particular, the authors of [11] propose a deep learning based
classification method called PeerClassifier. Instead, those of [10] propose a cluster-
ing method that uses the Dynamic Time Warping similarity measure applied to two
sequences represented as two univariate time series. In both cases, the experimental
campaign is conducted on a real blockchain operating on stock trading.

In the past literature, there are some Etherscan-based approaches to classify Ethereum
users in a multi-class hierarchy. Furthermore, there are few automatic approaches that
aim at identifying addresses belonging to a specific category of Ethereum users [5, 36–41].
All of them, are single-class, i.e., they were conceived to identify users belonging to a cer-
tain class. For example, the authors of [36] (similarly to [42–44]) propose an approach to
store Ethereum data in a graph database in order to carry out analyses on it. They derive
the data of interest from Etherscan and create a hierarchy representing addresses and
their transactions. The authors of [37] propose a methodology for labeling the addresses
of cryptocurrencies. First of all, they classify cryptocurrencies in two groups. The for-
mer includes those with an Unspent Transaction Output, such as Bitcoin and Litecoin5.
The latter comprises account-based cryptocurrencies, such as Ethereum and EOS6. After
this, based on their experience in the field (they work at Binance.com), they propose an
approach to label addresses of the first and second cryptocurrency type and verify it on
Bitcoin and Ethereum. The authors of [5, 39, 45] propose an approach to detect phishing
accounts in Ethereum. It first collects the data of interest from Etherscan and uses this data
to build an Ethereum transaction network. Then, it applies a network embedding method
to extract latent features of the accounts performing phishing activities. Finally, it uses
these features to train a one-class Support Vector Machine. In [38], the author proposes
an approach to cluster Ethereum addresses in order to identify entities controlling multiple
addresses. The clustering task is done considering the following features: deposit address,
multiple participation in airdrops and token authorization mechanisms. The author shows
that his approach can cluster 17.9% of all active externally owned account addresses. He
also finds that there are more than 340,000 entities that likely control multiple addresses.
The authors of [40] propose an approach to detect Ponzi schemes implemented as smart
contracts in Ethereum (also called “smart Ponzi schemes”). First, they manually identify
200 smart Ponzi schemes in Ethereum. Then, starting from the analysis of these schemes,
they extract features to recognize smart Ponzi schemes. Finally, they use the extracted fea-
tures to identify new smart Ponzi schemes. They show that their approach achieves a very
good accuracy and estimate that there are at least 500 smart Ponzi schemes running on
Ethereum.

5  https://​litec​oin.​org/.
6  https://​eos.​io/.

https://litecoin.org/
https://eos.io/

Page 7 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

Proposed method
In this section, we present our approach. As mentioned in the Introduction, it consists of sev-
eral steps, each introducing innovations with respect to the corresponding tasks proposed in
the past. More specifically, the outline of our approach is as follows:

1.	 Construction of a social network supporting the representation of a training set concern-
ing Ethereum users and their behavior.

2.	 Construction of the spectrum of users of the training set from their data stored in the
dataset and some metrics computed on the social network built at Step 1.

3.	 Selection of the classes of interest. These are presumably the ones most prevalent in the
dataset and, thus, in Ethereum. However, if we want to focus on one or more uncommon
classes (e.g., for studying an outlier class), we can do it.

4.	 Construction of the spectrum of each class selected at Step 3 starting from the spectra of
the users of the training set associated with that class.

5.	 Definition of a new version of the Eros distance tailored to our scenario and computation
of the corresponding weights starting from the dataset.

6.	 For each user to be classified (whether she belongs to the test set or is a new user of whom
nothing is known):

(a)	 Construction of the corresponding spectrum.
(b)	 Computation of the Eros distance between the spectrum built at Step 6(a) and the

class spectra built at Step 4.
(c)	 Assignment of the user to the nearest class according to the values of the Eros dis-

tance computed at Step 6(b). Otherwise, assignment of the user to no class if the
Eros distance between her spectrum and that of all available classes is higher than a
certain threshold.

In the next subsections, we describe the various steps of our approach in detail.

Modeling a blockchain as a social network

A blockchain can be modeled through a social network in a very direct way. In fact,
the social network nodes can represent the blockchain addresses, while its arcs can
denote the transactions between the addresses corresponding to the involved nodes.
The capability of building such a model for a blockchain leads to the possibility of
extracting knowledge about the behavior of blockchain actors by employing the
Social Network Analysis based techniques proposed in the past [46–48]. In the fol-
lowing, we show this property taking Ethereum as the reference blockchain because
it is the blockchain of interest for this paper. However, we point out again that our
approach to build and characterize a social network from a blockchain (and, conse-
quently, the next classification approach representing the core of this paper) can be
applied to most blockchains. Indeed, the features used to model Ethereum as a social
network (such as the sender, receiver and timestamp of a transaction, and the amount
of transferred money) are also present in many other blockchains, like Bitcoin, Lite-
coin, and so on.

Page 8 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

After this necessary preliminary remark, we can now see how a social network G ,
representing the Ethereum blockchain, can be built. Specifically:

Here, N is the set of nodes of G . A node n ∈ N corresponds to an Ethereum address that
has made at least one transaction. Since there is a biunivocal correspondence between a
node of G and an Ethereum address, in the following we will use these two terms inter-
changeably. Each node n has associated a label ln , indicating the class which it belongs to
(see below); ln is set to null if no class has been assigned to n yet.
A represents the set of arcs of G . There is an arc a = (ni, nj ,TrSij) ∈ A if there was at least

one transaction from ni to nj . TrSij consists of a set of triplets (trijk , τijk , vijk) , where trijk rep-
resents the kth transaction from ni to nj , τijk indicates the corresponding timestamp and vijk
denotes the amount of Wei7 transferred from ni to nj through trijk.

Modeling Ethereum as a social network allows us to use various Social Network Analysis
measures to characterize each Ethereum address. In particular, we chose a set F of features
that can support in distinguishing one class from another. They are:

•	 In-degree: it represents the number of arcs incoming to ni and, therefore, the number
of nodes of G pointing to ni . It can be determined by computing the cardinality of the set:

•	 Out-degree: it denotes the number of arcs outgoing from ni and, therefore, the number
of nodes of G which ni points to. It can be determined by computing the cardinality of the
set:

•	 In-transaction: it indicates the number of transactions towards ni made by the
nodes of G . It can be computed as:

 where |TrSji| denotes the cardinality of the set TrSji.
•	 Out-transaction: it represents the number of transactions towards the nodes of G

made by ni . It can be computed as:

•	 In-value: it denotes the total amount of Wei received by ni . It can be computed as:

•	 Out-value: it indicates the total amount of Wei sent by ni . It can be computed as:

G = �N ,A�

INi = {nj|(nj , ni,TrSji) ∈ A}

OUTi = {nj|(ni, nj ,TrSij) ∈ A}

∑

nj∈INi

|TrSji|

∑

nj∈OUTi

|TrSij|

∑

nj∈INi

∑

k=1..|TrSji|

vjik

7  Wei is the smallest fraction of Ether; it corresponds to 10−18 Ethers.

Page 9 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

•	 Clustering-coefficient: it represents the clustering coefficient of ni . Recall that, in
Social Network Analysis, this parameter is an indicator of the tendency of ni and its neigh-
bors to form a cluster.

•	 PageRank: it denotes the PageRank of ni . This parameter is an indicator of the number of
links received by ni , the centrality of the neighbors of ni and their propensity to link to each
other [49].

In our reference scenario, the time factor plays a key role. As a consequence, our model should
take time into account. In fact, users continuously make transactions on Ethereum, which
leads to continuous changes in the structure of the corresponding social network and the
labels of its arcs.

In order to take time into consideration, given a time instant t, we denote with G(t) the
social network associated with Ethereum that considers the transactions made on that block-
chain from its appearance until t and, therefore, the transactions whose timestamp is less than
or equal to t.

Similarly, given two time instants tα and tβ , we can build a social network G(tα , tβ) repre-
senting Ethereum, and the transactions made on it, in the time interval (tα , tβ] . More formally,
G(tα , tβ) considers only the transactions on Ethereum such that the corresponding timestamp
is higher than tα and less than or equal to tβ.

Defining the spectrum of a user or a class of users

We have introduced the eight features able to characterize an Ethereum address and we have
presented the social network G(tα , tβ) , modeling Ethereum in the time interval (tα , tβ] . We are
now able to define the concept of spectrum of an Ethereum address in (tα , tβ].

Let F be the set of features introduced in the previous section and let T = (tα , tβ] be a time
interval. We assume that T consists of a certain number of days. Let dh be the hth day of T. T
can be represented as a succession T = {dα+1 = d1, d2, · · · , dh, · · · , dq = dβ} of q days. Let
fp be a parameter of F. It can have associated a time series �p = {φp1 ,φp2 , · · · ,φph , · · · ,φpq } ,
where φph is the value assumed by fp at a constant and default time of dh (for instance, at 12:00
am).

We define the spectrum ST
i of a node ni in the time interval T as the set ST

i = {φpi |fp ∈ F and φpi is
the succession of the values assumed by fp in ni during T } . In other words, the spec-
trum of ni in T is given by a set of successions, one for each feature of F. Each succession is
made of the values assumed by the corresponding feature for the Ethereum address associated
with ni for the days belonging to T.

The spectrum ST
i can be represented by a matrix that has q rows (one for each day of T) and

nine columns. The first column is used to indicate the date, while the other eight ones corre-
spond to the features of F. In particular, the semantics of the columns is as follows:

1.	 Day: its hth element indicates the date corresponding to dh.
2.	 In-degree: its hth element denotes the number of addresses from which ni received

transactions during the time interval τh between 12:00 am of dh−1 and 12:00 am of dh.

∑

nj∈OUTi

∑

k=1..|TrSij |

vijk

Page 10 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

3.	 Out-degree: its hth element indicates the number of addresses to which ni has made
transactions during τh.

4.	 In-transaction: its hth element denotes the number of transactions received by ni
during τh.

5.	 Out-transaction: its hth element indicates the number of transactions made by ni
during τh.

6.	 In-value: its hth element denotes the amount of Wei received from ni during τh.
7.	 Out-value: its hth element indicates the amount of Wei sent by ni during τh.
8.	 Clustering-coefficient: its hth element denotes the clustering coefficient of ni in the

social network G(dh−1, dh).
9.	 PageRank: its hth element indicates the PageRank of ni in G(dh−1, dh).

Defining the new version of the Eros Distance

The algorithm for the Eros distance computation applies Principal Component Analysis [50]
to two multivariate time series, each represented by means of a matrix. First it generates the
principal components and their corresponding eigenvalues and eigenvectors. In our case, the
eigenvectors are associated with the eight spectrum features. More specifically, each eigenvec-
tor corresponds to a feature and the associated eigenvalue represents the importance of that
feature for the characterization of the address or the class which the spectrum refers to. Then,
the algorithm uses principal components and their associated eigenvectors to compute the
similarity of the two matrices associated with the multivariate time series under consideration.
It is easy and fast to implement; at the same time, as stated in [14], the Eros distance outper-
forms other traditional similarity measures for multivariate time series, such as the Dynamic
Time Warping [12], the Weighted Sum SVD [13], and so forth.

We selected the Eros distance as the reference metric for computing spectra similarities in
our classification algorithm. In fact, this computes the distance between a blockchain address
to be classified and each possible class and assigns the address to the closest class. In this con-
text, the Eros distance allows us to measure the similarity degree between two multivariate
time series representing the spectrum of the address to classify and the one of a class.

The way our algorithm proceeds and the adoption of the Eros distance allow us to perform
the address classification in a way that minimizes the distances between the spectra of the
addresses of the same class and maximizes the distances between the spectra of the addresses
of different classes.

The algorithm for the Eros distance computation uses some weights, one for each time
series considered and, therefore, one for each feature. Each weight denotes the relative impor-
tance of the corresponding time series (and, therefore, of the corresponding feature) with
respect to all the other ones.

The original version of the Eros distance described in [14] obtains these weights from
the eigenvalues associated with the eigenvectors representing the time series being con-
sidered. Initially, we applied this version but, as we will see in "Evaluation" section, the
results of the classification obtained in this way were not particularly satisfactory.

Nevertheless, we considered that the possibility, offered by the Eros distance, to asso-
ciate a single value with the distance between two sets of multivariate time series was a

Page 11 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

key feature for our context. Therefore, we planned to define a new version of the Eros
distance in which the weights are computed in a way tailored to our reference scenario.
Regarding this, we recall that, in our case, whenever the Eros distance measures the
similarity degree of two spectra, it has to consider two sets, each consisting of 8 time
series. Each time series has associated a weight and the overall sum of the weights must
be equal to 1. Therefore, in principle, we should consider 2 sets of 8 weights that can
vary in any way between 0 and 1, with the only constraint that their overall sum must
be equal to 1. It is reasonable to assume that the weights are decimal numbers with two
digits after the decimal point. Even with this assumption, the problem is still NP-hard,
because it would be necessary to exhaustively examine all the possible valid combina-
tions of weights. As a consequence, despite the fact that, at the moment, the classes are
only 4 and the features are only 8, we have judged opportune to preserve the scalability
of our approach and to determine since now a heuristics to solve it. We have defined
such a heuristics, which is reported in Algorithm 1.

Page 12 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

Our heuristics receives in input:

•	 The set Cl of the classes of interest; in our case, this set consists of the classes “Token
Contract”, “Exchange”, “Bancor” and “Uniswap”.

•	 The set SCl of the spectra of the classes of Cl; as for our dataset, these are the spectra
shown in Figures 4, 6, 8 and 10.

•	 The set Strain of the spectra of the training addresses; the element S i
train represents

the set of spectra of the training addresses assigned to the class Cli.
•	 The parameter step, which is a decimal number in the range [0, 1]. As we will see

below, it allows the management of a tradeoff between the accuracy and the com-
putation time of our heuristics. In fact, the smaller the step, the more accurate the
output of our heuristics, but the longer its computation time.

Our heuristics returns a set Wbest of weights sets, one for each class. Wbest is computed
in such a way as to minimize the Eros distance between the spectra of the addresses of
the same class and maximize the Eros distance between the spectra of the addresses of
different classes. It also uses a function Eros that receives two spectra Sx and Sy and a set
w of weights and computes the Eros distance between Sx and Sy using the weights speci-
fied in w.

For each class Cli belonging to Cl, our heuristics builds the set wt of weights as a ran-
dom combination of two-digit decimal numbers such that

∑8
k=1 w

k
t = 1 . This last con-

dition is required by the Eros distance and must be verified by any admissible set of
weights.

Starting with wt as seed, our heuristics builds a set Wtemp by increasing one of the
weights of wt of a value equal to step and decreasing another one of the same value. It
repeats this procedure for any pair of weights of wt . In doing so, it may happen that some
of the new combinations obtained are not admissible because one or both of the modi-
fied weights do not fall within the range [0, 1]. These combinations are discarded.

Once the construction of this initial version of Wtemp is finished, our heuristics pro-
ceeds with its enrichment. For this purpose, it repeats the same procedure by increasing
a weight of wt of a value equal to 2 · step and decreasing another one of the same value.
After this second iteration has been finished, it repeats the same procedure by increas-
ing and decreasing the weights of wt of a value equal to 3 · step , 4 · step , and so on. The
enrichment of Wtemp terminates when, during one iteration of this procedure, no new
admissible pair is obtained.

From this description, we can see how step acts as a regulator between accuracy and
computation time. In fact, the lower its value, the higher the number of weight sets pre-
sent in Wtemp and, consequently, the higher the accuracy of our heuristics, but the longer
its computation time. On the contrary, the higher the value of step, the lower the accu-
racy of our heuristics but the smaller its computation time.

At this point, Wtemp has been completely constructed. Now, for each set wq ∈ Wtemp ,
our heuristics applies the Eros function, with the set wq of weights, for computing the
minimum distance minq between the spectrum Si of Cli and the spectrum Sj of any
address assigned to Cli . Then, it applies Eros, with the same set of weights, for computing

Page 13 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

the maximum distance maxq between Si and the spectrum Sj of any address assigned to a
class different from Cli.

If the minimum current distance mind concerning Cli is greater than minq and the
maximum current distance maxd concerning Cli is less than maxq , then maxd is set to
maxq , mind is set to minq , wq becomes the new best current set of weights for Cli and is
assigned to W i

best.
After all the sets of weights of Wtemp have been examined, the current value of W i

best
becomes final. At this point, a new class of Cl is selected and the whole procedure
described above is repeated. After all the classes of Cl have been examined, our heuris-
tics terminates and returns Wbest.

We end this description of the heuristics with some considerations regarding its accu-
racy and computation time. As mentioned above, our heuristics has one parameter,
namely step, which acts as regulator. Its presence guarantees that our heuristics termi-
nates (in fact, it would be enough to choose a high value of step). Clearly, this is not
enough to say that our heuristics is adequate for the problem for which it was designed.
In fact, it is necessary: (i) to show that the accuracy of results is acceptable; (ii) to verify
that the computation time is acceptable and, in any case, much less than the time taken
by an exhaustive approach for defining weights; (iii) if possible, to find a default value
for step that can guarantee in most cases an excellent tradeoff between accuracy and
computation time. We will devote Section of the paper to address these issues. For now
we anticipate that: (i) we found that setting step to 0.05 guarantees an excellent tradeoff
between accuracy and computation time; (ii) the accuracy of the results obtained by our
heuristics proved to be comparable with the one of the exhaustive approach; (iii) the
computation time employed by our heuristics is much (in particular, several orders of
magnitude) less than that of the exhaustive approach. In light of these results, we can say
that our heuristics is adequate for the problem it aims to address.

Classifying users based on their spectra

In this section, we define a classification algorithm that, given a time interval T and an
address aj whose spectrum in T is known, assuming that the spectra of the four classes
of interest in T are known, is able to classify aj . In particular, the algorithm may assign aj
to one of the four classes or may conclude that aj does not belong to any of them.

We observe that the classification problem we are considering is complex because it
involves comparing spectra and calculating a similarity degree between them. In par-
ticular, each spectrum consists of a set of time series. As we saw in "Defining class spec-
tra" section, these are not independent of each other but are correlated. Even if, given
two features with a correlation degree equal to 1, we remove one of them and keep the
other, we would not have solved the problem because the remaining features would still
be partially correlated to each other. As a consequence, we must handle multivariate
time series.

Recall that, as stated in the Introduction, the past literature provides some approaches
to classify multivariate time series [51–53]. We have also specified that, to the best of
our knowledge, there is no out-of-the-box classification approach that can be easily
implemented in our case. Therefore, we preferred to define a new technique tailored to
the characteristics of the problem we want to face. This technique involves the modeling

Page 14 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

of the blockchain as a social network and the next derivation of the appropriate features
from it.

The core of such an algorithm consists of a metric able to compute a similarity degree
between multivariate time series. In order to perform this task, we rely on the Eros dis-
tance, also known as Extended Frobenius Norm [14].

Once the weights of Wtemp have been computed, the definition of the classification
algorithm is straightforward. In fact, given an address aj to be classified, it is sufficient
to compute the Eros distance between the spectrum Sj of aj and the spectrum of each
available class. aj will be assigned to the class with the minimum distance. We report the
corresponding pseudo-code in Algorithm 2.

Experiments
In this section, we present several experiments that helped us to define the details of our
approach. In particular, in "Dataset" section, we present the dataset we used for training
and testing it. In "An example of user spectrum" section, we describe an example of user
spectrum. In "Defining the classes of interest" section, we present the process that led us
to define the classes of interest. In "Defining class spectra" section, we illustrate the spec-
tra of the selected classes. Finally, in "Weights of the Eros distance" section, we present
the application, to the dataset of interest, of the method for computing the weights of
the Eros distance.

In order to carry out our experiments, we used a server equipped with 16 Intel Xeon
E5520 CPUs and 96 GB RAM with the Ubuntu 18.04.3 operating system. We adopted
Python 3.6 as programming language, its library Pandas to perform ETL operations on
data, and its library NetworkX to carry out operations on networks.

Page 15 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

Dataset

In order to carry out our analyses, we derived a dataset from Ethereum. In particular,
we downloaded the corresponding data from Google BigQuery8. The data we selected
covers a period from September 1st , 2019 to October 31st , 2019. We chose it because we
wanted to test our approach in a “normal” period for Ethereum, i.e., a period when there
were no particular speculative bubbles. In fact the latter can heavily modify user behav-
iors and deserve a separate study [4]. We selected all the transactions made on Ethereum
in that period. The total number of transactions considered in the dataset is 41,420,435,
whereas the total number of addresses is 5,553,645. We computed some statistics on the
dataset; they are reported in Table 1.

Table 1  Some preliminary statistics performed on our dataset

Parameter Value

Number of transactions 41,420,435

Total number of addresses 5,553,645

Total number of from_address 4,980,691

Total number of to_addresses 4,471,985

Cardinality of the intersection between from_address and to_address 3,899,031

Number of null from_address 1

Number of null to_address 2

Fig. 1  Number of transactions over time

8  https://​www.​kaggle.​com/​bigqu​ery/​ether​eum-​block​chain.

https://www.kaggle.com/bigquery/ethereum-blockchain

Page 16 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

The distribution of transactions over time is reported in Figure 1. From the analysis
of this figure we can see that the number of transactions is always in a range between
600,000 and 800,000. This trend is substantially constant with a slight decrease
observed in the second half of September balanced by an increase in the first half of
October. In any case, in the time interval of our dataset, we do not observe significant
peaks that could suggest the presence of a speculative bubble.

During the dataset construction we had to perform some ETL (Extraction, Trans-
formation and Loading) operations. In particular, first we removed some duplicate
transactions that were present in the dataset since they cannot exist in a block-
chain. Their presence was likely due to a download error. In addition, we removed
all transactions in which at least one field had a null value. In fact, this type of trans-
actions could not be used for our tests. After these basic tasks, we performed some
additional, more specific, ones. In particular, we removed transactions in which at
least one of the addresses involved had a wrong hexadecimal value, different from
the standard expected by Ethereum. We also removed transactions in which a “dead
address” was present, i.e., those transactions in which tokens are sent to be burned.
Last but not least, we unified all amounts of money exchanged by representing them
with a single currency, i.e., Wei.

After them, we were able to associate a dataset row with each transaction. Each row
consists of four columns, namely: (i) from_address, representing the blockchain
address starting the transaction; (ii) to_address, denoting the blockchain address
receiving the transaction; (iii) timestamp, indicating the transaction timestamp; (iv)
value, representing the amount of Wei transferred during the transaction.

We split our dataset into two parts. The former contains all the transactions made in
September 2019; it consists of 20,465,806 transactions and was used for training. The
latter comprises all the transactions made in October 2019; it consists of 20,954,629
transactions and was employed for testing.

Everything we describe in this section refers to an Exploratory Data Analysis on the
dataset, as well as on training activities. Instead, we will describe the testing activities
in "Evaluation" section.

An example of user spectrum

An example of user spectrum is shown in Table 2. It refers to the Ethereum address
encoded as 0xf0ee6b27b759c9893ce4f094b49ad28fd15a23e4 and to the
time interval T ranging from September 1st , 2019 to September 30th , 2019.

Defining the classes of interest

In order to define our classification approach, it was necessary to identify the classes of
interest. For this purpose, we exploited information provided by Etherscan. At the time
of writing, this service provider has defined 426 possible classes. Clearly, it is impracti-
cal to think of building a classification approach with such a large number of classes.
Therefore, it seemed appropriate to detect the most common ones by checking the

Page 17 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

Table 2  An example of a user spectrum

Day In-
degree

Out-
degree

In-
transactions

Out-
transactions

In-
value

Out- value Clustering-
coefficient

PageRank

2019-09-01 14 0 36 0 36 0 0.000020 0.021978

2019-09-02 11 0 24 0 24 0 0.000014 0.010526

2019-09-03 30 0 45 0 45 0 0.000019 0.003171

2019-09-04 21 0 36 0 36 0 0.000015 0.003025

2019-09-05 16 0 28 0 28 0 0.000013 0.002261

2019-09-06 22 0 46 0 46 0 0.000013 0.002272

2019-09-07 25 0 54 0 54 0 0.000014 0.002922

2019-09-08 18 0 46 0 46 0 0.000026 0.002871

2019-09-09 15 0 45 0 45 0 0.000026 0.002669

2019-09-10 22 0 63 0 63 0 0.000028 0.002312

2019-09-11 24 0 78 0 78 0 0.000031 0.002150

2019-09-12 25 0 85 0 85 0 0.000031 0.002070

2019-09-13 18 0 49 0 49 0 0.000031 0.002020

2019-09-14 8 0 22 0 22 0 0.000030 0.001925

2019-09-15 10 0 12 0 12 0 0.000029 0.001733

2019-09-16 24 0 34 0 34 0 0.000031 0.001689

2019-09-17 12 0 18 0 18 0 0.000030 0.001578

2019-09-18 24 0 34 0 34 0 0.000031 0.001543

2019-09-19 13 0 16 0 16 0 0.000031 0.001587

2019-09-20 24 0 35 0 35 0 0.000031 0.001542

2019-09-21 23 0 29 0 29 0 0.000031 0.001501

2019-09-22 12 0 20 0 20 0 0.000032 0.001494

2019-09-23 15 0 29 0 29 0 0.000032 0.001462

2019-09-24 19 0 43 0 43 0 0.000031 0.001436

2019-09-25 28 0 55 0 55 0 0.000032 0.001481

2019-09-26 20 0 31 0 31 0 0.000031 0.001436

2019-09-27 15 0 33 0 33 0 0.000031 0.001440

2019-09-28 17 0 29 0 29 0 0.000032 0.001339

2019-09-29 27 0 57 0 57 0 0.000033 0.001308

2019-09-30 19 0 27 0 27 0 0.000033 0.001308

Fig. 2  Distribution of Ethereum training addresses against the main Etherscan classes

Page 18 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

distribution of the current addresses against the classes provided by Etherscan. To this
end, we selected uniformly at random a set of 2,010,729 Ethereum addresses from the
training data of our dataset and verified their classes (if any) on Etherscan. This check
returned a class for 4,443 of them. Figure 2 shows the distribution of these addresses
against the main classes handled by Etherscan.

From the analysis of this figure, it is clear that the distribution follows a power law.
The majority of the addresses (41.99%) belongs to the class “Token Contracts”. Immedi-
ately after, there are the classes “Exchange” (22.97%), “Bancor” (14.98%) and “Uniswap”
(12.98%). Overall, these four classes cover 92.92% of Ethereum addresses labeled by
Etherscan. For this reason, we decided to focus our classification approach on them in
order to reconstruct, for each class, a very precise profile, clearly distinguishing it from
the others. The addition of more classes would have risked creating partially overlapping
class profiles with a negligible increase in the number of addresses that could be classi-
fied. The semantics of the four classes we chose is as follows:

•	 The “Token Contract” class includes addresses using tokens instead of Ether. Tokens
are an alternative currency to Ether, used to fasten up and simplify processes.

•	 The “Exchange” class includes addresses acting as money changers; these allow cli-
ents to buy and sell cryptocurrencies.

•	 The “Bancor” class includes addresses acting as banks. A bancor allows clients to
deposit and convert each available token in the network, without counterparts, auto-
matically at a given price, using a simple web wallet.

•	 The “Uniswap” class includes addresses using the “Uniswap”9 protocol for the auto-
matic exchange of tokens in Ethereum.

In Table 3, we report the number of addresses for each of these classes.

Defining class spectra

After determining the classes of interest, in this section we want to define the spectrum
of each class. As a first step, we need to check if all the features identified in "Defining
the spectrum of a user or a class of users" section are independent from each other or if
there are correlations between them.

To answer this question, for all the addresses of our training set, we computed the
spectrum with reference to the corresponding time interval, i.e., from September
1st , 2019 to September 30th , 2019. Then, we computed the overall correlation matrix

Table 3  Number of addresses belonging to each class of interest for our investigation

Class Number of
addresses

Token Contract 1866

Exchange 1021

Bancor 666

Uniswap 577

9  https://​unisw​ap.​org.

https://uniswap.org

Page 19 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

associated with all the addresses of our training set. For this purpose, we set the value of
each element of the matrix equal to the average of the values of the corresponding ele-
ments for all addresses. The matrix thus obtained is shown in Figure 3.

From the analysis of this figure we can see that there are totally correlated features. In
fact, In-transaction is totally correlated with In-value, while Out-transac-
tion is totally correlated with Out-value. Furthermore, there are other strong cor-
relations. For instance, In-degree is strongly correlated with In-transaction and
In-value, while Out-degree is strongly correlated with Out-transaction and
Out-value.

This result is extremely important because it allows us to draw the following two
relevant conclusions:

•	 In principle, we could remove one feature between In-transaction and In-
value and one feature between Out-transaction and Out-value from
the spectrum. We decided not to do so because the result refers to a specific
time interval. We believe it is plausible that it applies to the other time intervals
as well. However, since a formal proof of this is not possible, we felt it appropri-
ate to preserve all features. As a consequence of this decision, it is to be expected
that some spectrum features will have perfectly coincident trends in the follow-
ing.

Fig. 3  Correlation matrix for the spectrum features of all the addresses in the training data set

Page 20 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

•	 There are strong correlations between several spectrum features. Consequently,
they cannot be considered independent of each other and the spectrum of an
address in a time interval must be analyzed as a multivariate time series.

After considering the overall spectrum representing all users in the dataset, in the
next subsections we examine the spectrum of the four classes of interest determined
above.

Spectrum of the class “Token Contract”

Given all the nodes of the class “Token contract” in the training period, we computed
the minimum, maximum, mean and standard deviation of the values of the spectrum
features. They are shown in Table 4.

Then, in order to generate the spectrum of this class, we considered, for each feature
and for each day of the training period, the average of the corresponding values for all
the nodes of that class. The corresponding result is shown in Figure 4.

As can be seen in this figure, there are spectrum features having an identical trend, as
we expected based on what we said in "Defining class spectra" section . These are In-
transaction and In-Degree, on the one hand, and Out-transaction, Out-
degree and Out-value, on the other hand. In addition, there are strong similarities
between the trends of In-degree on the one hand, and In-transaction and In-
value on the other hand. To quantify this fact, we computed the correlation matrix
for the spectrum features of this class. It is shown in Figure 5. This figure also reveals
another interesting correlation, i.e., a strong inverse correlation between Clustering-
coefficient and PageRank.

Spectrum of the class “Exchange”

The minimum, maximum, mean and standard deviation of the values of the spectrum
features for the class “Exchange” are reported in Table 5. Figure 6 shows the spectrum of
this class.

Table 4  Minimum, maximum, mean and standard deviation of the values of the spectrum features
for the class “Token Contract”

Feature Minimum Value Maximum Value Mean Value Standard Deviation

In-degree 4.65 91.40 20.52 18.60

Out-degree 0 0 0 0

In-transaction 10.80 354.44 59.24 70.76

Out-transaction 0 0 0 0

In-value 10.81 314.44 59.24 70.76

Out-value 0 0 0 0

Clustering-coefficient 5.80 · 10−4
2.90 · 10−2

8.40 · 10−3
7.30 · 10−3

PageRank 1.61 · 10−5
9.41 · 10−5

5.97 · 10−5
2.24 · 10−5

Page 21 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

One interesting characteristic that can be observed in this spectrum is the absence
of features with constant null value. As we will see in the next subsections, when we
will examine the spectrum of the other classes, this characteristic is specific of the
class “Exchange” and cannot be found in any other classes. Already from a visual
analysis of this spectrum, we can observe that the trends of In-transaction, In-
degree and In-value are identical. Similarly, the trends of Out-transaction
and Out-value are identical. There is also a strong correlation between these last
trends and the one of Out-degree.

Again, we computed the correlation matrix for the features of this class. It is
reported in Figure 7. It shows a correlation value equal to 1 between In-degree,
In-transactions and In-value, as well as between Out-transactions
and Out-value. There is also a very high correlation, equal to 0.92, between Out-
degree and Out-transactions and between Out-degree and Out-value.
All these values fully confirm what we have deduced above from the direct observa-
tions of the trends in Figure 6.

Fig. 4  Spectrum of the class “Token Contract”

Page 22 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

Spectrum of the class “Bancor”

In Table 6, we report the minimum, maximum, mean and standard deviation of the val-
ues of the spectrum features for the class “Bancor”. In Figure 8, we show the spectrum of
this class.

From the analysis of this spectrum we can see that the trends of Out-transaction,
Out-degree and Out-value are identical. An analogous discourse is valid for the
trends of In-transaction and In-value, which, in turn, show a strong correlation
with the trend of In-degree.

Fig. 5  Correlation matrix for the spectrum features of the class “Token Contract”

Table 5  Minimum, maximum, mean and standard deviation of the values of the spectrum features
for the class “Exchange”

Feature Minimum Value Maximum Value Mean Value Standard Deviation

In-degree 73.00 322.05 145.22 96.60

Out-degree 21.40 190.13 83.78 55.43

In-transaction 84.56 387.67 173.85 81.61

Out-transaction 76.37 417.83 185.35 93.10

In-value 84.56 387.67 173.85 81.61

Out-value 76.37 417.83 185.33 93.10

Clustering-coefficient 5.26 · 10−4
1.99 · 10−2

4.99 · 10−3
5.02 · 10−3

PageRank 2.76 · 10−4
5.68 · 10−4

4.43 · 10−4
8.00 · 10−5

Page 23 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

Also for this class we quantified these correlations by computing the correlation
matrix for the features of its spectrum. In Figure 9, we report such a matrix. Its analysis
confirms all the previous observations and also highlights a good correlation between
Clustering-coefficient and In-degree. It also reveals a strong correlation
between In-transaction, In-value and In-degree, on one hand, and Out-
transaction, Out-value and Out-degree, on the other hand. This is typical of
this class of addresses that represents bankers.

Spectrum of the class “Uniswap”

The minimum, maximum, mean and standard deviation of the values of the spectrum
features for the class “Uniswap” are reported in Table 7. The spectrum of this class is
shown in Figure 10.

From the analysis of this spectrum, we can see that the trends of Out-transac-
tion, Out-degree and Out-value are identical. The same conclusion applies
to the trends of In-transaction and In-value. In addition, we can observe a
strong correlation between the trend of In-degree and the ones of In-value and
In-transaction.

Fig. 6  Spectrum of the class “Exchange”

Page 24 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

In Figure 11, we report the correlation matrix for the features of this spectrum. This
figure confirms all the previous observations. As for this class, it also shows a strong
correlation between Clustering-coefficient and PageRank and a good correla-
tion between PageRank and In-Degree.

Fig. 7  Correlation matrix for the spectrum features of the class “Exchange”

Table 6  Minimum, maximum, mean and standard deviation of the values of the spectrum features
for the class “Bancor”

Feature Minimum Value Maximum Value Mean Value Standard Deviation

In-degree 0.42 9.63 3.10 2.23

Out-degree 0 0 0 0

In-transaction 1.57 37.40 9.47 8.04

Out-transaction 0 0 0 0

In-value 1.57 37.47 9.47 8.04

Out-value 0 0 0 0

Clustering-coefficient 1.87 · 10−4
4.27 · 10−3

1.32 · 10−3
1.01 · 10−3

PageRank 8.99 · 10−7
3.57 · 10−6

1.49 · 10−6 6.21 · 10−7

Page 25 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

Weights of the Eros distance

In order to give an idea of the behavior of our heuristics for determining the weights
of the Eros distance, in Table 8 we report the set of the weights of Wtemp for the train-
ing data of our dataset. The examination of this table provides us with the following
information:

•	 As for the class “Token Contract” the most important features are In-trans-
actions and In-value. An intermediate weight is assigned to In-degree,
Clustering-coefficient and PageRank. Finally, Out-degree, Out-
transactions and Out-value have no weight.

•	 As far as the class “Exchange” is concerned, all features have roughly similar
weights.

•	 Regarding the class “Bancor”, the most important features are In-transactions,
In-value e In-degree. A fairly small weight is assigned to PageRank and
Clustering-coefficient. Finally, the other ones have no weight.

•	 As far as the class “Uniswap” is concerned, the most important features are PageR-
ank and Clustering-coefficient. A small to medium weight is assigned to the

Fig. 8  Spectrum of the class “Bancor”

Page 26 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

features In-degree, In-transactions and In-value. The other ones have
no weight.

Comparing the weights shown in Table 8 with the spectra shown in Figures 4, 6, 8 and 10
and with the correlation matrices reported in Figures 5, 7, 9 and 11, the results obtained
by our heuristics appear compatible with the knowledge that a human expert could
derive from those figures. Clearly their actual validity must be confirmed by experi-
ments; these will be illustrated in the next section.

Fig. 9  Correlation matrix for the spectrum features of the class “Bancor”

Table 7  Minimum, maximum, mean and standard deviation of the values of the spectrum features
for the class “Uniswap”

Feature Minimum Value Maximum Value Mean Value Standard Deviation

In-degree 0.42 9.63 3.10 2.23

Out-degree 0 0 0 0

In-transaction 1.57 37.40 9.47 8.04

Out-transaction 0 0 0 0

In-value 1.57 37.47 9.47 8.04

Out-value 0 0 0 0

Clustering-coefficient 1.87 · 10−4
4.27 · 10−3

1.32 · 10−3
1.01 · 10−3

PageRank 8.99 · 10−7
3.57 · 10−6

1.49 · 10−6 6.21 · 10−7

Page 27 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

Evaluation
In this section, we present the tests we carried out to evaluate the performance of our
classification approach. Specifically, in "Evaluating our approach with the original Eros
distance" section, we analyze our classification approach with the original Eros distance.
In "Evaluating our approach with an exhaustive examination of all weight com-binations
for the Eros distance" section, we consider our classification approach with an exhaustive
examination of all the combinations of the weights of the Eros distance. In "Evaluating
our approach with our version of the Eros distance" section, we analyze our classification
approach supported with the new Eros distance with step set to 0.05, which proved able
to guarantee an excellent tradeoff between accuracy and computation time. Finally, in
"Computation time analysis" section, we give an idea of the computation times associ-
ated with the various steps of our approach.

As mentioned in "Dataset" section, testing data in our dataset includes 20,954,629
transactions (i.e., all the transactions carried out on Ethereum from October 1st , 2019 to
October 31st , 2019). Similarly to what we did for training data (see "Defining class spec-
tra" section), we selected 2,120,834 Ethereum addresses uniformly at random from test-
ing data and derived the corresponding classes from Etherscan. It was able to label 4,568
addresses whose distribution is shown in Figure 12.

Fig. 10  Spectrum of the class “Uniswap”

Page 28 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

As reported in this figure, the first four classes were “Token Contract”, “Exchange”,
“Bancor” and “Uniswap”. They covered 93.73% of the Ethereum addresses labeled by
Etherscan. Table 9 reports the number of addresses assigned by Etherscan to these
classes. These assignments represent the ground truth for the experiments described in
the next subsections.

Evaluating our approach with the original Eros distance

In this section, we evaluate our classification approach with the original version of the
Eros distance for computing the similarity degree of two spectra. Recall that, in this
version, the weights are obtained from the eigenvalues associated with the eigenvec-
tors representing the time series under consideration. To perform our evaluation, we
applied our classification algorithm with the original Eros distance providing as input
to it the 4,568 testing addresses already labeled by Etherscan.

The computation time of this algorithm, when adopting the hardware framework
described in "Dataset" section, is equal to 21 seconds. It is acceptable if we consider
that we are managing multivariate time series. However, it is still high compared to
a classic classification algorithm, in which each class is represented by the value of a
single parameter.

The confusion matrix we obtained is shown in Table 10. From the analysis of this
matrix we can see that the results, albeit acceptable, are not particularly satisfac-
tory. In order to have numerical indicators capable of quantifying the goodness of

Fig. 11  Correlation matrix for the spectrum features of the class “Uniswap”

Page 29 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

the results obtained, we computed the Micro- and Macro- Average Precision, Average
Recall and Average F1-Score, as well as the overall Accuracy.

Recall that, in a multi-class classification, Micro-Average means computing Preci-
sion, Recall and F1-Score considering true positives, true negatives, false positives
and false negatives together, without distinguishing between classes. On the contrary,
Macro-Average means computing the metrics independently for each class and, then,
computing the average of the values thus obtained. Instead, the overall Accuracy is
simply defined as the ratio of the number of correctly classified instances to the total
number of instances. All the seven parameters of our interest have a value ranging in
the real interval [0, 1]; the higher the value, the higher the goodness of the approach
being evaluated [54].

As for our experiment, the values of Micro- and Macro- Average parameters and
the one of Accuracy are reported in Table 11.

Table 8  Weights combination for the Eros distance relative to each class of interest

Class Weights

Token Contract In-degree: 0.18

Out-degree: 0

In-transactions: 0.26

Out-transactions: 0

In-value: 0.26

Out-value: 0

PageRank: 0.14

Clustering-coefficient: 0.16

Exchange In-degree: 0.13

Out-degree: 0.15

In-transactions: 0.13

Out-transactions: 0.15

In-value: 0.13

Out-value: 0.15

PageRank: 0.10

Clustering-coefficient: 0.06

Bancor In-degree: 0.27

Out-degree: 0

In-transactions: 0.27

Out-transactions: 0

In-value: 0.27

Out-value: 0

PageRank: 0.10

Clustering-coefficient: 0.09

Uniswap In-degree: 0.12

Out-degree: 0

In-transactions: 0.12

Out-transactions: 0

In-value: 0.12

Out-value: 0

PageRank: 0.31

Clustering-coefficient: 0.33

Page 30 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

Fig. 12  Distribution of Ethereum testing addresses against the main categories of Etherscan

Table 9  Number of addresses belonging to each class of interest

Class Number of
addresses

Token Contract 1954

Exchange 1052

Bancor 684

Uniswap 592

Table 10  Confusion matrix of our classification algorithm with the classical version of the Eros
distance

Token Contract Exchange Bancor Uniswap

Token Contract 1632 88 224 10

Exchange 62 964 54 72

Bancor 124 20 523 17

Uniswap 18 70 20 484

Table 11  Values of some quality metrics obtained by applying our classification algorithm with the
original Eros distance on testing data

Metric Value

Accuracy 0.75

Micro Average Precision 0.74

Macro Average Precision 0.62

Micro Average Recall 0.74

Macro Average Recall 0.63

Micro Average F1-Score 0.76

Macro Average F1-Score 0.76

Page 31 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

Table 12  The best weight combination for the Eros distance obtained after an exhaustive
examination of all the possible combinations on testing data

Class Weights

Token Contract In-degree: 0.15

Out-degree: 0

In-transactions: 0.30

Out-transactions: 0

In-value: 0.30

Out-value: 0

PageRank: 0.12

Clustering-coefficient: 0.13

Exchange In-degree: 0.12

Out-degree: 0.16

In-transactions: 0.12

Out-transactions: 0.16

In-value: 0.12

Out-value: 0.16

PageRank: 0.11

Clustering-coefficient: 0.09

Bancor In-degree: 0.30

Out-degree: 0

In-transactions: 0.30

Out-transactions: 0

In-value: 0.30

Out-value: 0

PageRank: 0.06

Clustering-coefficient: 0.04

Uniswap In-degree: 0.10

Out-degree: 0

In-transactions: 0.10

Out-transactions: 0

In-value: 0.10

Out-value: 0

PageRank: 0.34

Clustering-coefficient: 0.36

Table 13  Confusion matrix of our classification algorithm with an exhaustive examination of all the
possible weight combinations for the Eros distance

Token contract Exchange Bancor Uniswap

Token Contract 1896 18 32 8

Exchange 21 984 24 23

Bancor 36 15 621 12

Uniswap 12 32 16 532

Page 32 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

This table confirms, from a quantitative viewpoint, what we have qualitatively
observed above, namely that the original eigenvalues-based method for computing
the Eros distance is not suitable for our context.

Evaluating our approach with an exhaustive examination of all weight combinations

for the Eros distance

In this section, we want to test whether satisfactory accuracy results are obtained
with a modified version of the Eros distance. In particular, we considered all the pos-
sible combinations of weights relative to the four classes of interest and chose the best
one. It is reported in Table 12.

Then, we applied our classification algorithm with the modified Eros distance and
this combination of weights. In Table 13, we report the obtained confusion matrix,
while in Table 14 we show the values of Accuracy and Micro- and Macro- Average
Precision, Average Recall and Average F1-Score.

From the analysis of these tables, we can see that the results obtained in this case
are really excellent. However, the main problem with this approach is its computa-
tion time. In fact, in order to classify 4568 testing addresses, our algorithm required
195,641 seconds. This is a much longer time than the one required by the original
version of the Eros distance. While this is still acceptable for about 4500 testing
addresses, it becomes impractical as the number of the addresseses to classify starts
to increase.

Evaluating our approach with our version of the Eros distance

In this section, we want to test the performance of our classification algorithm with our
version of the Eros distance. Specifically, in this case, the weights to be adopted for the
computation of the Eros distance are determined by means of our heuristics described
in Algorithm 1. In applying it, we set the value of the parameter step to 0.05, which has
proven to return an excellent tradeoff between accuracy and computation time.

Proceeding in this way, we obtained the weight combination shown in Table 15. Com-
paring it with the optimal one, provided in Table 12, we can see that the differences are
very small.

Then, we applied our classification algorithm, equipped with the modified Eros dis-
tance and this weight combination. In Table 16, we report the confusion matrix, while

Table 14  Values of some quality metrics obtained by applying our classification algorithm with an
exhaustive examination of all the possible weight combinations for the Eros distance

Metric Value

Accuracy 0.97

Micro Average Precision 0.94

Macro Average Precision 0.93

Micro Average Recall 0.94

Macro Average Recall 0.93

Micro Average F1-Score 0.94

Macro Average F1-Score 0.93

Page 33 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

in Table 17 we report the values of Accuracy and Micro- and Macro- Average Precision,
Average Recall and Average F1-Score.

These tables show that the goodness of our algorithm slightly degrades, compared to
the one obtained by an exhaustive approach. However, it continues to be very high.

Table 15  The best weight combination for the Eros distance obtained by applying our heuristics on
testing data

Class Weights

Token Contract In-degree: 0.17

Out-degree: 0

In-transactions: 0.28

Out-transactions: 0

In-value: 0.28

Out-value: 0

PageRank: 0.14

Clustering-coefficient: 0.13

Exchange In-degree: 0.13

Out-degree: 0.13

In-transactions: 0.13

Out-transactions: 0.13

In-value: 0.13

Out-value: 0.13

PageRank: 0.12

Clustering-coefficient: 0.10

Bancor In-degree: 0.29

Out-degree: 0

In-transactions: 0.29

Out-transactions: 0

In-value: 0.20

Out-value: 0

PageRank: 0.08

Clustering-coefficient: 0.05

Uniswap In-degree: 0.12

Out-degree: 0

In-transactions: 0.12

Out-transactions: 0

In-value: 0.12

Out-value: 0

PageRank: 0.31

Clustering-coefficient: 0.33

Table 16  Confusion matrix of our classification algorithm with our version of the Eros distance

Token contract Exchange Bancor Uniswap

Token contract 1838 44 54 18

Exchange 33 956 31 33

Bancor 42 18 608 16

Uniswap 14 46 18 514

Page 34 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

In order to classify the 4568 testing addresses, our algorithm required 1410 seconds.
This is a longer time than the one required by the original version of the Eros distance.
However, it is much shorter than the one required by the exhaustive approach. This is
already an important result, but the most relevant fact is that this computation time
does not grow exponentially with the number of classes and/or the number of features,
thus ensuring the scalability of our approach.

Another very interesting characteristic is that the user can tune the tradeoff between
accuracy and computation time by simply setting the value of step, depending on the
number of classes and features she needs to consider, the accuracy degree she desires
and the time she has available. In our opinion, this tuning feature represents an addi-
tional characteristic of our approach, generally not present in the related ones proposed
in the literature and that can be extremely useful in real contexts.

Computation time analysis

In this section, we conclude the evaluation of our approach by discussing the computa-
tion time of its steps. In particular, we consider the application of our approach on the
dataset we used in this paper (Section). With our computational resources (see Section
for all details on them), the time required for the tasks of our experiments are as follows:

•	 The time required to build the training (resp., testing) network was 2,522 (resp.,
2,734) seconds.

•	 The time necessary to compute the spectra of the training (resp., testing) users was
9,234 (resp., 9,624) seconds. This is the largest computation time. It was necessary
because, for the computation of the spectrum of a user, it is necessary to compute the
clustering coefficient of the corresponding network node, which requires most of the
time indicated above.

•	 The time required to compute the spectra of the training and testing classes from the
ones of the corresponding users is negligible.

•	 The time required for classifying the training (resp., testing) users adopting our ver-
sion of the Eros distance was 1,242 (resp., 1,410) seconds.

Regarding these times, we observe that they are acceptable. This conclusion is also rein-
forced by the consideration that the class of a user is invariant, or at least varies very

Table 17  Values of some quality metrics obtained by applying our classification algorithm with our
version of the Eros distance

Metric Value

Accuracy 0.91

Micro Average Precision 0.91

Macro Average Precision 0.90

Micro Average Recall 0.91

Macro Average Recall 0.89

Micro Average F1-Score 0.91

Macro Average F1-Score 0.89

Page 35 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

slowly over time. Therefore, the classification of a user must be carried out only once or,
at least, very rarely.

Discussion
Our approach to classify Ethereum users based on their behavior has a peculiarity that
differentiates it from all the other classification approaches operating on Ethereum. In
fact, it is automatic and, at the same time, multi-class. Let us now take a closer look at
the importance of this peculiarity. The current approaches to classify Ethereum users
are based on the analysis of users’ smart contracts that they voluntarily submit to a pro-
vider of this service, such as Etherscan. However, the fraction of users thus classified is
extremely low (more specifically, at the time of writing, it is equal to 0.236%). To over-
come this difficulty, several automatic approaches to classify Ethereum users have been
proposed. However, they are all single-class. In fact, they aim to find all users belong-
ing to a certain class [5, 36–40]. They certainly represent a first response to the need
for approaches capable of classifying a huge number of users. However, such an answer
is still limited because, as we have seen in "Defining class spectra" section, more than
400 classes exist on Ethereum. And, although the most important ones are few, these
approaches have been targeted for a very specific class. Therefore, they cannot be easily
extended to find users of another class so as to simulate multi-class behavior by calling
them multiple times, once for each class of interest. Instead, our approach is automatic,
multi-class and incremental; therefore, it allows the classification of all the addresses
belonging to classes whose spectrum is known. From this point of view, it solves an open
problem and becomes an indispensable tool for all those applications needing user clas-
sification to operate [5, 6, 55].

All the automatic multi-class approaches for classifying blockchain users that we pre-
sented in Section have many differences from the one proposed in this paper. First, they
were all designed for the Bitcoin blockchain, except the ones described in [10, 11]. In
principle, these could be employed on any blockchain, but were tested on a very spe-
cific one, operating on stock trading. Instead, our approach is designed to operate on
Ethereum, even if its guidelines are general and can be fit to other blockchains in the
future.

An important difference between our approach and the related ones proposed in the
past literature lies in the fact that it introduces the concept of spectrum of a user and a
class of users. In this concept, a crucial role is played by the “time” variable. Instead, this
variable is not taken into account by most of the approaches seen in "Related literature"
section, more specifically by the ones described in [6–9, 11, 34]. The only approach that
takes time into account is the one proposed in [10]. However, it operates on univariate
time series, assuming that there is no form of correlation between features. This assump-
tion is very strong in reality and, if not verified, would lead to a decrease in the accuracy
of the results proportional to the correlation degree of features. In our approach, the
concept of spectrum allows us to consider not only the temporal evolution of features
but also their correlation. In fact, we measured the correlation degree of each pair of
features adopted and found that some of them are totally or partially correlated (see Sec-
tion). As a consequence, we decided to operate on multivariate time series, instead of

Page 36 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

univariate ones. Clearly, this makes our approach a bit more complex but allows it to
achieve very accurate results, as we have shown in Section .

Another very important feature of our approach concerns the measure of similarity
between spectra, and thus between multivariate time series. To perform this task, we
start from the Eros distance [14]. This measure is very simple and easy to implement
and, at the same time, outperforms other similarity measures for multivariate time series
previously proposed in the literature [14]. Regarding this, our approach makes an addi-
tional contribution. Indeed, it first shows, through some experiments, that the origi-
nal Eros distance does not return satisfactory results in our context. Then, it proposes
a modified version of this distance which, at the price of an acceptable increase of the
computational time, manages to reach very high accuracy values, as shown in Section .

Conclusion
In this paper, we proposed an automatic social network based approach to classify
Ethereum users. First, we saw that the classification of a user in Ethereum currently
occurs only when she requests the validation of her smart contract to a provider in
charge of this service, such as Etherscan. As a result, only a small fraction of Ethereum
users is presently classified. Our approach is automatic and, therefore, can classify
any Ethereum user. The classification of a user is based on her past behavior modeled
through the time evolution of eight parameters forming a multivariate time series,
which represents her spectrum. In order to compute the similarity between the spec-
trum of a user and that of a class, we had to fit the Eros distance to our context. We
also tested our approach on a dataset derived from Ethereum and obtained very satis-
factory results in terms of both accuracy and computation time.

In the future, we plan to develop the research topics described in this paper along
several directions. First, we would like to extend our approach in order to classify
Ethereum entities. We recall that, in the past literature, the term “entity” has been
used to denote the set of addresses of a single user. Investigating the exploitation of
multiple addresses by a single user is a challenging issue. Indeed, it is first necessary
to understand why a user is doing it. Then, it is needed to evaluate if and when it
makes sense considering the addresses all together or separately.

Afterwards, we aim at extending the way of proceeding underlying our approach in
order to define a similar approach for Bitcoin and compare it with the ones already
proposed for this blockchain.

A third extension might be in depth rather than in breadth. In fact, so far we have
modeled user behavior by means of a spectrum comprising eight “structural” features
related to transactions made by users. None of these features takes transaction rea-
sons into account. This information, although difficult to extract and process, could
be a valuable source for understanding user behavior and being able to classify users
more accurately. In the future, we plan to investigate this issue to understand whether
the benefits brought by the analysis of transaction reasons outweigh the correspond-
ing costs.

Finally, we believe it is possible to apply graph mining techniques on the social net-
work modeling Ethereum. This could lead to the identification of possible recurring
structures and motifs. The discovery of such structures could allow us to define an

Page 37 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

approach for the detection of ransom demands, fraud, blackmail spread over the net-
work or, even, activities carried out in cooperation by a group of criminals.
Acknowledgements
Not applicable.

Authors’ contributions
In this paper GB, EC, DU and LV interacted with each other in all the tasks connected with the presented research. Their
contribution is equal and this is testified by the alphabetical order used in the Author List.

Funding
Not applicable.

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 19 November 2021 Accepted: 23 March 2022

References
	1.	 Zheng Z, Xie S, Dai HN, Chen X, Wang H. Blockchain challenges and opportunities: a survey. Int J Web Grid Serv.

2018;14(4):352–75.
	2.	 Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. The cCryptography mailing list. 2008.
	3.	 Mukhopadhyay U, Skjellum A, Hambolu O, Oakley J, Yu L, Brooks R. A brief survey of cryptocurrency systems. In:

Proceedings of the international conference on privacy, security and trust (PST’16). Auckland, New Zealand. IEEE;
2016. p. 745-52.

	4.	 Bonifazi G, Corradini E, Ursino D, Virgili L. A Social Network Analysis based approach to investigate user behavior dur-
ing a cryptocurrency speculative bubble. J Inf Sci. 2021.

	5.	 Yuan Q, Huang B, Zhang J, Wu J, Zhang H, Zhang X. Detecting Phishing Scams on Ethereum Based on Transaction
Records. In: Proceedings of the international symposium on circuits and systems (ISCAS’20). Seville, Spain. IEEE;
2020. p. 1-5.

	6.	 Toyoda K, Ohtsuki T, Mathiopoulos PT. Multi-class bitcoin-enabled service identification based on transaction history
summarization. In: Proceedings of the IEEE international conference on internet of things (iThings) and IEEE green
computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE
smart data (SmartData). Halifax, NS, Canada. IEEE; 2018. p. 1153-60.

	7.	 Jourdan M, Blandin S, Wynter L, Deshpande P. Characterizing entities in the bitcoin blockchain. In: Proceedings of
the international conference on data mining workshops (ICDMW’18). Singapore. IEEE; 2018. p. 55-62.

	8.	 Lin YJ, Wu PW, Hsu CH, Tu IP, Liao SW. An evaluation of bitcoin address classification based on transaction history
summarization. In: Proceedings of the IEEE international conference on blockchain and cryptocurrency (ICBC’19).
Seoul, South Korea. IEEE; 2019. p. 302-10.

	9.	 Zola F, Eguimendia M, Bruse JL, Urrutia RO. Cascading machine learning to attack bitcoin anonymity. In: Proceedings
of the international conference on blockchain (ICBC’19). Atlanta, GA, USA. IEEE; 2019. p. 10-7.

	10.	 Huang B, Liu Z, Chen J, Liu A, Liu Q, He Q. Behavior pattern clustering in blockchain networks. Multimed Tools Appl.
2017;76(19):20099–110.

	11.	 Tang H, Jiao Y, Huang B, Lin C, Goyal S, Wang B. Learning to classify blockchain peers according to their behavior
sequences. IEEE Access. 2018;6:71208–15.

	12.	 Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In: Proceedings of the international
conference on knowledge discovery in databases (KDD’94), vol. 10. Seattle, WA, USA. AAAI Press; 1994. p. 359-70.

	13.	 Shahabi C, Yan D. Real-time Pattern Isolation and Recognition Over Immersive Sensor Data Streams. In: Proceedings
of the international conference on multimedia modeling (MMM’03). Taipei, Taiwan; 2003. p. 93-113.

	14.	 Yang K, Shahabi C. A PCA-based similarity measure for multivariate time series. In: Proceedings of the international
workshop on multimedia databases (MMDB’04). Washington, DC, USA. ACM; 2004. p. 65-74.

	15.	 Corbet S, Lucey B, Urquhart A, Yarovaya L. Cryptocurrencies as a financial asset: a systematic analysis. Int Rev Financ
Anal. 2019;62:182–99.

Page 38 of 39Bonifazi et al. Journal of Big Data (2022) 9:37

	16.	 Li X, Jiang P, Chen T, Luo X, Wen Q. A survey on the security of blockchain systems. Future Gener Comput Syst.
2020;107:841–53.

	17.	 ElBahrawy A, Alessandretti L, Kandler A, Pastor-Satorras R, Baronchelli A. Evolutionary dynamics of the cryptocur-
rency market. R Soc Open Sci. 2017;4(11):170623.

	18.	 Antonakakis N, Chatziantoniou I, Gabauer D. Cryptocurrency market contagion: market uncertainty, market com-
plexity, and dynamic portfolios. J Int Financ Mark Inst Money. 2019;61:37–51.

	19.	 Sun H, Ruan N, Liu H. Ethereum Analysis via Node Clustering. In: Proceedings of the international conference on
network and system security (NSS’19). Sapporo, Japan: Springer; 2019. p. 114-29.

	20.	 Thelwall M. Can social news websites pay for content and curation? The SteemIt cryptocurrency model. J Inf Sci.
2018;44(6):736–51.

	21.	 Wu J, Liu J, Zhao Y, Zheng Z. Analysis of cryptocurrency transactions from a network perspective: an overview. J
Netw Comput Appl. 2021;190:103139.

	22.	 Vasek M, Moore T. Analyzing the Bitcoin Ponzi scheme ecosystem. In: Proceedings of the international conference
on financial cryptography and data sSecurity (FC’18). Nieuwport, Curaçao; International Financial Cryptography
Association; 2018. p. 101-12.

	23.	 Reid F, Harrigan M. An analysis of anonymity in the bitcoin system. In: Security and privacy in social networks.
Springer; 2013. p. 197-223.

	24.	 Shen J, Zhou J, Xie Y, Yu S, Xuan Q. Identity inference on blockchain using graph neural network. In: Proceedings of
the international conference on blockchain and trustworthy systems (BlockSys21). Virtual location. Springer; 2021. p.
3-17.

	25.	 Camino R, Torres CF, Baden M, State R. A data science approach for honeypot detection in Ethereum. arXiv preprint
arXiv:​19100​1449. 2019. ArXiv.

	26.	 Chen W, Zheng Z, Cui J, Ngai E, Zheng P, Zhou Y. Detecting Ponzi schemes on Ethereum: Towards healthier block-
chain technology. In: Proceedings of the international world wide web conference (WWW’18). Lyon, France. ACM;
2018. p. 1409-18.

	27.	 Bartoletti M, Pes B, Serusi S. Data mining for detecting Bitcoin Ponzi schemes. In: Proceedings of the international
crypto valley conference on blockchain technology (CVCBT ’18). Zug, Switzerland. IEEE; 2018. p. 75-84.

	28.	 Lee C, Maharjan S, Ko K, Hong JWK. Toward Detecting Illegal Transactions on Bitcoin Using Machine-Learning
Methods. In: Proceedings of the international conference on blockchain and trustworthy systems (BlockSys’19).
Guangzhou, China. Springer; 2019. p. 520-33.

	29.	 Li Y, Cai Y, Tian H, Xue G, Zheng Z. Identifying illicit addresses in Bitcoin network. In: Proceedings of the international
conference on blockchain and trustworthy systems (BlockSys ’19). Guangzhou, China. Springer; 2020. p. 99-111.

	30.	 Kumar N, Singh A, Handa A, Shukla SK. Detecting malicious accounts on the Ethereum blockchain with supervised
learning. In: Proceedings of the international symposium on cyber security cryptography and machine learning
(CSCML’20). Be’er Sheva, Israel. Springer; 2020. p. 94-109.

	31.	 Bartoletti M, Carta S, Cimoli T, Saia R. Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact.
Future Gener Comput Syst. 2020;102:259–77.

	32.	 Lee C, Maharjan S, Ko K, Woo J, Hong JWK. Machine learning based bitcoin address classification. In: Proceedings
of the international conference on blockchain and trustworthy systems (BlockSys’20). Dali, China. Springer; 2020. p.
517-31.

	33.	 L Kiffer and D Levin and A Mislove. Analyzing Ethereum’s contract topology. In: Proceedings of the internet meas-
urement conference (IMC’18). Boston, MA, USA. ACM; 2018. p. 494-9.

	34.	 Ranshous S, Joslyn CA, Kreyling S, Nowak K, Samatova NF, West CL, et al. Exchange pattern mining in the bitcoin
transaction directed hypergraph. In: Proceedings of the international conference on financial cryptography and
data security (FC’17). Malta. Springer; 2017. p. 248-63.

	35.	 Wu SW, Wu Z, Chen S, Li G, Zhang S. Community detection in blockchain social networks. J Commun Inf Netw.
2021;6(1):59–71.

	36.	 Chan W, Olmsted A. Ethereum transaction graph analysis. In: Proc. of the International conference for internet tech-
nology and secured transactions (ICITST’17). Cambridge, MA, USA. IEEE; 2017. p. 498-500.

	37.	 Wang M, Ichijo H, Xiao B. Cryptocurrency address clustering and labeling. arXiv preprint arXiv:​20031​3399. 2020.
	38.	 Victor F. Address clustering heuristics for Ethereum. In: Proceedings of the international conference on financial

cryptography and data security (FC’20). Kota Kinabalu, Malaysia. Springer; 2020. p. 617-33.
	39.	 Wu J, Yuan Q, Lin D, You W, Chen W, Chen C, et al. Who are the phishers? Phishing scam detection on Ethereum via

network embedding. IEEE Trans Syst Man Cybernet Syst. 2020:1-11.
	40.	 Chen W, Zheng Z, Ngai ECH, Zheng P, Zhou Y. Exploiting blockchain data to detect smart Ponzi schemes on

Ethereum. IEEE Access. 2019;7:37575–86.
	41.	 Wang J, Chen P, Yu S, Xuan Q. Tsgn: Transaction subgraph networks for identifying ethereum phishing accounts. In:

Proceedings of the international conference on blockchain and trustworthy systems (BlockSys’21). Virtual location.
Springer; 2021. p. 187-200.

	42.	 Lin D, Chen J, Wu J, Zheng Z. Evolution of ethereum transaction relationships: Toward understanding global driving
factors from microscopic patterns. IEEE Trans Comput Soc Syst. 2021:1-12.

	43.	 Xie Y, Zhou J, Wang J, Zhang J, Sheng Y, Wu J, et al. Understanding ethereum transactions via network approach. In:
Graph data mining. Springer; 2021. p. 155-76.

	44.	 Xie Y, Jin J, Zhang J, Yu S, Xuan Q. Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking. In:
Proceedings of the international conference on blockchain and trustworthy systems (BlockSys21). Virtual location.
Springer; 2021. p. 133-46.

	45.	 Zhang D, Chen J, Lu X. Blockchain Phishing scam detection via multi-channel graph classification. In: Proceedings of
the international conference on blockchain and trustworthy systems (BlockSys’21). Virtual Location. Springer; 2021.
p. 241–56.

	46.	 Koohi-Var T, Zahedi M. Cross-domain graph based similarity measurement of workflows. J Big Data. 2018;5(1):1–16.

http://arxiv.org/abs/191001449
http://arxiv.org/abs/200313399

Page 39 of 39Bonifazi et al. Journal of Big Data (2022) 9:37 	

	47.	 Ebrahimi F, Asemi A, Nezarat A, Ko A. Developing a mathematical model of the co-author recommender system
using graph mining techniques and big data applications. J Big Data. 2021;8(1):1–15.

	48.	 Maduako I, Wachowicz M, Hanson T. STVG: an evolutionary graph framework for analyzing fast-evolving networks. J
Big Data. 2019;6(1):1–24.

	49.	 Maslov S, Redner S. Promise and pitfalls of extending Google’s PageRank algorithm to citation networks. J Neurosci.
2008;28(44):11103–5.

	50.	 Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab syst. 1987;2(1–3):37–52.
	51.	 Karim F, Majumdar S, Darabi H, Harford S. Multivariate LSTM-FCNs for time series classification. Neural Netw.

2019;116:237–45.
	52.	 Baydogan MG, Runger G. Learning a symbolic representation for multivariate time series classification. Data Min

Knowl Discov. 2015;29(2):400–22.
	53.	 Schäfer P, Leser U. Multivariate time series classification with WEASEL+ MUSE. arXiv preprint arXiv:​17111​1343. 2017.
	54.	 Hossin M, Sulaiman MN. A review on evaluation metrics for data classification evaluations. Int J Data Min Knowl

Manage Process. 2015;5(2):1.
	55.	 Chowdhury S, Khanzadeh M, Akula R, Zhang F, Zhang S, Medal H, et al. Botnet detection using graph-based feature

clustering. J Big Data. 2017;4(1):1–23.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/171111343

	Defining user spectra to classify Ethereum users based on their behavior
	Abstract
	Purpose:
	Designmethodologyapproach:
	Findings:
	Originalityvalue:

	Introduction
	Related literature
	Proposed method
	Modeling a blockchain as a social network
	Defining the spectrum of a user or a class of users
	Defining the new version of the Eros Distance
	Classifying users based on their spectra

	Experiments
	Dataset
	An example of user spectrum
	Defining the classes of interest
	Defining class spectra
	Spectrum of the class “Token Contract”
	Spectrum of the class “Exchange”
	Spectrum of the class “Bancor”
	Spectrum of the class “Uniswap”

	Weights of the Eros distance

	Evaluation
	Evaluating our approach with the original Eros distance
	Evaluating our approach with an exhaustive examination of all weight combinations for the Eros distance
	Evaluating our approach with our version of the Eros distance
	Computation time analysis

	Discussion
	Conclusion
	Acknowledgements
	References

