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Introduction
In 2019, a series of tweets went viral where a tech entrepreneur was complaining about 
the fact that Apple Card offered him twenty times the credit limit that it offered to his 
wife, although they had shared assets. After complaining to Apple representatives, he 
got the reply: “I don’t know why, but I swear we’re not discriminating, IT’S JUST THE 
ALGORITHM” [1, 2]. Apple co-founder Steve Wozniak replied that the same thing 
happened to him and his wife and added [3]: “Hard to get to a human for a correction 
though. It’s big tech in 2019.” These complaints led to a formal investigation into the 
potential sexist credit scoring by Apple Card [1, 2]. This example shows how predictive 
modelling is facing major challenges due to its inability to explain its decisions, which 
often stems from the use of complicated models. But why is everyone using these kinds 
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of models? It is often claimed that they have a higher performance than more simple 
models, but is this always true? How often is it the case and to what extent?

This trade-off between accuracy and comprehensibility is argubaly one of the impor-
tant debates in Artificial Intelligence (AI)1 [4, 5]. This trade-off can either limit the per-
formance of AI, if accuracy is lost due to comprehensibility restrictions (for example 
imposed by regulators) [6, 7], or hurt AI adoption, if user trust is lost due to opaqueness 
[8]. The Apple Card example shows that companies may use black box models to achieve 
higher predictive performance, but with the risk of being unable to explain their AI deci-
sions to users or regulators. However, while there has been a lot of research mentioning 
this trade-off, with most claiming there is one [5, 8–10] and others contradicting this 
[11, 12], there is no systematic study that assesses to what extent there indeed exists a 
trade-off and for what types of datasets.

The goal of this paper is to provide such a systematic study. We focus on tabular data-
sets as we believe that for these datasets the trade-off would be less clear - and pos-
sibly smaller than expected. Deep learning models, which are models composed of 
multiple layers to learn representations of data with multiple levels of abstraction [13] 
and can thus be considered as black box models, perform very well for classification on 
homogenous data such as image, audio or text but they not necessarily outperform other 
machine learning techniques on tabular datasets [14–16].

Based on the analysis of 90 benchmark datasets across different domains, we study 
the nature of the differences between the accuracies among a number of widely used a) 
opaque (“black box”) models, b) comprehensible (“white box”) models, and c) surrogate 
models used to develop a comprehensible surrogate of the opaque ones. We call the dif-
ference between (a) and (b) “Cost of Comprehensibility”, that between (a) and (c) “Cost 

Fig. 1  Definitions of the Cost of Comprehensibility, the Cost of Explainability and the Benefit of Explaining

1  We focus on prediction models trained on data using machine learning algorithms.
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of Explainability”, and that between (b) and (c) the “Benefit of Explaining” (Fig. 1).2 Our 
main findings are: first, there is indeed a trade-off but somewhat surprisingly it appears 
to be highly non-linear across datasets. Both costs are relatively small for most datasets, 
but very large for a few. Second, there are datasets for which the comprehensible models 
perform as well or better than the black box models, supporting that one should not 
forgo trying comprehensible models [17]. We call these datasets “comprehensible data-
sets”, as opposed to datasets where the black box is strictly better which we call “opaque 
datasets”. Understanding what makes a dataset “opaque” vs “comprehensible” and more 
so, given the non-linearities observed, what makes the costs very high (positive or neg-
ative) is a challenging question as it relates to understanding the data generation pro-
cesses themselves (e.g., the “nature” of the data and problem at hand). We discuss initial 
results indicating that some of the main differences between opaque and comprehensi-
ble datasets are about their inherent complexity as well as the level of noise in the data. 
The results indicate that reporting some simple characteristics of a dataset can provide 
clues, for example to users or regulators, about the potential accuracy and comprehensi-
bility trade-off. To summarize, the contributions of our paper are threefold:

•	 A benchmark study comparing state-of-the-art white box and black box algorithms 
on 90 tabular datasets, and assessing their difference in performance;

•	 An analysis of whether surrogate modelling could improve any trade-off between 
comprehensibility and accuracy;

•	 Insights in how dataset properties could predict the nature/size of the trade-off we 
study.

Background and setup of the study
What is comprehensibility?

Comprehensibility refers to the ability to represent a machine learning model and 
explain its outcomes in terms that are understandable to a human [18]. The lack of com-
prehensibility in black box models is one of their main pitfalls, as their inner working is 
hidden to the users preventing them from verifying whether the reasoning of the system 
is, for example, aligned with restrictions or preferences of how decisions are made [19–
21]. Furthermore, it is easier to debug comprehensible models or to detect bias in them, 
and it also increases social acceptance [22]. In general, there are two ways to provide 
comprehensibility in machine learning [22, 23]: intrinsic comprehensibility is acquired 
when using models that are comprehensible by nature due to their simple structure, 
which are the so-called “white box” models [23], while post-hoc comprehensibility aims 
to explain the predictions without accessing the model’s inner structure [23], as provided 
by LIME [24], SHAP [25] or counterfactual explanations [26]. Another distinction that 
can be made is between global comprehensibility and local comprehensibility. Global 
comprehensibility allows to understand the whole logic of a model and follow the rea-
soning that leads to every possible outcome, where for local comprehensibility it is pos-
sible to understand the reasons for a specific decision [22, 27]. Comprehensibility is very 

2  We note that the terms “interpretability”, “comprehensibility” and “explainability” have also been used in different ways 
in the literature.
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difficult to measure due to its subjective nature. Some compare the comprehensibility of 
models using user-based surveys [28, 29] while others based on mathematical heuristics 
[9], typically the size of the model (e.g., number of rules for a rule learner, number of 
nodes for a decision tree, or number of variables for a linear model) [30–33]. Very deep 
decision trees, for example, can be considered as less comprehensible than a compact 
neural network [34]. We use the latter, heuristic approach to measure comprehensibility 
due to its objectivity and scalability.

What are intrinsically comprehensible models?

In line with the literature, we consider small decision trees, rule sets and linear models 
as comprehensible or “white box” models [8, 22, 27, 35]. We limit the size of these mod-
els during training in order for them to be comprehensible. We opted for seven as the 
size limit for comprehensibility, based on cognitive load theory [36]. According to this 
theory, the span of absolute judgement and the span of short-term memory pose severe 
limitations on the amount of information that humans can receive and process correctly, 
with seven being the typically considered maximum size in both cases [36]. We consider 
larger decision trees3, rule sets and linear models as “black box” ones. We also consider 
three other machine learning methods in the list of black boxes we test: neural networks, 
random forests and nonlinear support vector machines. It is generally agreed upon that 
these algorithms are not comprehensible as their line of reasoning cannot be followed by 
human users. We base this choice of black box models on the results of benchmark stud-
ies in the literature, where these often are among the best performing ones, as can be 

Table 1  Models that are used in other benchmark studies

Symbol ✓ indicates that this kind of model was used in the study, and the numbers between brackets indicate the rank of 
the model (if this was included in the study)

ML 
algorithms

Count Olson et  
al. [43]

Fernandez 
et al. [44]

Zhang  
et al. [45]

Lessman 
et al. [46]

 Mayr et al. 
[47] 

Lorena 
et al. [48]

Macia 
et al. 
[49]

Random 
Forest

7 ✓ ✓ (1) ✓ (1) ✓ ✓ (3) ✓ (1) ✓

Bayesian 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓
SVM 7 ✓ ✓ (2) ✓(2) ✓ ✓ (2) ✓ (2) ✓
LR 6 ✓ ✓ ✓ ✓ ✓ ✓
Nearest 
Neighbor

6 ✓ ✓ ✓ ✓ ✓ ✓

Neural 
networks

5 ✓ (3) ✓(3) ✓ ✓(1) ✓

Decision tree 4 ✓ ✓ (4) ✓ ✓
Boosting 3 ✓ ✓ ✓(1)

Discriminant 
analysis

2 ✓ ✓

Bagging 1 ✓
Rule-based 1 ✓

3  A decision tree of eight nodes is arguably not a black box model, and may be in a “grey zone” of comprehensibility. For 
this reason, in our experiments we focus on the very large and small trees, rule sets and linear models, defined as those 
with size larger than 50 or smaller than 8 (in number of nodes/rules/coefficients) as it is a general assumption in the 
literature that smaller decision trees are more comprehensible than larger ones due to the cognitive size limit [9, 28, 37, 
38]. This focus ensures that our findings are applicable to all applications and end users, because of the arbitrariness to 
consider models with size between 8 and 50 as black box, which actually depends on the application and end user.
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seen in Table 1.4 Comparing all possible models available is of course infeasible, which 
is a practical limitation of such a study. All the papers mentioned in Table 1 compare 
different machine learning models but none investigate the difference in performance 
between the best black box model and the best white box model, nor whether this can 
be linked to any dataset properties. Many papers claim that black box models will always 
have a better performance, or on the contrary that simpler models work equally well [11, 
12], but a large-scale study about the difference of performance is missing.5

Surrogate modelling

A common practice is to mimic the predictions of a black box with a global white box 
surrogate model, in order to improve the accuracy while remaining comprehensible [50, 
51]. The typical process is to first build a black box model using the available training 
data, and then build a comprehensible model by training a white box model using the 
predictions of the black box instead of the original training data. This process is called 
surrogate modelling [22], oracle coaching [52, 53],  or rule extraction in case the white 
box model is a decision tree or rule set [6, 54]. A key metric of the quality of the surro-
gate model is fidelity, which measures how well the predictions of the surrogate model 
match those of the black box [55]. The most common goal of this kind of modelling is to 
use the surrogate model to explain the black box model, while still using the black box 
to make predictions. This requires of course that the surrogate model is (1) more com-
prehensible than the black box model and (2) sufficiently explains the predictions made 
(high fidelity).

One can also use the surrogate model instead of the black box to make predictions, in 
order to improve the performance one could achieve using only comprehensible mod-
els. A possible reason why this approach can work, instead of just training a white box 
model directly using the training data, can be that the black box model may filter out 
noise or anomalies that are present in the original training data [53, 56]. In this case, a 
comprehensible model mimicking a black box may be more accurate than a compre-
hensible model trained on the original data, as shown in some previous work [51–53]. 
Therefore, we also investigate whether surrogate modelling can lead to better perform-
ing comprehensible models and, as such, improve the trade-off we study. Specifically, for 
each dataset we train a white box on the predictions of the best performing black box for 
that dataset. We call this a surrogate white box model as opposed to a comprehensible 
model trained on the training dataset which we call a native white box model—see Fig. 1.

Dataset properties

Finally, we study whether there are simple (standard) properties of a dataset that may 
determine whether it is opaque (the best black box model outperforms the best white 

4  We do not include k-nearest neighbors and Bayesian networks, which are also used frequently in other benchmark 
studies, as it is debatable whether they can be considered as comprehensible models. K-nearest neighbors lacks global 
model comprehensibility as there are is no global model structure learned [22] and in Bayesian networks, it is not easy to 
interpret the mapping implicit in the network or do other data inference tasks, as the reasoning method is not necessar-
ily aligned with human reasoning [40, 41].
5  Besides white box and black box models, some researchers also mention the existence of “grey box” models, which 
are defined as aiming to develop an ensemble of black and white box models and acquire the benefits of both by being 
nearly as accurate as black box models but more comprehensible [23]. As the literature is not conclusive on whether 
grey boxes are always as comprehensible as white box models [23, 32, 42], we will focus only on the trade-off between 
black box and white box models in this study.
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box) or comprehensible (the reverse happens). We use a standard toolbox, Alcobaba 
[57], which automatically extracts numerous characteristics (“meta-features”) for any 
given dataset. We consider four types of dataset characteristics from this toolbox: 
general ones, which capture basic information such as the number of instances or the 
number of attributes [58]; statistical ones, which capture information about the data dis-
tribution such as the number of outliers, variance, skewness, etc. [58]; information-the-
oretic ones, which capture characteristics such as the joint entropy, class entropy, class 
concentration, etc. [58]; and so-called complexity related ones, which, for example in the 
case of a classification problem estimate the difficulty in separating the data into their 
classes [59].6 We opt for using a standard toolbox and set of dataset characteristics to 
make this analysis general, easily reproducible and simple to use in practice.

Materials and methods
Materials

We use a large benchmark study to compare the algorithms on different tabular datasets. 
Benchmark comparisons are usually developed over a few, typically standard data sets, 
as a machine learning method might perform well on some of the datasets but not gen-
eralize to a broader range of problems [43].

To perform our experiments, we use all the binary classification datasets from the 
Penn Machine Learning Benchmark (PMLB) suite [43]. This is a dataset suite that is 
publicly available on Github,7 which consists both of real-world and simulated bench-
mark datasets to evaluate supervised classification methods. It is compiled from a wide 
range of existing ML benchmark suites such as KEEL, Kaggle, the UCI ML repository 
and the meta-learning benchmark. At this moment, PMLB consists of 162 classifica-
tion datasets and 122 regression datasets. We focus on the binary classification datasets 
which amount to 90 datasets in total.

Some preprocessing was already done by the compilers of this benchmark suite. All 
the datasets were preprocessed to follow a standard row-column format and all the cate-
gorical and features with non-numerical encodings were replaced with numerical equiv-
alents. All datasets with missing data were excluded, to avoid the impact of imposing a 
specific data imputation method. The used datasets are shown in Table 3.

Methods

Our methodology is shown in Fig. 2. For each dataset we create a training and test set, 
using 75% of the data for training and 25% for testing. Both the training and the test set 
are scaled according to the parameters of the training set with Sklearn’s MinMaxScaler.8 
This estimator scales each feature individually so that it is between zero and one on the 
training set. We also use a stratified split to make sure that enough labels are present 
for the training phase. GridSearchCV from Sklearn9 is used with its default 5-fold cross 
validation to tune the hyperparameters of every model. The dataset is divided in five 

7  https://​github.​com/​Epist​asisL​ab/​pmlb.
8  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​prepr​ocess​ing.​MinMa​xScal​er.​html.
9  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​model_​selec​tion.​GridS​earch​CV.​html.

6  See Supplementary Information material.

https://github.com/EpistasisLab/pmlb
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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folds, where each time another fold is taken as the validation set. GridSearchCV then 
performs an exhaustive search over a specified hyperparameter grid, which is reported 
in the Sects. "Black Box Models", for each modelling technique, and then checks on the 
validation set which parameter settings performed best. By doing this five times, instead 
of just using one validation set, we get a more accurate representation of how the model 
behaves on unseen data, and we are not reliant on the data we used as the validation 
set. We select the best hyperparameter values for each modelling technique based on 
this tuning. Moreover, for each dataset we also select the best surrogate model. We do 
this by creating a new training set, which is a copy of the original training set but with 
as labels the predictions of the best black box model, based on the cross-validation per-
formance. The surrogate model is trained on this relabeled training set and can be any of 
the original white box models, as well as Trepan or RuleFit. The final performance of all 
the models(black box, white box and surrogate) is evaluated on the test set based on two 
metrics: accuracy and f1-score. The difference in the test set performance among the dif-
ferent models is shown in Fig. 3. For each dataset we select the best black box, the best 
white box and the best surrogate, based on their performance on the test set.10 In our 
aggregate analyses, we compare the test performances of these across all datasets. 

Fig. 2  Methodology

10  Note that using the test data to select the best black and white boxes and then reusing the same data to compare 
those two across all datasets adds some bias in the results. We opt for this approach (instead of also using, for example, a 
validation set) as some datasets do not have many observations and we only select among a few (in total six) black boxes 
and among a few (in total three) white ones, making the bias small. We also verified whether our results are robust when 
using cross validation to select the best model and note that our results indeed hold (e.g., still for 68.89% of the datasets, 
the best black box model outperforms the best white box model).
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Black box models

We use three state-of-the-art black box models: neural networks, random forests and 
nonlinear support vector machines [39, 60]. As noted below, we also include in the list 
of black boxes the three comprehensible models when their size - after training - is very 
large.

Random forest We use the RandomForestClassifier11 from Sklearn and use a grid 
search to tune the number of trees in the forest with values between 10 and 2000 and the 
number of features to consider when looking for the best split with (’sqrt’, ’none’).

Support vector machine We use the SVC12 from Sklearn and use a grid search to tune 
the regularization hyperparameter with values between 0.1 and 1000 and the kernel 
coefficient with values between 0.0001 and 1. We use the default kernel type of rbf.

Neural network We use the MLPClassifier13 from Sklearn and use a grid search to tune 
the size of the hidden layer. We only test neural networks with one hidden layer. We tune 
the hidden layer with sizes between 10 and 1000.

Comprehensible models

We use three models that are in general considered to be comprehensible, when their 
size is constrained. As discussed in the main article, we limit the size of these models 
to 7 (maximum number of nodes for trees, rules for rule based systems, coefficients for 
logistic regression). We also train these models without constraining their size. In this 
case, when their size after training is very large, with more than 50 elements,we consider 
them as part of the black boxes in our analysis.

Decision tree We use the DecisionTreeClassifier14 from Sklearn. We use a grid search 
to tune the function to measure the quality of the split (gini, entropy), tune the maximal 
depth between 2 and 30 and tune the minimum number of samples in a leaf (2,4). We 
tune the maximal amount of leaf nodes between 2 and 7 for the constrained cases (white 
boxes) and between 2 and 1000 for the unconstrained ones (black boxes).

Logistic Regression We use the LogisticRegression15 from Sklearn. We use l2 regulari-
zation and the liblinear solver. We use a grid search to tune the regularization parameter 
values between 0.0001 and 1000.

Fig. 3  Critical difference diagram of the comparison of classifiers. Models that are not connected with a bold 
line have a significant difference in performance (at a 5% level with the Nemenyi test)

11  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​ensem​ble.​Rando​mFore​stCla​ssifi​er.​html.
12  https://​scikit-​learn.​org/​stable/​modul​es/​svm.​html.
13  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​neural_​netwo​rk.​MLPCl​assif​ier.​html.
14  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​tree.​Decis​ionTr​eeCla​ssifi​er.​html.
15  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​linear_​model.​Logis​ticRe​gress​ion.​html.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Ripper We use a rule learning algorithm, based on sequential covering. This method 
repeatedly learns a single rule to create a rule list that covers the entire dataset rule by 
rule [22]. RIPPER (Repeated Incremental Pruning to produce Error Reduction), which 
was introduced by Cohen in 1995 is a variant of this algorithm [61]. We use the Python 
implementation of Ripper hosted on Github.16

Surrogate models

We use the three comprehensible models above but this time we train them on the pre-
dictions of the best performing black box instead of using the training data. We also 
include Trepan [54], which is used for rule extraction based surrogate modeling, and 
RuleFit [62], which is based on an underlying Random Forest model. Again, we limit the 
size of the comprehensible models to 7.

Trepan We use the Python package Skater to implement TreeSurrogates,17 which is 
based on [54]. The base estimator (oracle) can be any supervised learning model. The 
white box model has the form of a decision tree and can be trained on the decision 
boundaries learned by the oracle. We use the same hyperparameter settings to tune the 
decision trees from Trepan as for the DecisionTreeClassifier.

RuleFit The RuleFit algorithm learns sparse linear models that include automatically 
detected interaction effects in the form of decision rules [62]. The interpretation is the 
same as for normal linear models but now some of the features are derived from deci-
sion rules. We use the Python implementation of RuleFit hosted on Github.18

Results
First, we address the cost of comprehensibility, by testing whether native white and black 
box models have a significant difference in performance. To assess this cost, we use both 
the models’ f1-score and accuracy.19 The figures for the latter are reported in Fig. 6. We 
first compare all the classifiers using the Friedman test20 [63] to identify whether there 
are any significant differences between the different models, and then the post-hoc 
Nemenyi test [64] to identify significant pairwise differences.21 The null hypothesis of 
the Friedman test is rejected with a p-value of 2.43 · e−25 (a value with the same order of 
magnitude when using accuracy instead of f1-scores). This means that there are signifi-
cant differences among some groups of algorithms. We use the post-hoc Nemenyi test 
to perform all possible pairwise comparisons [65]. The results are shown in the critical 
difference diagram22 in Fig. 3. The performance of the black box models (RF, MLP, SVM) 
is significantly better than the performance of the white box models (DT, LR, Ripper), 
already confirming that, overall, the cost of comprehensibility indeed exists.

16  Imoscovitz. Ripper Python package. url: https://​github.​com/​imosc​ovitz/​wittg​enste​in.
17  A. Kramer et al Skater Python package. url: https://​github.​com/​oracle/​Skater.
18  Molnar. RuleFit Python package. url:https://​github.​com/​chris​tophM/​rulef​it.
19  We include the results with f1-score to account for imbalance issues that could bias our results.
20  https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​ated/​scipy.​stats.​fried​manch​isqua​re.​html.
21  We cannot just use a pairwise comparison because this would inflate the probability of a type I error. The Friedman 
test is the non-parametric equivalent to the repeated-measures ANOVA [63].
22  These diagrams were created with the Orange Data Mining Library [66].

https://github.com/imoscovitz/wittgenstein
https://github.com/oracle/Skater
https://github.com/christophM/rulefit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
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The cost of comprehensibility

Having established that the cost of comprehensibility exists, we study how large it is 
across datasets. As discussed, for each dataset we select the best black and white boxes 
and measure their relative difference in performance - namely, the cost of comprehen-
sibility. Figure 4a shows the results across all datasets when we order them according to 
this cost. This figure reveals a somewhat surprising result: this cost is highly non-linear 
(e.g., the plot is a sigmoid instead of being closer to a straight line). For most datasets the 
accuracy-comprehensibility trade-off is low, only for a few it is very high (right) and for 
a few it is very “negative” indicating that comprehensible models largely outperform the 
black box ones for these datasets (left). Yet, for 68.89% of the datasets the best black box 
model outperforms the best white box model, reconfirming the overall existence of the 
cost of comprehensibility. The results for accuracy can be seen in Fig. 7a. 

a

b

Fig. 4  Comparing black box and white box models. For both plots, the datasets are ordered according to 
the gap in f1-score between the best black box and the best native (left figure) or surrogate (right) white box 
model (right). The y-axis measures the relative difference in the f1-score, defined as the ratio of the difference 
between the black and white box f1-scores divided by that of the best model
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Can surrogate modeling improve the accuracy‑comprehensibility trade‑off?

We next investigate whether surrogate modelling can improve the performance of the 
(native) comprehensible models. For all datasets we generate the best black box and the best 
(native) white box trained on the training data, and then we also train a surrogate model 
mimicking the best black box one - what we previously called a surrogate white box. We 
compare the performance of these three types of models across all datasets in Fig. 5. As 
indicated in Fig. 5a, surrogate modelling does improve accuracy slightly relative to native 
white box models, on average across all datasets. We term this improvement the “Benefit 
of Explaining”, a benefit in terms of improved predictive accuracy. Based on the Wilcoxon 
Signed Rank test23 [63], used to compare classifiers across several datasets, we can reject the 
hypothesis that the native and surrogate white boxes perform equally well (p-value 0.003) – 
the latter performing on average better. The result for accuracy can beseen in Fig. 8.

We perform the same analysis, but this time for two different types of datasets: those 
for which the best performing model is a black box, what we termed opaque datasets, 
and those for which white boxes perform at least as well as or better than black boxes, 
what we called comprehensible datasets. The results are shown in Fig.  5b, c. Interest-
ingly, in this case the surrogate white box models outperform the native white box mod-
els on average across the opaque datasets (Wilcoxon test p-value of 7.72 · e−5 ), while 
the two are not significantly different for the comprehensible datasets (Wilcoxon test 
p-value of 0.20). In the latter case there is no need to go through a black box if its perfor-
mance is not better than that of a native white box [56, 67], as the latter would dominate 
both in terms of accuracy and comprehensibility. Hence, if one considers only opaque 
datasets, the use of surrogate modeling can indeed improve the accuracy-comprehensi-
bility trade-off on average.

The cost of explainability

Next, we investigate the difference in performance between the best black box model 
for each dataset and the best surrogate white box model from that black box - what we 
call the cost of explainability. Fig. 4b shows the results when we sort all datasets based 
on this cost. The results are similar to what we observe for the cost of comprehensibility: 
the difference is small for most datasets, but very large for a few. The results are also in 
agreement with those in Fig. 7, where we see that the cost of explainability is a bit lower 
than the cost of comprehensibility (Fig. 7).

Opaque vs. comprehensible datasets

Finally, we study whether the cost of comprehensibility relates to some properties 
of the dataset. To do so, for each dataset we generate a number of standard data-
set properties as discussed above (see also Supplementary Information material), and 
use them to explain the cost of comprehensibility. Specifically, we run a regression 
analysis using the generated dataset properties as independent variables with the 
dependent variable being the difference between the performance of the best black 
box model and the best native white box model. We used all 90 datasets, hence the 
number of observations used for the regression was also 90. The variables that are 

23  https://​scikit-​posth​ocs.​readt​hedocs.​io/​en/​latest/​gener​ated/​scikit_​posth​ocs.​posth​oc_​wilco​xon/.

https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_wilcoxon/
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a

b

c

Fig. 5  Comparison across datasets of best black box model for each dataset, surrogate white box model 
mimicking this best black box, and best native white box model. BB stands for black box and WB for white 
box. The line at 0 indicates the performance of the best black box model. The y-axis indicates the absolute 
difference in f1-score from the best black box model

Fig. 6  Critical difference diagram of the comparison of classifiers. Models that are not connected by the bold 
line have a significant difference in performance (at a 5% level with the Nemenyi test)



Page 13 of 23Goethals et al. Journal of Big Data            (2022) 9:30 	

significant are shown in Table 2. Overall, these results indicate that properties related 
to the complexity required to model a dataset and the level of noise in a dataset sig-
nificantly explain the cost. While this is a relatively simple analysis, the results suggest 
that one may be able to identify or communicate whether there is a potential cost of 
comprehensibility by simply reporting specific dataset properties.

Specifically, the following five properties are found to be significant. F1v, which is 
the directional-vector Maximum Fisher’s discriminant ratio that indicates whether a 
linear hyperplane can separate most of the data, where lower values means that more 
data can be separated this way [59]. L1, which is a linearity measure that quantifies 
whether the classes can be linearly separated [58]. Higher values of this attribute indi-
cate more complex problems as they require a non-linear classifier [59]. These prop-
erties have a positive coefficient in the regression analysis, which means that all these 
factors increase the gap between the best black box model and the best white box 
model. The sign of these coefficients is as expected, namely that for datasets that are 
more complex to separate linearly, the performance of black box models compared to 
simple models is on average better.

Two other features, EqNumAttr and NsRatio, capture information related to the 
minimum number of attributes necessary to represent the target attribute and the 
proportion of data that is irrelevant to the problem (level of noise) [58, 68]. We see 
that these dataset properties have a negative relationship with the size of the cost. 
Note that when we analyze this result at the level of each individual prediction model, 
we see that these properties negatively affect both the performance of the black box 
models and the white box models, but more so for the black box ones. This could be 
because black box models may pick up more of the noise or use a lot of irrelevant fea-
tures. Finally, N3 [59] is a neighbor-based measure that refers to the error rate of the 
nearest neighbor classifier. Low values of this dataset property indicate that there is a 
large gap in the class boundary [69]. We see again that this property negatively affects 
both the performance of the black box models and the white box models [69], and 
that the effect on the gap depends on how much it affects the performance of each 
model.

Discussion
Understanding the trade-off between comprehensibility and accuracy can have impor-
tant implications for regulators as well as companies [70]. Our results indicate that most 
of the time the trade-off is relatively small, indicating that one should consider native 

Table 2  The dataset properties that are significant when explaining the cost of comprehensibility 
using a number of standard dataset properties as independent variables in a regression model 
where the cost is the dependent variable

Variable MSE P-value Coef

EqNumAttr 0.508 4.57 · e
−10 − 0.72e

NsRatio 0.508 4.57 · e
−10 − 0.72e

N3 0.148 0.00191 − 0.23e

F1v 0.139 0.00267 0.15

L1 0.089 0.0170 0.12
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white box algorithms as a key benchmark. Indeed, given the non-linearities we observe, 
one would expect that black boxes are used relatively infrequently, even if for the major-
ity of cases they outperform white boxes, as our study indicates that this outperformance 
is typically relatively small. Some papers in the literature also indicate that for certain 
datasets simple models work as well as complex ones [11, 12] or that for most datasets 
the out-performance by black box models will be very small [71], despite the popular 
belief that more complex models are always better. Of course it depends on the use case 
and application domain whether this small difference in performance is worth the loss 
in comprehensibility. Due to social and ethical pressure, insight in when one should opt 
for a comprehensible model could be a competitive differentiator and drive real business 
value [70]. Insights in this trade-off could lead to specific guidelines from regulators on 
how and when to apply AI algorithms when comprehensibility is required.

Our results also show that using surrogate modelling could reduce the cost of compre-
hensibility, especially for opaque datasets. As we discussed, this may be the case because 
the black box model in between can filter out noise and anomalies [53, 56]. We also see 
that simple properties of a dataset could provide insights (for example to a third party 
such as a user or regulator) in the nature of the trade-off without requiring knowledge 
of the algorithms tested or the data used. For example, attributes that measure how dif-
ficult it is to linearly separate the data are significantly correlated with the size of the gap. 
Indeed, one would expect that for these datasets black box models might be better in 
capturing the non-linearities. This can lead to practical tests of the feasibility of using a 
native white box – and the potential accuracy loss – in a given use case.

Our general findings suggest the following guidelines: 

1.	 Start with white box models.
2.	 Train additional black box models if: (a) the application allows for a (possibly small) 

increase in performance at a cost of comprehensibility, and, (b) the level of noise is 
high and the data requires complex modeling, as indicated by the listed, easy to cal-
culate dataset metrics.

3.	 If there is a practically important cost of comprehensibility (hence you are dealing 
with an opaque dataset), apply additional surrogate modeling algorithms.

Finally, we note that in this study we focused on tabular datasets. For other kinds of 
datasets, the trade-off we study may be different. For example, for image or text data, 
more flexible models are needed to handle the data complexity [9, 13] and the difference 
in performance between comprehensible models compared to black box ones such as 
deep learning is often considered unbridgeable [8].

Appendix
Materials

Datasets

See Table 3.
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Table 3  Used datasets

Dataset # observations # features Imbalance

Adult 48842 14 0.27

Agaricus_lepiota 8145 22 0

Analcatdata_aids 50 4 0

Analcatdata_asbestos 83 3 0.01

Analcatdata_bankruptcy 50 6 0

Analcatdata_boxing1 120 3 0.09

Analcatdata_boxing2 132 3 0.01

Analcatdata_creditscore 100 6 0.21

Analcatdata_cyyoung8092 97 10 0.26

Analcatdata_cyyoung9302 92 10 0.34

Analcatdata_fraud 42 11 0.15

Analcatdata_japansolvent 52 9 0

Analcatdata_lawsuit 264 4 0.73

Appendicitis 106 7 0.36

Australian 690 14 0.01

Backache 180 32 0.52

Biomed 209 8 0.08

Breast_cancer_wisconsin 569 30 0.06

Breast_cancer 286 9 0.16

Breast_w 699 9 0.1

Breast 699 10 0.1

BuggyCrx 690 15 0.01

Bupa 345 5 0

Chess 3196 36 0

Churn 5000 20 0.51

Clean1 476 168 0.02

Clean2 6598 168 0.48

Cleve 303 13 0.01

Coil2000 9822 85 0.78

Colic 368 22 0.07

Corral 160 6 0.02

Credit_a 690 15 0.01

Credit_g 1000 20 0.16

crx 690 15 0.01

Diabetes 768 8 0.09

Dis 3772 29 0.94

Flare 1066 10 0.43

GAMETES_Epistasis_2_Way_1000atts
_0.4H_EDM_1_EDM_1_1

1600 1000 0

GAMETES_Epistasis_2_Way_20atts
_0.1H_EDM_1_1

1600 20 0

GAMETES_Epistasis_2_Way_20atts
_0.4H_EDM_1_1

1600 20 0

GAMETES_Epistasis_3_Way_20atts
_0.2H_EDM_1_1

1600 20 0

GAMETES_Heterogeneity_20atts
_1600_Het_0.4_0.2_50_EDM_2_001

1600 20 0

GAMETES_Heterogeneity_20atts
_1600_Het_0.4_0.2_75_EDM_2_001

1600 20 0

German 1000 20 0.16

Glass2 163 9 0
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Dataset properties

For the analysis of the dataset properties, we use the metafeature toolbox of Alcobaba 
[57], that automatically extracts metafeatures out of the dataset. The metafeatures of 

Table 3  (continued)

Dataset # observations # features Imbalance

Haberman 306 3 0.22

Heart_c 303 13 0.01

Heart_h 294 13 0.08

Heart_statlog 270 13 0.01

Hepatitis 155 19 0.34

Hill_Valley_with_noise 1212 100 0

Hill_Valley_without_noise 1212 100 0

Horse_colic 368 22 0.07

House_votes_84 435 16 0.05

Hungarian 294 13 0.08

Hypothyroid 3163 25 0.82

Ionosphere 351 34 0.08

Irish 500 5 0.01

kr_vs_kp 3196 36 0

Labor 57 16 0.09

Lupus 87 3 0.04

Magic 19020 10 0.09

Mofn_3_7_10 1324 10 0.31

Molecular_biology_promoters 106 57 0

Monk1 556 6 0

Monk2 601 6 0.1

Monk3 554 6 0

Mushroom 8124 22 0

Mux6 128 6 0

Parity5 32 5 0

Parity5+5 1124 10 0

Phoneme 5404 5 0.17

Pima 768 8 0.09

Postoperative_patient_data 88 8 0.21

Prnn_crabs 200 7 0

Prnn_synth 250 2 0

Profb 672 9 0.11

Ring 7400 20 0

Saheart 462 9 0.09

Sonar 208 60 0

Spambase 4601 57 0.04

Spect 267 22 0.35

Spectf 349 44 0.21

ThreeOf9 512 9 0

Tic_tac_toe 958 9 0.09

Tokyo1 959 44 0.08

Twonorm 7400 20 0

Vote 435 16 0.05

Wdbc 569 30 0.06

Xd6 973 9 0.11
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this toolbox are based on those described in [58]. We select the metafeatures out of the 
groups: general, statistical, info-theory and complexity. The general metafeatures repre-
sent the basic information about the dataset. They capture metrics such as the number 
of instances, attributes, or other information about the predictive attribute [58]. The sta-
tistical measures represent information about the data distribution like the number of 
outliers, the variance, the skewness or the correlation in the data, and others [58]. The 
information-theoretic measures capture the amount of information present in the data 
such as the joint entropy, class entropy, class concentration, and others [58]. The last 
group of measures we include is the group of information-complexity based on [59]. We 
do not include the clustering, landmarking or model-based metafeatures because they 
already fit a model to the dataset and extract information from this model. The used 
dataset properties can be seen in Table 4.24 

Table 4  Dataset properties used in the analysis

Metafeature name Description

AttrConc (mean) Concentration coef. of each pair of distinct attributes

AttrEnt (mean) Shannon’s entropy for each predictive attribute

AttrToInst The ratio between the number of attributes

C1 The entropy of class proportions

C2 The imbalance ratio

CanCor (mean) Canonical correlations of data

CatToNum The ratio between the number of categoric and numeric features

ClassConc (mean) Concentration coefficient between each attribute and class

ClassEnt Target attribute Shannon’s entropy

ClsCoef Clustering coefficient

Cor (mean) The absolute value of the correlation of distinct dataset column pairs

Cov (mean) The absolute value of the covariance of distinct dataset attribute pairs

Density Average density of the network

Eigenvalues (mean) Eigenvalues of covariance matrix from dataset

EqNumAttr Number of attributes equivalent for a predictive task

F1 (mean) Maximum Fisher’s discriminant ratio

F1v (mean) Directional-vector maximum Fisher’s discriminant ratio

F2 (mean) Volume of the overlapping region

F3 (mean) Feature maximum individual efficiency

F4 (mean) Collective feature efficiency

FreqClass (mean) Relative frequency of each distinct class

Gmean (mean) Geometric mean of each attribute

Gravity Distance between minority and majority classes center of mass

Hmean (mean) Harmonic mean of each attribute

Hubs (mean) Hub score

InstToAttr Ratio between the number of instances and attributes

IqRange (mean) Interquartile range (IQR) of each attribute

JointEnt (mean) Joint entropy between each attribute and class

Kurtosis (mean) Kurtosis of each attribute

L1 (mean) Sum of error distance by linear programming

L2 (mean) OVO subsets error rate of linear classifier

L3 (mean) Non-Linearity of a linear classifier

24  Based on the list: https://​pymfe.​readt​hedocs.​io/​en/​latest/​auto_​pages/​meta_​featu​res_​descr​iption.​html.

https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
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Extra results on accuracy

We report the empirical results as in the main article, this time using the accuracy of the 
models as our metric instead of the f1-score. All results are in line with the results for 
the f1-score. The hypothesis of the Friedman test is rejected with a value of 2.09 · e−23 . 
In Fig. 6, we show that the black box models are significantly better than the white box 
models but not significantly different from each other. The same can be said for the white 
box models. We see a non-linear nature of the cost of comprehensibility and explainabil-
ity in Fig. 7a and b. Finally, from the boxplots in Fig. 8 we see again that for the opaque 

Table 4  (continued)

Metafeature name Description

LhTrace Lawley-Hotelling trace

Lsc Local set average cardinality

Mad (mean) Median Absolute Deviation (MAD) adjusted by a factor

Max (mean) Maximum value from each attribute

Mean (mean) Mean value of each attribute

Median (mean) Median value from each attribute

Min (mean) Minimum value from each attribute

MutInf (mean) Mutual information between each attribute and target

N1 Fraction of borderline points

N2 (mean) Ratio of intra and extra class nearest neighbor distance

N3 (mean) Error rate of the nearest neighbor classifier

N4 (mean) Non-linearity of the k-NN Classifier

NrAttr Total number of attributes

NrBin Number of binary attributes

NrCat Number of categorical attributes

NrClass Number of distinct classes

NrCorAttr Number of distinct highly correlated pair of attributes

NrDisc Number of canonical correlation between each attribute and class

NrInst Number of instances (rows) in the dataset

NrNorm Number of attributes normally distributed based in a given method

NrNum Number of numeric features

NrOutliers Number of attributes with at least one outlier value

NsRatio Noisiness of attributes

NumToCat Number of numerical and categorical features

Ptrace Pillai’s trace

Range (mean) Range (max - min) of each attribute

RoyRoot Roy’s largest root

Sd (mean) Standard deviation of each attribute

SdRatio Statistical test for homogeneity of covariances

Skewness (mean) Skewness for each attribute

Sparsity (mean) (Possibly normalized) sparsity metric for each attribute

T1 (mean) Fraction of hyperspheres covering data

T2 Average number of features per dimension

T3 Average number of PCA dimensions per points

T4 Ratio of the PCA dimension to the original dimension

TMean (mean) Trimmed mean of each attribute

Var (mean) Variance of each attribute

WLambda Wilks’ Lambda value
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a

b

Fig. 7  Comparing black box and white box models. For both plots, the datasets are ordered according to the 
gap in accuracy between the best black box and the best native (left figure) or surrogate (right) white box 
model (right).The y-axis measures the relative difference in the accuracy, defined as the ratio of the difference 
between the black and white box accuracy divided by that of the best model

datasets the surrogate white box models are better on average than the native ones. We 
also reject the hypothesis that the native and surrogate white boxes perform equally well 
(p-value 9.63 · e−6 ) on average across all datasets. When we perform the same analysis 
for the two different types of datasets, we see again that the surrogate white box models 
outperform the native white box ones for the opaque datasets (Wilcoxon test p-value 
of 2.71 · e−6 ), while the two are not significantly different for the comprehensible data-
sets (Wilcoxon test p-value of 0.53). All these results are comparable with the results 
obtained when using f1-score as a metric. 

finally, we also compare the dataset properties that predict whether a dataset is opaque 
or comprehensible and see if they are the same for both metrics. We see in Table 5 that 
the same dataset properties are important in predicting the gap in accuracy as in pre-
dicting the gap in f1-score, but that now some more attributes are significant. F1v, L1, 
EqNumAttr and NsRatio were already significant in predicting the gap in f1-score. The 
linearity measures L2 and L3 are now also significant but they have a similar mean-
ing as L1, namely they are linearity measures that quantify whether the data is linearly 
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separable, which means higher values of these attributes point to more complex prob-
lems [59]. N4 signifies the non-linearity of the nearest neighbor classifier and higher val-
ues are also indicative of problems of greater complexity [59]. F3 signifies the Maximum 
Individual Feature Efficiency where lower values indicate simpler problems [59]. JointEnt 
computes the relationship of each attribute with the target variable, capturing the rela-
tive importance of the predictive attributes [58]. CanCor measures the canonical corre-
lation between the predictive attribute and the target [58].

a

b

c

Fig. 8  Comparison across datasets of best black box model for each dataset, surrogate white box model 
mimicking this best black box, and best native white box model. BB stands for black box and WB for white 
box. The line at 0 indicates the performance of the best black box model. The y-axis indicates the absolute 
difference in accuracy from the best black box model
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