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Introduction
One the most important requirements for airlines has been providing a comfortable 
space to customers, with avoidance and mitigation of aircraft shaking being a crucial 
factor. Turbulence is among the common causes of aviation accidents [1, 2]. In addition, 
the potential increase in aircraft turbulence owing to the effects of global warming is a 
prevalent concern [3].

Upon receiving a report by a pilot related encountering one or more instances of 
severe turbulence during a flight, the corresponding aircraft must undergo main-
tenance work to confirm its airworthiness. Therefore, turbulence remains a major 
issue for airlines. In addition, if the maximum acceleration recorded exceeds the 
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operational acceleration limit of the aircraft, the scope of maintenance work increases 
considerably, thereby significantly impacting aircraft operation schedules. Therefore, 
airlines must strive to avoid severe turbulence to the best extent possible. However, if 
reports regarding turbulence rely primarily on the opinions of pilots, which tend to 
vary, variations in reports provided by them are inevitable.

Consequently, this study proposed a method for predicting turbulence occurrence, 
with an aim to contribute to the safe and comfortable operation of aircrafts. Figure 1 
outlines this method, which involves the accumulation and aggregation of open data 
and quick access recorder (QAR) data [4, 5]. In addition, the prediction of turbulence 
using machine learning methods is outlined as well, the results of which are fed back 
to airlines and pilots. Flights to and from Matsumoto Airport in Japan, on E-170 air-
crafts operated by Fuji Dream Airlines (FDA), have been observed to frequently expe-
rience turbulence during the winter season. In this study, the Matsumoto Airport was 
considered as the model airport representing mountainous areas subject to turbu-
lence. The proposed technique can also be adapted to other airports.

For conducting the study, meteorological data from Japan and turbulence informa-
tion provided by FDA were used. Because turbulence is a relatively rare event, first, 
the risk cluster was estimated. To this end, a principal component analysis (PCA) of 
the meteorological data was conducted to obtain a projection matrix W  such that the 
number of dimensions of the data to be analyzed was reduced. Subsequently, using 
the turbulence-occurrence indicator and meteorological data transformed by W  , the 
k-means method was employed to calculate the risk cluster, which is required for 
predicting the days with turbulence risk for meteorological data from the year 2019 
through support vector classification (SVC). The results based on this meteorological 
data revealed that the prediction method accurately identified the days with a risk of 
turbulence.

Fig. 1  Framework of the proposed method
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Related work
Most existing research concerning turbulence prediction has been performed from a 
meteorological perspective [6, 7], such as studies conducted to examine past turbulence 
incidents [8]. In an event that occurred in central Colorado on January 11, 1972, optimal 
conditions for strong mountain wave generation were detectable from sounding data 
12–24  h in advance and approximately 1000  km upstream [9]. Further, in the case of 
a fatal accident involving a light aircraft near Clonvina Inn, Victoria, Australia, on July 
31, 2007, the observed environment was analyzed and consequently through a three-
dimensional simulation the region where turbulence intensified was identified [10]. 
When a Boeing 777 encountered severe clear-air turbulence (CAT) over western Green-
land at an altitude of 10 km on May 25, 2010, through digital flight data recorder (DFDR) 
analysis and high-resolution numerical simulations the operation of a high-resolution 
non-hydrostatic simulation model was confirmed to predict mountain-wave turbulence 
(MWT) [11]. Thus, understanding past examples are crucial to identifying and predict-
ing the conditions for turbulence.

Currently, analysis using the QAR (Quick Access Recorder) data on board the aircraft 
is also under consideration for predicting turbulence. Further, new methods for estimat-
ing eddy dissipation rate (EDR), considered as a measurement of turbulence, through 
QAR [12], comparison of calculation algorithms [13], and development of QAR data 
analysis software to calculate meteorological quantities such as three wind components, 
wind shear risk coefficient, and turbulence intensity parameters [14] have been proposed 
as well.

In the current aviation industry, a method for turbulence detection involves the use of 
Doppler lidar [15–17]. A laser beam (using a wavelength band that is safe for the pilot’s 
eyes) can be fired into the atmosphere to observe winds in the sky. Although CAT can-
not be detected by conventional aviation weather radars, airborne predictive windshear 
(PWS) radars enhanced with algorithms designed for turbulence detection and long-
range airborne Doppler lidars have been developed and operated [18–20]. Consequently, 
turbulence detection using these systems has resulted in a reduction in the number of 
turbulence encounters by alerting pilots to the possibility of encounters.

However, in these studies, data were acquired in real time from many sensors and ana-
lyzed using a time-series approach [21]. Although turbulence forecasting with pinpoint 
accuracy is desirable, preparing a suitable environment for the sensors results in signifi-
cant cost, and thus, it is infeasible for airlines.

In recent years, owing to the accumulation of aviation data and improvements in com-
putation rapidity, the concept of turbulence prediction via machine learning has been 
introduced [22, 23]. However, studies concerning this subject are limited. Furthermore, 
determining an optimal machine learning approach for turbulence prediction is chal-
lenging. Moreover, there exists a need to utilize open data (such as meteorological data) 
to improve analysis accuracy as it can aid in the development of turbulence predictions 
that can be logically deduced from the data provided by the airlines. For example, in a 
detailed study of the causes of 700 fatal aviation accidents involving commercial airliners 
that occurred worldwide between 1990 and 2006, it was found that the composition of 
accident causes varied greatly depending region of the world, type of operation, and cat-
egory of aircraft [24]. Further, a study proposed a turbulence prediction algorithm that 



Page 4 of 16Mizuno et al. Journal of Big Data            (2022) 9:29 

was based on the examination of turbulent weather phenomena and aircraft operations 
using a stepwise multiple regression analysis model [25].

Thus, the above discussion reiterates the importance of developing of a system that 
can predict turbulence, among the most common aviation accidents, independent of the 
equipment and environment used to acquire the data.

This study attempted to approach machine learning from a non-meteorological per-
spective. PCA was employed to generate risk clusters for the data and determine the 
prediction accuracy. Several studies have followed a procedure similar to that of this 
study [26]. For instance, when attempting to identify the relevant genes for gene expres-
sion classification, the data was passed through PCA and independent component anal-
ysis methods, and based on the variants of the class obtained, the selected elements were 
individually transformed to lower dimensions. Consequently, the classification perfor-
mance of the experiment was evaluated using a support vector machine kernel classi-
fier [27]. Further, in Classifying Colon Cancer Microarray Data, PCA and Partial Least 
Square (PLS) have also been used to extract more features [13].

However, this has never been done in case of turbulence analysis. Therefore, this study 
examined the possibility of it being applied as a new method in the field for turbulence 
prediction.

Basic analysis of turbulence at matsumoto airport
In this section a basic analysis of the data collected at Matsumoto Airport is described.

Examples of the effects of turbulence on flights from Matsumoto Airport

Considering the topographical characteristics shown in Fig.  2, it can be inferred that 
flights operating from Matsumoto Airport are susceptible to mountain waves [28] from 
the Northern Alps, particularly on the route toward New Chitose Airport.

Table 1 summarizes the turbulence, presumably caused by mountain waves, reported 
by flights departing from the Matsumoto Airport. The authors were present on the flight 
that departed on December 27th, 2017, to gain a real-world understanding of the level 
of turbulence faced during a flight. Table 2 shows the meteorological conditions during 

Fig. 2  Impact of mountain waves on flights departing from Matsumoto Airport
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operation on the day of the turbulence event. These values were found to be significantly 
different from the conditions during normal operations.

Visualization of the wind direction, speed of mountain waves, and sway of aircrafts

The first step toward solving the problem involves visualizing the turbulence and its 
resulting impact on operations. Thus, a visualization depicting a severe turbulence sce-
nario was created, wherein the altitude changes during turbulence were modeled as per 
the flight of an E170 aircraft. Further, the aircraft altitude at every second was depicted 
using Google Earth Pro 7.3.4. Figure 3 shows the visual representation of a journey via 
FDA Flight 211 in January 2018, wherein the pilot encountered severe turbulence during 

Table 1  Examples of the impact of turbulence on operations

a Matsumoto Airport
b Fukuoka Airport
c New Chitose Airport
d Nagoya Airfield

Date Flight route Turbulence reported

12/12/2017 MMJa to FUKb Encountered moderate-plus turbulence while climbing

12/27/2017 MMJa to FUKb Encountered moderate-plus turbulence while climbing

01/23/2018 MMJ to CTSc Encountered severe turbulence while climbing
Destination changed to NKMd

The maintenance inspection reported no problems

Table 2  Weather conditions at the time of operation on days when turbulence occurs

Date Duration Altitude (min–
max) feet

Airspeed 
(min–max) 
kt

Windspeed 
(min–max) kt

Winddirection 
(min–max)°

Temperature 
(min–max) ℃

12/12/2017 10 s 12,026–12,466 174–184 45.3–82.1 276–287 − 19.2 to − 21.5

12/27/2017 7 s 12,832–13,121 229–255 58.5–82.9 280–316 − 24.8 to − 27.0

01/23/2018 14 s 12960–13350 198–251 23.5–72.4 230–268 − 22.9 to − 27.1

Fig. 3  Visualization of altitude changes owing to turbulence



Page 6 of 16Mizuno et al. Journal of Big Data            (2022) 9:29 

ascent. Latitude, longitude, altitude, heading, pitch, and roll recorded by the aircraft 
were reflected in the parameters of Google Earth for accurate rendering. The average 
wind directions during the turbulence were represented using red lines. In addition, the 
wind blew over the Northern Alps directed towards the aircraft (from the back to the 
front of the figure). Consequently, significant altitude changes were observed during this 
period.

Elementary analysis of turbulence occurrences using open data

To create the dataset, weather information from October 1, 2017, through March 31, 
2018, were obtained from Sunny Spot [29], which is the website homepage of the Japan 
Meteorological Agency [30]. In addition, an environmental database provided by Iowa 
State University [31] was used as well. Subsequently, a dataset with 165 rows and 45 
columns was created as an explanatory variable. Table 3 summarizes the items in this 
dataset. Using real-world QAR data from a pilot report provided by FDA, Yes/No val-
ues were obtained for indicating whether any FDA flights that either departed from or 
landed at Matsumoto airport encountered a greater than moderate (“moderate-plus”) 
or higher level of daily turbulence during the observation period. Three instances of 
moderate-plus turbulence exist in the data used in this study. These data were described 
based on “location-time-altitude-type.”

Figure  4 illustrates the boxplots of fx106-03-500-spd, Wajima-12-700-temp, Matsu-
moto-12-500-hum, and fx106-03-500-shear; here, all data are normalized. The circle, 
triangle, and square in each boxplot represent the instances of turbulence in the data. 
In addition, on the days when turbulence was observed, the wind speed and shear were 
high, while the temperature was low [33].

Methods
Turbulence‑occurrence analysis using PCA

Owing to a lack of sufficient data for observing patterns in annual turbulence, predicting 
its occurrence through supervised learning is challenging [34]. In addition, there exists a 
possibility of weather conditions affecting operations on days other than those on which 
turbulence was reported. Further, meteorological data comprises many explanatory vari-
ables, and determining the variables that contribute to turbulence is complex. Thus, in 
this study, to supplement the scarce information on the day of turbulence occurrence, 
represent the weather conditions affecting flight operations as well as contributing to 
the decision-making process of pilots and airlines in implementing flight operations in 
high-risk environments, the formation of risk clusters was determined using PCA and 
statistical information on their weather conditions. In addition, a method for determin-
ing forecast accuracy was applied as well. First, the limits of the explanatory variables in 
the PCA were reduced and the weights were used to calculate the risk clusters employ-
ing the k-means method. Consequently, the risk cluster obtained was used to predict the 
occurrence of turbulence through SVC. The program was executed in the Python 3.7.0 
environment and scikit-learn version 0.23.2 was used as well. The algorithm is described 
as follows.

(1)	 Creation of a dataset for turbulence predictions, using open data
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(2)	 Calculation of turbulence risk cluster

(a)	 A projection matrix W  is created via PCA [35]

(i) Let the i-th data be xi, and let Y  be all the rows of the data matrix X 

minus x. Y =
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matrix S of X is as follows: S = 1
n

∑n
i=1 (xi − x)(xi − x)T = 1

nY
T
Y

(ii) Let S be decomposed into singular values, S = U�V  , and let V (c) be 
the number of dimensions c acquired from V  following dimensionality 
reduction. Let W = V

(c).

Table 3  List of data used

a 500 hPa only
b Previous day
c Refers to the weather at Matsumoto Airport. Only the names of METAR elements are used; the time and altitude are not 
described
d Not available (NA) values in this field were replaced with 10,000

Weather data Time (UTC) Altitude (hPa) Descriptive variables

Name Description

fx106 (FXJP106) [32] 0000Z 500 spd Wind speed (knots)

0300Z 700 shear Wind speed differencea (knots/feet)

fx502 (FXFE502) [32] 0000Z 500 low Low pressure (yes = 1, no = 0)

trough Trough (yes = 1, no = 0)

alt Number of contour lines between 
Wajima and Tateno

MA (Matsumoto high-rise weather) 1200Zb 500 spd Wind speed (knots)

700 hum Humidity (%)

dir Wind direction (°)

temp Temperature (°C)

WA (Wajima high-rise weather) 1200Zb 500 spd Wind speed (knots)

700 hum Humidity (%)

dir Wind direction (°)

temp Temperature (°C)

TA (Tateno high-rise weather) 1200Zb 500 spd Wind speed (knots)

700 hum Humidity (%)

dir Wind direction (°)

temp Temperature (°C)

MMJ meteorological terminal air 
report (METAR)c

2310Z temp Air temperature (°C)

dwp Dew point (°C)

relh Relative humidity (%)

dir Wind direction (°)

spd Wind speed (knots)

alt Altimeter (inches)

vsby Visibility (miles)

gust Wind gust (knots)

vis1d Cloud height level 1 (feet)

vis2d Cloud height level 2 (feet)

vis3d Cloud height level 3 (feet)
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(b)	 The data are converted to principal component (PC) vector Z using W  , such 
that Z = Wx.

(c)	 The risk clusters are generated based on Z using the k-means method [19].

(i) If the set of indices of xi belonging to the j-th cluster is Ij , the center of 
gravity Gj of the cluster is Gj =

1
|Ij |

∑

i∈Ij
xi.

(ii) For each xi , calculate the distance from the center of gravity and repeat 
assigning to the cluster with the closest distance.

(3)	 Prediction of turbulence using risk clusters

(a)	 Prediction of turbulence-occurrence dates via SVC [35, 36]. Test data set X ′ is 
converted using W , Z′ = WX

′.

(i) Consider the following optimization problem for a map φ : Rc → R
c,

	 Maximize f (a) =
∑n

k=1 ak −
1
2

∑n
k=1

∑n
l=1 akalykylK

(

z
′

k , z
′

l

)

.

	 Subject to 
∑n

i=1 aiyi = 0, 0 ≤ ai ≤ C .

	 Where φ
(

z
′

k

)T
φ
(

z
′

l

)

= K
(

z
′

k , z
′

l

)

, a = (a1, a2, . . . , an)
T , yi ∈ {−1, 1}.

(b)	 Validation of predicted turbulence-occurrence dates.

Dimensionality reduction and coordinate transformation in PCA

PCA was employed to determine the factors that cause turbulence. Figure 5 depicts 
a plot for each observation date, with PCs 1 and 2 forming the x- and y-axes, respec-
tively; the points indicated by arrows represent the three actual instances of tur-
bulence. Flights with turbulence are plotted in the upper-right part of the figure. 
Figure 6 illustrates a scatter plot of the elements comprising the first and second PC 

Fig. 4  Dataset comparison by wind speed, temperature, humidity, and shear difference
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planes. As can be observed, the wind speed, contour lines, and trough elements are 
concentrated in the upper-right quadrant of the PC1-axis; the temperature elements, 
in the upper-left. It can be inferred that the farther the PC1 lies on the right-hand 
side, the higher the wind speed and the lower the temperature (i.e., there are many 
contour lines). Further, the humidity elements are present at the top of the plot, while 
wind direction and cloud height elements at the bottom indicating that in case of high 
humidity, the wind direction is negative. Thus, when most of the wind is from the 
west, on occurrence of turbulence, the wind from the southwest exerts a significant 

Fig. 5  Scatter plot of PC1 and PC2

Fig. 6  Plot of each element on PC1 and PC2 planes
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influence on the aircraft. Furthermore, the cloud height is low toward the top of the 
PC2 axis. The values of these PC loads are listed in Table 4. Figure 5 reveals that in 
PC4, troughs and cloud height were major influencing factors on the days when the 
turbulence occurred. Further, it can be observed that wind speed difference signifi-
cantly influences the PC5.

The cumulative contribution rate from PC1 to PC2 was determined as 43.23%, with 
13 components required to achieve a cumulative contribution of at least 80%. There-
fore, 13 PCs were considered to obtain the matrix W  that performs coordinate trans-
formations based on Z = Wx . Here, x is the original data and Z is the coordinate 
after transformation.

Calculation of risk clusters by k‑means method

Using the coordinate transformation matrix obtained from the PCA described in 
the previous Section, the risk cluster was calculated employing the k-means method, 
wherein the Z coordinate transformed via W  was used. Figure  7 shows the result-
ing classification into six clusters. Clusters where turbulence was expected to occur 
are indicated in red, and included almost all the dates on which turbulence was 
observed, as presented in Table 1. However, although Cluster ID 5 might have been 

Table 4  Value of each PC load

PC Item Value

PC1 (26.5%) WA-12-700-temp − 0.26

MA-12-700-temp − 0.2518

fx106-00-500-spd 0.2423

fx106-03-500-spd 0.2399

WA-12-500-temp − 0.2354

PC2 (16.7%) vis2 − 0.2675

vis3 − 0.2595

WA-12-500-dir − 0.2319

MA-12-700-hum 0.2268

TA-12-500-hum 0.2209

PC3 (7.57%) TA-12-700-spd 0.3143

WA-12-700-spd 0.2914

WA-12-500-spd 0.2871

TA-12-700-dir 0.2266

MA-12-700-temp 0.2262

PC4 (5.42%) spd 0.4332

relh − 0.3829

fx502-00-trough 0.2476

gust 0.2439

vis1 0.2398

PC5 (4.05%) dir − 0.4083

fx106-00-500-shear 0.406

fx106-03-500-shear 0.3111

WA-12-500-hum − 0.2732

MA-12-500-hum − 0.2324
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affected by turbulence, it did not significantly affect flight operations. Moreover, it is 
also probable that the other clusters were less affected by turbulence.

Figure 8 presents a comparison of the risk clusters with other clusters. It is evident 
that the risk clusters exhibit faster wind speeds, lower temperatures, lower humidity, 
and larger wind speed differences. Further, T-test or Welch’s test conducted on the 
risk cluster and the other clusters showed that the p-value was less than 0.05, con-
firming that the means of the two groups were significantly different for all the items 
in Fig. 8.

Fig. 7  Six clusters obtained via the k-means method

Fig. 8  Comparison of risk cluster and other clusters



Page 12 of 16Mizuno et al. Journal of Big Data            (2022) 9:29 

Result and discussion
Turbulence prediction for validation data

The risk clusters described in the previous chapter were used to predict the occur-
rence of turbulence using 179 data points that were collected from Table  3 in the 
year 2019. Following the normalization of this data, axis transformation was per-
formed using the transformation matrix W  described in the previous section.

Calculation of risk date using the risk cluster via SVC

The risk cluster was used as the training data to predict the turbulence dates for the 
2019 data using SVC. Table 5 lists the validation data and SVC parameters.

Figure 9 presents a comparison of the days that were predicted to exhibit turbu-
lence with those that were not. It is evident that the distributions of wind speed and 
temperature are similar to those of the risk cluster. For fx106-03-500-shear, all val-
ues between 10/01/2019 and 12/31/2019 equaled 0. It was concluded that the days 
with predicted turbulence exhibited strong wind speeds, low temperatures, and 
large wind speed differences.

Table 5  Usage data and SVC parameters

Item Value

Usage data year 2019

Corresponding dates 01/01–03/31, 10/01–12/31

Number of data points 179

Kernel function Gaussian kernel

Gamma 1/(number of data 
points × variance of data)

C 1.0

Fig. 9  Comparison of days with and without turbulence predicted for the 2019 data
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Verification of forecasted turbulence dates via SVC

Through the use of a weather map, the days with the risk of turbulence predicted 
using the risk clusters and SVC were verified; the results are summarized in Table 6. 
Turbulence risk was assigned based on four levels, categorized in increasing order of 
risk: 1 (normal), 2 (caution), 3 (warning), and 4 (critical), to render it easier to pro-
pose to airlines. Herein, the highest risk was observed on January 9, 2019, when flight 
cancellations were considered. Moreover, even on the dates when the turbulence risk 
level was at least two, passenger safety, if not flight cancellation, were seriously con-
sidered. Therefore, it was confirmed that this analysis can adequately predict turbu-
lence-risk days.

Figure 10 presents a comparison of the per-minute average of the maximum standard 
deviations (SDs) of the vertical sway of the aircraft [37, 38] obtained from actual QAR 
data against those of the predicted turbulence date calculated via SVC and the other 
days. However, 02/04/2019 was excluded because QAR data could not be obtained for 
the said date. As can be observed, from the left, the graph shows the average of the maxi-
mum SDs of the vertical sway, and the values concerning its climb and descent. Further, 

Table 6  Verification of the predicted turbulence days using the weather map

a FL represents the flight level, i.e., aircraft altitude at standard air pressure expressed in 100 s of feet

Date Level Overview of weather map information

01/05/2019 3. Warning 9 kt/1000 ft shear (wind speed change per altitude) is expected from FL200a to FL150 
over Matsumoto, and there is a high probability of mountain waves

01/08/2019 2. Caution There is a 200 kt jet over Kyushu, and it appears that the shaking will increase over the 
next day; however operations at this level are possible

01/09/2019 4. Critical Under these conditions, cancellation of the flight operation is being considered. Mod-
erate to severe turbulence is expected for a wide range of altitudes (FL180–FL7000); 
therefore, maximum caution is required
At Hanamaki Airport, four FDA flights were canceled owing to strong winds near the 
airport

01/20/2019 3. Warning Two strong jet streams are approaching. Accretion and shaking are expected on the 
Sea of Japan side, and the wind over the mountains appears to be strong. Aircrafts can 
be operated, but only with extreme caution

02/04/2019 3. Warning Shear is expected below 10,000 ft and requires considerable caution
After the cold front passes, the wind becomes stronger and mountain waves are 
expected

Fig. 10  Comparison of the average of the maximum SDs of vertical sway for days with and without 
predicted turbulence from QAR data
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the vertical sway can be observed to be generally larger on the days wherein turbulence 
is predicted. Moreover, there is considerable shaking observed during descent.

Comparison with other methods

The proposed method was compared with other methods. Table 7 shows the results of 
validation of the data in Table 3 using the cross-validation method (K = 10), where the 
records for the days when no turbulence occurred were set as true, and the accuracy was 
the highest among the methods used. The results of all methods and models show that 
the FN: False Negative item, which detects the days when turbulence is observed, is 0, 
thereby indicating that turbulence occurrence was not detected.

Conclusion
This study used open data to predict the occurrence of turbulence to render aircraft 
operations safer and more comfortable. Although turbulence occurs infrequently, it is 
a leading cause of aircraft damage and changes in flight schedules. The findings of this 
study are twofold. First, following the confirmation of the statistical information using 
the risk clusters, they were used as supervisory data to make appropriate predictions 
even for low frequency events such as turbulence. Moreover, the turbulence-risk clus-
ter was derived through k-means clustering after reducing the dimensions of available 
data via PCA, instead of using the rare instances of turbulence as the training data. In 
addition, the process of creating risk clusters provided an opportunity to examine the 
factors that influenced turbulence occurrence. In the case of high-risk events such as 
aircraft operations, this can have a synergistic effect with the experience and knowledge 
of the pilots themselves. Further, using this turbulence-risk cluster as training data, the 
turbulence occurrences for 2019 were predicted through SVC, with the obtained results 
being confirmed to be sufficiently accurate for utilization by pilots. Second, it was found 
that using open data, the prediction of turbulence occurrence was possible. Further, the 
meteorological data used in this study is routinely used by pilots and airlines, and thus 
can be used at airports other than the one covered in this study.

Table 7  Comparison with other machine learning methods

TP True Positive, TN True Negative, FP False Positive, FN False Negative

Method TP TN FP FN Model

Proposed method 148 14 1 2 Use statistical analysis as well

Tree 158 4 3 0 Fine tree, medium tree, coarse tree

LDA 160 2 3 0 Linear discriminant

Logistic regression 162 0 3 0

Kernel Naive Bayes 162 0 3 0 Kernel Naive Bayes, kernel type: Gaussian

SVM 162 0 3 0 Linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM, medium 
Gaussian SVM, coarse Gaussian SVM

KNN 162 0 3 0 Fine KNN, medium KNN, coarse KNN, cosine KNN, cubic KNN, weighted 
KNN

Ensemble 162 0 3 0 Boosted trees, bagged trees, subspace discriminant, subspace KNN

Neural network 161 1 3 0 Narrow neural network, medium neural network, wide neural network, 
bilayered neural network, trilayered neural network

Kernel 159 3 3 0 SVM kernel, logistic regression kernel
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However, there exist certain issues that need to be addressed in the future. As the pre-
sent study was focused on aircraft taking off from and landing at airports in Japan, the 
impact of the season is significant. The occurrence of turbulence over Japan is concen-
trated in the winter season. Although the present data can be used to predict turbu-
lence in Japan, further data is essential to cover all regions of the world. Moreover, to 
generalize the model, the availability of such data in various parts of the world must be 
investigated.

Although this study was conducted for predicting turbulence occurrence for Matsu-
moto Airport, the same method can be employed to analyze turbulence for other air-
ports. Further, it is suggested that the prediction accuracy of the proposed technique can 
be improved via the combination of daily aircraft data with open data, such as weather 
data. The proposed method is expected to aid in turbulence prediction and also result in 
increased systems expertise and technological advancements in combating turbulence, 
to compensate for future human resource shortages in aviation.
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