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Introduction
Microarray technology has been widely used in bioinformatics. It efficiently measures 
gene expression levels for a large number of genes. Therefore, a huge amount of data can 
be generated from microarray datasets. Microarray datasets, after converting to trans-
actional datasets, usually have a large number of columns (genes) and a small number 
of rows (assays). Since the time complexity of any precise association rule learning algo-
rithm is 2d , where d is the number of unique items (genes, in this case), such a large 
number of genes causes a huge challenge for all existing association rule learning algo-
rithms. For a large microarray dataset, it is impractical to apply these algorithms to find 
all association rules (Fig.  1).

Researchers interested in deriving association rules from microarray datasets are 
most likely not to use every association rule. Furthermore, a large number of genes also 
results in an even higher number of association rules. The computer memory, which is 
limited compared to the disk space, can easily be used up to run a current association 
rule learning algorithm. With these in mind, we propose the Scalable Association Rule 
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Learning (SARL) algorithm that focuses on the learning speed and the importance of 
rules derived.

As more microarray datasets are generated every day, investigators seeking potential 
associations between genes and between genes and diseases need a tool to find candi-
date rules across multiple datasets quickly. SARL is such a tool that provides scalable 
association rule learning and rule ranking. After having a general idea of candidate rules, 
investigators may choose to run a more time-costly algorithm that precisely calculate the 
rules on a few selected datasets. Therefore, by quickly reducing the scope of datasets and 
giving a general idea to the investigator, our algorithm can reduce the total time needed 
to find a target rule and increases the success rate.

Contributions
There are three main contributions in this paper:

1. The SARL heuristic with the divide and conquer methodology can increase the 
efficiency and scalability of association rule mining but still maintain reasonable 
accuracy.
2. The rule ranking algorithm calculates the importance and ranks the rules, so the 
investigator does not have to search through millions of rules.
3. We consider gene-disease associations. Each important association rule between 
genes and disease can be identified and highlighted in the result.

Fig. 1  Results of experiment that compare MLkP, Kernighan-Lin, and Spectral Partitioning algorithms
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Related work
Several association rule learning algorithms have previously been applied to microarray 
datasets. The fundamental ones include the Apriori algorithm and the FP-Growth algo-
rithm. Researchers have also created other algorithms or heuristics that find association 
rules with an approximation methodology.

1.	 The Apriori Algorithm

	 The Apriori algorithm [1], introduced by Agrawal and Srikant, was the first efficient 
association rule learning algorithm. It incorporates various techniques to speed 
up the process as well as to reduce the use of memory. For example, the Lk-1 × Lk-1 
method used in the candidate generation process can reduce the number of candi-
dates generated, and the pruning process can significantly reduce the number of pos-
sible candidates at each level.

	 One of the most important mechanisms in the Apriori algorithm is the use of the 
hash tree data structure. It uses this data structure in the candidate support count-
ing phase to reduce the time complexity from O(kmn) to O(kmT + n), where k is the 
average size of the candidate itemset, m represents the number of candidates, n rep-
resents the number of items in the whole dataset, and T is the number of transac-
tions.

	 The major advantage of the Apriori algorithm comes from its memory usage because 
only the k-1 frequent itemsets, Lk-1, and the candidates in level k, Ck, need to be 
stored in the memory. It generates the minimum number of candidates based on 
the Lk−1 × Lk−1 (described in [1]) and the pruning method, and it stores them in 
the compact hash tree structure. In case the candidates fill up the memory from the 
dataset and a low minsup setting, the Apriori algorithm does not generate all the 
candidates to overload the memory. Instead, it generates as many candidates as the 
memory can hold.

2.	 The FP-Growth Algorithm
	 The Frequent Pattern Growth algorithm was proposed by Han et al. in 2000 [2]. It 

uses a tree-like structure (called Frequent Pattern Tree) instead of the candidate gen-
eration method used in the Apriori algorithm to find the frequent itemsets. The can-
didate generation method finds the candidates of the frequent itemsets before reduc-
ing them to the actual frequent itemsets through support counting.

	 The algorithm first scans a dataset and finds the frequent one itemsets. Then, a fre-
quent pattern tree is constructed by scanning the dataset again. The items are added 
to the tree in the order of their support. Once the tree is completed, the tree is tra-
versed from the bottom, and a conditional FP-Tree is generated. Finally, the algo-
rithm generates the frequent itemsets from the conditional FP-Tree.

	 The FP-Growth algorithm is more scalable than the Apriori algorithm in most cases 
since it makes fewer passes and does not require candidate generation. However, it 
suffers from memory limitations since the FP-Tree is relatively complex and may not 
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fit in the memory. Traversing the complexed FP-Tree may also be time-expensive if 
the tree is not compact enough.

3.	 Graph Partitioning Algorithms
	 One of the key steps in the SARL heuristic that we will introduce shortly is to parti-

tion the IAG (item association graph, section 7) into k balanced partitions. An effi-
cient graph partitioning algorithm is crucial since the balanced graph partitioning 
problem is NP-complete [3]. We have implemented three algorithms and compared 
them for the partitioning costs and running times. They are the recursive version 
of the Kernighan-Lin Algorithm [4], the Multilevel k-way Partitioning Algorithm 
(MLkP) [5], and the recursive version of the Spectral Partitioning Algorithm [6]. 
Other graph partitioning algorithms include the Tabu search based MAGP algorithm 
[7] and the flow-based KaFFPa algorithm [8].

The Kernighan-Lin algorithm swaps the nodes assigned to both partitions and finds 
the largest decrease in the total cut size. The Multilevel k-way Partitioning algorithm 
(MLkP) uses coarsening-partitioning-uncoarsening/refining steps to shrink a graph 
into a much smaller graph. After partitioning, the graph is rebuilt to restore the original 
graph. A single global priority queue is used for all types of moves. The Spectral Parti-
tioning Algorithm finds splitting of the values such that the vertices in a graph can be 
partitioned with respect to the evaluation of the Fiedler vector.

Experiments are conducted by us to compare the three algorithms. The datasets pro-
vided by Christopher Walshaw at the University of Greenwich [9] are used. They are 
chosen because they are, on the one hand, large enough for us to study scalability and, 
on the other hand, manageable by our machine.

The datasets are desired to be as large as possible while the partitioning algorithms can 
finish in a reasonable time on the tested machine. We also run experiments on complete 
graphs with 30 and 300 nodes. Each dataset is tested four rounds with the number of 
partitions (k) being 2, 4, 8, and 16.

As shown in Fig.  1, the MLkP algorithm has the highest speed in general. It is 560 
times faster than the spectral partitioning algorithm and even faster than the recursive 
Kernighan-Lin algorithm. The spectral partitioning algorithm has, in general, the best 
partition quality. It is 1.3 times better than MLkP and much better than the recursive 
Kernighan-Lin algorithm. The recursive Kernighan-Lin algorithm takes too long to com-
plete all five datasets. It also shows serious scalability issues for complete graphs.

Considering that the MLkP algorithm has the best overall performance, we choose to 
use this algorithm for graph partitioning in our algorithm.

1)	 Applications Related to Association Rule Learning Algorithms on Microarray Data

	 Both Apriori and FP-Growth algorithms have been applied to microarray data-
sets [10], according to [10]. The main challenge for applying an existing association 
rule algorithm to a microarray dataset is the large number of items per transaction. 
Almost all microarray datasets have significantly more genes than assays. The exist-
ing approaches transpose the microarray dataset into transactional datasets. After 
transposing the dataset, we have significantly more columns than rows. This greatly 
increases the complexity of the existing association rule algorithms because they are 
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designed for datasets with more rows than columns. With the existing algorithms, it 
can be shown that the FP-Growth algorithm performs slightly (around 10%) better 
than the Apriori algorithm. However, the author points out that a more scalable algo-
rithm is needed to overcome the time and space complexities.

	 There are variations of association rule learning algorithms on microarray data-
sets. The FARMER algorithm [11] finds interesting rule groups instead of individual 
rules. The algorithm is efficient for finding some association rules between genes and 
labels.

	 Huang et  al. propose a ternary discretization approach [12] that converts each 
gene expression level to one of the three levels: under-expressed, normal, and over-
expressed. Compared to traditional binary classification methods, the ternary discre-
tization approach captures the overall gene expression distribution to prevent seri-
ous information loss.

	 In summary, the existing variations of a traditional approach such as Apriori or FP-
Growth algorithms have issues related to scalability or coverage. The algorithms and 
heuristics reported in this paper tolerate"" certain accuracy for better scalability so 
the investigator may navigate a dataset iteratively (We call it "iterative investigation" 
in this paper) to converge in the search process quickly.

2)	 Other Data Mining Algorithms on Microarray Data
	 In addition to association rule learning algorithms, other data mining algorithms that 

address different problems have also been applied to microarray data.
	 Many researchers have studied classification problems on microarray data. The most 

popular application is classifying diseases based on gene expression levels [13]. Many 
algorithms have been applied to solve classification problems. The most studied algo-
rithms include the Bayesian network [14], Support Vector Machine [15], and k-Near-
est Neighbor [16].

These problems usually take gene expression levels as the input (features) and predict 
the disease(s) associated with an assay. It can also be used to classify tumors based on 
gene expression levels.

Our solution
Data preprocessing

Dataset reduction

It may not be very useful for a large dataset with hundreds of thousands of genes to 
find rules that cover all the genes. Since we may be only interested in over-expressed 
and under-expressed genes and all diseases, normally expressed genes could be elimi-
nated from our dataset. We can also adjust the threshold of over-expressed and under-
expressed genes to classify fewer genes as over/under-expressed ones.

A common approach is the following method that converts the gene expression levels 
into log-scale values [17].

First, we arbitrarily pick a reference assay and calculate the relative expression lev-
els based on the reference assay. Assuming the absolute gene expression levels of the 
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reference assay is Er1,Er2 . . .Ern , we can calculate the relative gene expression levels for 
another assay A as: RA1,RA2 . . .RAn =

Er1
EA1

, Er2EA2
. . . Ern

EAn
 where EA1,EA2 . . .EAn are abso-

lute gene expression levels for assay A. We can use the above method to calculate the 
relative gene expression levels for all other assays.

Next, the relative gene expression levels are used to find the log-scale gene expression 
levels. For each assay A, the log-scale gene expression levels are calculated as:

In the end, a user-defined threshold h is used to filter out some normally expressed 
expression levels. A lower h value means more gene expression levels are kept, and the 
computation time is longer. This step can dramatically reduce the size of the dataset 
while keeping valuable information.

Converting into transactional datasets

Microarray datasets are matrices of data. Each row of a matrix represents a gene, while 
each column represents an assay. However, to perform association rule learning, we 
need to convert microarray datasets into transactional datasets. Each row is an assay in a 
transactional dataset, and each "transaction" has a different number of genes.

Our algorithm transposes the matrix that we obtain from the earlier steps. Next, 
each log-scale gene expression level is converted into a ternary item [12]. If the level 
exceeds the positive threshold, an item +G replaces the corresponding expression 
level where G is the gene number. Likewise, if the log-scale expression level is less 
than the negative threshold, it will be replaced by −G.

For example, if we have an assay that has genes G1, G2, and G3 with log-scale 
expression levels {-100, 10, 300}, respectively. Assuming the thresholds are -50 
and + 50, we convert the expression levels into {-G1, + G3}. G2 is not included in the 
above transaction because its expression level is not significant.

Extracting disease information

We introduce disease information to the transactional dataset so that our asso-
ciation rule learning algorithm can derive gene-disease association rules. The prior 
approaches do not address disease information. To find association rules that involve 
genes and diseases, we need to convert the disease information associated with each 
assay into an item.

First, the disease information is extracted from the sample information. A disease, 
in this case, can be a specific disease or "normal." If the disease information is pro-
vided, our algorithm will copy the disease name as an item name to the correspond-
ing assay (transaction). Therefore, for each transaction, there are one or more gene 
items and a disease item.

For example, an assay is labeled as "Tumor" in the original dataset and calculated 
in the above steps to have items {−G1, + G3}. The algorithm will add "Tumor" to the 
transaction to have {−G1, + G3, "Tumor"}.

LA1, LA2 . . .LAn = log2RA1, log2RA2 . . . log2RAn
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Calculating gene importance

An important aspect of association rule ranking is evaluating the importance of each 
gene. The following is our approach for calculating gene importance, of which the 
importance of a gene can be viewed as the average degree of over/under expression 
in the dataset. We also want to consider +G and −G individually since they are con-
sidered different items in the transformed dataset. We define the gene importance for 
gene g, Eg , as below:

In the above, Kj is the gene expression level of gene j, Kg is the gene expression level 
for gene g. The first part, 

∑m
j=1 Kj

m  , calculates the average expression level of all genes, 
and the second part, 

∑t
i=1 Kg

t  , finds the average expression level of gene g. The differ-
ence between the two is the deviation for gene g. If the deviation is high, the expres-
sion level of a gene is outstanding, and we can say it is important.

For example, if the average gene expression level of all the genes is 20, and we cal-
culate that gene G1 has an average expression level of 100, while G2 has an average 
expression level of 2. Then Eg for G1 and G2 are 80 and 18, respectively. Therefore, G1 
should be ranked above G2.

The SARL‑heuristic

Definitions

The following definitions are used in this paper:

1)	 K-itemset: an itemset with k items
2)	 Support: number of occurrences of an itemset in the dataset
3)	 Minsup: the minimum requirement of support. The user usually provides this. Item-

sets with support < minsup are eliminated.
4)	 Confidence: the indication of robustness of a rule in terms of percentage. 

Confidence(XY) = support(X ∪ Y )/support(X)
5)	 Minconf: the minimum requirement of confidence. The user usually provides this. 

Rules with confidence < minconf are eliminated.
6)	 Item-Association Graph: a graph structure that stores the frequent associations 

between pairs of items.
7)	 Balanced K-way Graph Partitioning Problem: Divide the nodes of a graph into k 

parts such that each part has almost the same number of nodes while minimizing the 
number of edges/sum of the edge weights that are cut off.

8)	 Eg : importance of gene g.
9)	 Ir : Importance of rule r.

A scalable heuristic algorithm—SARL‑heuristic

The following is an outline of our scalable heuristic [18].

Eg =

∣

∣

∣

∣

∣

∑m
j=1 Kj

m
−

∑t
i=1 Kg

t

∣

∣

∣

∣

∣
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Step 1: Find frequent one and two itemsets using the Apriori algorithm (when 
minsup is high) or the direct generation method (when minsup is low).
Step 2: Construct the item association graph (IAG) from the result of step 1.
Step 3: Partition the IAG using the multilevel k-way partitioning algorithm 
(MLkP).
Step 4: Partition the dataset according to the result of step 3.
Step 5: Call the modified Apriori algorithm or the FP-Growth algorithm to mine fre-
quent itemsets on each transaction partition.
Step 6: Find the union of the results found from each partition.
Step 7: Generate association rules by running the Apriori-ap-genrules on the fre-
quent itemsets found from step 6.

An example

Suppose the microarray dataset in Table  1 is given, and minsup is set to 0.2 (or 20%, 
or 8 ∗ 0.2 ≈ 2 occurrences), and minconf is set to 0.7 (or 70%). We select assay 8 as the 
reference assay then calculate the relative expression levels. The results are shown in 
Table 2.

Next, we calculate the log-scale gene expression levels by taking log base 2: log(x, 2) 
where x is the relative expression level. The results are shown in Table 3.

Table 1  Microarray dataset

Assay 1 Assay 2 Assay 3 Assay 4 Assay 5 Assay 6 Assay 7 Assay 8

Gene 1 0.11 0.03 1.51 0.34 10.21 0.01 0.28 1.33

Gene 2 5.23 5.78 1.37 1.44 7.65 21.35 1.98 1.28

Gene 3 1.32 4.89 1.05 1.37 8.45 17.56 1.79 1.79

Gene 4 1.56 0.97 0.05 0.12 1.02 1.34 0.19 1.12

Gene 5 6.33 1.12 0.13 0.46 0.89 1.88 0.3 0.98

Table 2  Relative expression levels

Assay 1 Assay 2 Assay 3 Assay 4 Assay 5 Assay 6 Assay 7

Gene 1 12.09091 44.33333 0.880795 3.911765 0.130264 133 4.75

Gene 2 0.244742 0.221453 0.934307 0.888889 0.16732 0.059953 0.646465

Gene 3 1.356061 0.366053 1.704762 1.306569 0.211834 0.101936 1

Gene 4 0.717949 1.154639 22.4 9.333333 1.098039 0.835821 5.894737

Gene 5 0.154818 0.875 7.538462 2.130435 1.101124 0.521277 3.266667

Table 3  Log-scale expression levels

Assay 1 Assay 2 Assay 3 Assay 4 Assay 5 Assay 6 Assay 7

Gene 1 3.595851 5.47032 − 0.18312 1.96782 − 2.94048 7.055282 2.247928

Gene 2 − 2.03067 − 2.17493 − 0.09803 − 0.16993 − 2.57932 − 4.06002 − 0.62936

Gene 3 0.439422 − 1.44987 0.76957 0.385784 − 2.23899 − 3.29426 0

Gene 4 − 0.47805 0.207442 4.485427 3.222392 0.13493 − 0.25873 2.559427

Gene 5 − 2.69135 − 0.19265 2.91427 1.091148 0.138976 − 0.93988 1.707819
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Then we normalize the expression levels by applying a threshold to the log-scale 
expression levels. Here, we choose the threshold to be 1, meaning all log-scale expres-
sion levels that are above 1 or below −1 are set to 1 and −1, respectively. Levels between 
−1 and 1 are set to 0. The results are shown in Table 4.

Next, we transpose the matrix to prepare it for the transactional dataset. Each row is 
now an assay and each column is a gene. The results are shown in Table 5.

Finally, we convert the transposed matrix to a transactional dataset, shown in Table 6, 
each expression level that equals −1 or 1 is transformed into an item. In Table 6, the 
items of each transaction include the genes that are over-expressed (denoted by a + sym-
bol) and genes that are under-expressed (denoted by a—symbol). For example, a transac-
tion with TID T000 is an assay that contains three significantly (over or under) expressed 
genes, gene 1 (under-expressed), gene 2 (over-expressed), and gene 5 (over-expressed).

Now, we use the Apriori algorithm to find the frequent two itemsets. As an intermedi-
ate step, the Apriori algorithm finds the frequent one-itemset first (shown in Table 7):

The frequent two-itemsets are found afterward (shown in Table 8):

Table 4  Normalized expression levels

Assay 1 Assay 2 Assay 3 Assay 4 Assay 5 Assay 6 Assay 7

Gene 1 1 1 0 1 − 1 1 1

Gene 2 − 1 − 1 0 0 − 1 − − 1 0

Gene 3 0 − 1 0 0 − 1 − 1 0

Gene 4 0 0 1 1 0 0 1

Gene 5 − 1 0 1 1 0 0 1

Table 5  Transposed matrix

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Assay 1 1 − 1 0 0 − 1

Assay 2 1 − 1 − 1 0 0

Assay 3 0 0 0 1 1

Assay 4 1 0 0 1 1

Assay 5 − 1 − 1 − 1 0 0

Assay 6 1 − 1 − 1 0 0

Assay 7 1 0 0 1 1

Table 6  Transactional dataset

TID Items

T000 − 1, + 2, + 5

T001 − 1, + 2, + 3

T002 − 4, − 5

T003 − 1, − 4, − 5

T004  + 1, + 2, + 3

T005 − 1, + 2, + 3

T006 − 1, − 4, − 5
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Next, we transform the above frequent two-itemsets into an item association graph 
(IAG), shown in Fig. 2:

To construct the graph, we first take the itemset {–1, + 2} with support 3. For this, 
we create node −1 and node + 2 corresponding to the two items in the itemset. The 
edge between node −1 and node + 2 has weight 3, representing the support of the 
itemset. The process is repeated for every frequent two-itemset found in the previous 
step.

Subsequently, we use the multilevel k-way partitioning algorithm (MLkP) to parti-
tion the IAG. In this case, the number of nodes is small, so we only bisect the graph 
by setting k = 2. The result is shown in Figs. 3 and 4.

The MLkP algorithm divides the IAG into two equal or almost equal sets in linear 
time while the sum of the weights of edges that are cut off is the minimum.

Next, we partition the dataset according to the partitions of the IAG, as shown in 
Tables 9 and 10. Each transaction partition has all the items from the corresponding IAG 
partition. However, since the algorithm has already found all the frequent one and two 
itemsets, a transaction is not added to a transaction partition if the transaction has less 
than three items. For example, T000: {−1, + 2} is not added to the transaction partition 
1, since it only has two items. Some items in the original dataset may not appear in any 
of the transaction partitions, because the infrequent one/two-itemsets are dropped in 
the IAG. This simplifies the subsequent computations. In this example, however, all the 
items are kept in the IAG because the IAG is a relatively dense graph. Tables 11 and 12 
show the transaction partitions:

The next step is to pick the best algorithm and use it to find the frequent k-itemsets 
with k > 2. For this example, we choose the modified Apriori algorithm because it is 
faster for mining small datasets as it avoids the process of finding the one and two-item-
sets again. The results from partition 1 are shown in Table 11:

Table 7  Frequent one itemsets

Frequent Itemsets Support

{− 1} 5

{+ 2} 4

{+ 3} 3

{− 4} 3

{− 5} 3

Table 8  Frequent two itemsets

Frequent Itemsets Support

{− 1, + 2} 3

{− 1, + 3} 2

{− 1, − 4} 2

{− 1, − 5} 2

{+ 2, + 3} 3

{− 4, − 5} 2
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Since the modified Apriori algorithm starts with three-itemsets, there are no addi-
tional frequent itemsets in the first partition. Table 12 shows the results found in trans-
action partition 2:

The final results (shown in Table  13) of frequent itemsets are simply the union of 
Tables 7, 8, and 11:

After running the Apriori-ap-genrules algorithm, the association rules can be found in 
Table 14.

All the frequent itemsets generated by the SARL heuristic are sound, meaning each 
frequent itemset generated indeed is correct, and the support number is accurate. How-
ever, it is possible that some frequent itemsets cannot be found by the SARL heuristic, as 

Fig. 2  An item association graph

Fig. 3  Item association graph partition 1

Fig. 4  Item association graph partition 2
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will be discussed shortly. In this example, the SARL heuristic loses one frequent itemset 
{−1, −4, −5} and two related rules generated from {−1, −4, −5}.

The SARL (scalable association rule learning) heuristic

We introduced the SARL heuristic in our previous paper [18]. SARL is a highly scalable 
heuristic algorithm for association rule learning problems on horizontal transactional 
datasets. In this paper, a modified version of SARL serves as the core of our algorithm. A 
summary of the SARL heuristic is shown below. A more detailed and formal description, 
including the pseudo-code, can be found in the paper that introduces SARL.

Table 9  Transaction partition 1

TID Items

T001 − 1, + 2, + 3

T005 − 1, + 2, + 3

Table 10  Transaction partition 2

TID Items

None None

Table 11  Frequent itemsets from transaction partition 1

Frequent Itemsets Support

{− 1, + 2, + 3} 2

Table 12  Frequent itemsets from transaction partition 2

Frequent Itemsets Support

None N/A

Table 13  Frequent itemset final results

Frequent Itemsets Support

{− 1} 5

{+ 2} 4

{+ 3} 3

{− 4} 3

{− 5} 3

{− 1, + 2} 3

{− 1, + 3} 2

{− 1, − 4} 2

{− 1, − 5} 2

{+ 2, + 3} 3

{− 4, − 5} 2

{− 1, + 2, + 3} 2
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The Apriori algorithm or the direct counting and generation algorithm is used to 
generate frequent one and two itemsets, depending on the size of the dataset. Apriori 
is faster on very large datasets, where the direct counting and generation algorithm is 
faster on small and medium-sized datasets. SARL then builds the item association graph 
(IAG) based on the frequent two itemsets. Each frequent two itemset is converted into 
an edge on the IAG, and each item in the itemset is converted into a node. Then, the 
MLkP algorithm is used to partition the IAG into k subgraphs. The dataset is parti-
tioned based on the subgraphs. Each partition of the dataset should contain all the items 
(nodes) of a subgraph of the IAG across all the transactions of the datasets. During this 
process, some transactions may end up undivided, and all the possible frequent itemsets 
related to these transactions will be preserved in later stages. Next, the Apriori algorithm 
or the FP-Growth algorithm is selected based on an analysis of the dataset to ensure the 
most efficient execution. Finally, SARL calls the selected algorithm on each dataset par-
tition to complete the computation. If the Apriori algorithm is selected, SARL will call 
the modified Apriori that starts from the frequent three itemsets computation to avoid 
any redundant work.

The SARL heuristic divides the dataset into k partitions. The size of each partition 
should be smaller than 1

k
× size of the dataset because the dataset is partitioned accord-

ing to IAG, and the number of items (nodes) in the IAG should be smaller than the 
number of unique items in the dataset. A more detailed explanation can be found in 
the Transaction Partitioning section of the Appendix section. This indicates that each 
dataset partition can always fit into the memory. All later steps of the SARL heuristic 
significantly benefit from processing the dataset in the memory rather than on the disk.

We also conducted a thorough time and space complexity analysis and an error-bound 
analysis that can be found in the Appendix section of this paper.

Ranking of association rules

Considering the nature of microarray datasets, the number of unique items (genes) is 
usually large. This leads to a tremendous number of association rules. Therefore, it is 
necessary to rank the association rules by their importance so that the results can be 
easily used. The goal of this study aims to help scientists explore and validate new asso-
ciation rules more efficiently.

To achieve the goal, we introduce the following measurement of the importance of 
rule r: x y:

Table 14  Association rules generated

Rules Confidence

{+ 2} {− 1} 0.75

{+ 3} {+ 2} 1

{− 5} {− 1} 1

{+ 2} {+ 3} 0.75

{− 5} {− 4} 1

{− 4} {− 5} 1

{− 1, + 3} {+ 2} 1
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where Lr = conf (r)
sup(r)  , and Eg =

√

∑m
j=1 (Kj−Kg)

2

m

In the above, Ir is the importance of the rule, Lr is the lift of the rule r , n is the number 
of unique genes included in rule r, Egr is the RMS deviation of the expression level of 
gene g that is included in rule r, Kj is the gene expression level of gene j, where j repre-
sents all other genes; Kg is the gene expression level for gene g, and Br is the bias applied 
to this rule. The bias should be positive if a disease is in the rule.

The intuition here is to emphasize three factors that are related to the importance of 
an association rule. The first is the lift of a rule [19]. A higher lift indicates the rule has a 
higher response compared to the other rules. If the lift value is large, then the anteced-
ent and the consequent of the rule are more dependent on each other, and this further 
indicates a high significance of the rule. The second factor is the average significance of 
each gene included in the rule. If all or most of the genes are significant, then the rule 
is likely to be more important. When we convert the microarray dataset into a transac-
tional dataset, the absolute gene expression levels are converted into relative expression 
levels, and some information related to the absolute levels is missing. Here, we recon-
sider the influence of the absolute gene expression levels and calculate the average sig-
nificance of a gene-based on it. Eg , the deviation of the average absolute gene expression 
level, is calculated by taking the difference of the average absolute gene expression levels 
of all genes and the average absolute gene expression level of gene g. The significance of 
a rule contributed by its genes is then calculated by taking the average of each Eg that is 
included in rule r.

For example, assuming the rule G1 → G2 is an association rule found by the SARL 
heuristic. Genes 1, 2, and 3 have expression levels of 10, 8, and 5, respectively. The rule 
has confidence of 0.7 and support of 10. Then we can calculate Lr = conf (r)

sup(y) = 0.07 , 
E1 =

√

(K2−K1)
2+(K3−K1)

2

2  = 3.8, E2 =
√

(K3−K2)
2+(K1−K2)

2

2  = 2.5. Since the rule does not 
involve a disease, bias is set to 0. Hence, Ir = Lr ×

(∑

Egr

n
+ Br

)

= 0.07×

(

3.8+2.5

2
+ 0

)

= 0.22.

We incorporate the three most important measurements in the ranking of the rules. 
The lift measurement generally addresses the ranking of the significance of each rule, the 
average gene significance traces back to the microarray dataset and considers the impor-
tance of each gene, and the bias Br highlights the rules that involve disease information.

Experiments and results
We have designed and conducted experiments on small and large microarray datasets to 
demonstrate the scalability and accuracy of our algorithm. The experiments are based on 
the following configuration:

•	 OS: macOS Big Sur
•	 CPU: Apple M1
•	 Memory: 8 GB
•	 Disk: 256 GB, SSD
•	 Programming Language: Python 3.7

Ir = Lr × (

∑

Egr

n
+ Br)
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All three datasets are downloaded from ArrayExpress [20]. We test the SARL algo-
rithm on each of the datasets with various minsup configurations. Here, minsup refers to 
the minimum number of occurrences rather than the percentage of that.

E‑MTAB‑9030—microRNA profiling of muscular dystrophies dataset

The dataset has the following metrics:

•	 File size: 4 KB
•	 Number of genes: 29
•	 Number of assays: 15

This is a relatively small dataset. The experiments are done repeatedly for minsup of 5, 
4, 3, 2. The results are shown in Table 15.

According to Fig. 5, the SARL heuristic runs faster than the Apriori algorithm on all 
minsup configurations. We can see the running time becomes larger as the minsup goes 
down. For the test case where minsup is 2, the SARL algorithm performs 26 times faster 
than the Apriori algorithm.

Figure  6 shows the accuracy of the SARL heuristic is between 0.62 and 0.67. The 
accuracy is calculated based on the 100 most important frequent itemsets. The results 
are 62% to 67% accurate based on the association rules derived by the Apriori algo-
rithm with the 100 most important frequent itemsets. It seems the accuracy may be 
acceptable considering the purpose of this research and the speedup, i.e., to have a 
computational tool that can more quickly derive the important associations among 
genes for iterative investigation.

E‑MTAB‑8615

Molecular characterisation of TP53 mutated squamous cell carcinomas of the lung identifies 

BIRC5 as a putative target for therapy

The dataset has the following metrics:

•	 File size: 73.4 MB
•	 Number of genes: 58,202
•	 Number of assays: 209

This dataset is larger than the previous one. Traditionally, finding association rules 
with the Apriori algorithm on the full dataset will take an extremely long time.

The result of the experiment is shown in Table 16.

Table 15  Experiment results (in seconds) of dataset E-MTAB-9030

SARL Apriori

5 0.083 1.746

4 0.176 4.035

3 0.457 10.932

2 1.233 32.054
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According to Fig. 7, the SARL heuristic performs similarly comparing to the Apriori 
algorithm on a minsup range between 10 to 3, and both algorithms can finish within 
2  s. This is because the SARL heuristic has a small overhead, and the size of the pro-
cessed data is very small on these minsup configurations. However, when it comes to 
minsup = 2, the SARL heuristic outperforms the Apriori algorithm by a large margin. 
The SARL heuristic finished the task in less than 45 s comparing to 279 s for Apriori. 
Figure 8 shows that the SARL heuristic has 100% accuracy across all minsup configura-
tions. We believe the SARL heuristic performs better than the Apriori algorithm overall 
on this dataset because it achieves the same goal with a fraction of time.

E‑MTAB‑6703—A microarray meta‑dataset of breast cancer

The dataset has the following metrics:

•	 File size: 780.2 MB
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Fig. 5  Experiment results of dataset E-MTAB-9030 as a chart
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•	 Number of genes: 20,546
•	 Number of assays: 2302

This dataset is about ten times larger than the second dataset. However, based on the 
purpose of this research, we believe the total number of rules generated from the pre-
vious dataset is already overwhelmingly large. Therefore, we also reduced this dataset 
based on the method mentioned in this paper to speed up the calculation.

The experiment results are shown in Table 17.
From Fig. 9, we can find a similar performance result as the previous datasets, but the 

SARL performs better for the larger dataset. The SARL heuristic is 700 times faster than 
the Apriori algorithm on minsup = 2. More surprisingly, according to Fig. 10, SARL is 
accurate on all minsup configurations.

Table 16  Experiment results (in seconds) on E-MTAB-8615 dataset

SARL Apriori

10 1.93 0.01

9 1.78 0.01

8 1.65 0.01

7 1.8 0.01

6 1.67 0.01

5 1.72 0.01

4 1.84 0.02

3 1.69 0.77

2 44.14 278.98
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Fig. 7  Experiment results as a graph on E-MTAB-8615 dataset
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Discussion and conclusions
In this paper, we proposed a new algorithm for association rule learning specifically 
designed for microarray datasets. The SARL heuristic algorithm utilizes the ternary dis-
cretization method, divide and conquer paradigm, graph theory, and graph partitioning 
algorithm to significantly speed up the association rule learning process compared to 
traditional algorithms. The algorithm also shows space efficiency. The rule ranking algo-
rithm based on the importance saves time for researchers by showing the most impor-
tant rules first. The rules found and ranked by the SARL heuristic cover both inter-genes 
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Fig. 8  SARL heuristic accuracy

Table 17  Experiment results (in seconds) for E-MTAB-6703 dataset

SARL Apriori

5 0.023 0.011

4 0.017 0.02

3 0.034 1.446

2 0.142 99.756
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Fig. 9  Experiment results as a graph for E-MTAB-6703
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rules and gene-disease rules. We compared our algorithm with Apriori, the most com-
monly used association rule learning algorithm, through a series of experiments. The 
results show that our algorithm has a significant speedup while still maintains high 
accuracy.

Some potential drawbacks of our algorithm include: 1. There is a small probability that 
some non-trivial rules are lost in the dataset partitioning stage. 2. For small datasets or high 
support, the performance of our algorithm may be similar or slightly higher than the Apri-
ori algorithm due to the overhead.

In the future, we plan to extend our work with the following tasks:

•	 Develop a parallel version of the SARL heuristic and its implementation. The transac-
tion partitions can be considered as independent datasets, and we can easily run the 
modified Apriori algorithm or FP-Growth algorithm on each of the transaction parti-
tion in parallel and then merge the results (frequent three or higher itemsets) together 
along with the frequent one and two itemsets to obtain the total frequent itemsets. Each 
parallel processor does not need to communicate with others during the computation 
since all the information needed is already included in the local dataset. This would 
result in maximum utilization of each processor.

•	 A better algorithm may be used to predict the proper thresholds of the ternary discre-
tization. The current ternary discretization is based on empirical methods and may 
need several tests to find the best thresholds that reduce the dataset to a smaller size 
while keeping enough information. A statistical analysis of the dataset may help to 
decide the boundaries. Furthermore, we should consider incorporating deep neural net-
work approach in this process to predict the best threshold.

•	 Incremental Learning on Multiple Datasets: Nowadays, new microarray datasets are 
added to databases around the world on a daily basis. Among them, some of them focus 
on the same sets of genes, and others may have overlapping gene components. This 
brings an interesting question: can we learn association rules across multiple microarray 
datasets to get a larger number of more convincing rules? The answer is yes. It is pos-
sible and quite useful to learn association rules from multiple datasets. In fact, a promi-
nent advantage of the SARL algorithm is the ability to do incremental learning across 
multiple datasets.
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Assume we already examined and ran the SARL algorithm to learn association rules on 
datasets A, which includes genes G1, G2, and G3. Now, a dataset B is added with genes G1, 
G2, G3, and G4. We can extend the association rules from dataset A on G1, G2, and G3 in 
dataset B. G4 is removed from B since we cannot associate G4 to dataset A. Firstly, we com-
pare the reference conditions (assays) between datasets A and B and find a coefficient for 
each gene expression level:

c1 = A1
B1

c2 = A2
B2

c3 = A3
B3

A1 through A3 are expression levels of reference condition in dataset A, B1 through B3 
are expression levels of reference condition in dataset B. c1, c2, and c3 are coefficients we 
want to find.

Next, all expression levels in dataset B are divided by the corresponding coefficient:

where Ei is gene expression level with gene number i , and ci is the coefficient found in 
the previous step for gene i . Now, expression levels in dataset B are adjusted for the dif-
ferences in experimental conditions, we then are ready to run the SARL algorithm on 
dataset B.

The following is an example of combining two datasets:
According to Tables 18 and 19, assuming Assay2 is selected to be the reference condi-

tion in both datasets. We may calculate c1, c2, and c3 as:
c1 = 7/2 = 3.5
c2 = 2/5 = 0.4
c3 = 1/7 = 0.14
After dividing all the expression levels in dataset B by the corresponding coefficient we 

have a combined dataset (shown in Table 20):

Ei

ci
→ Ei

Table 18  Dataset A

Assay 1 Assay 
2

G1 5 7

G2 6 2

G3 3 1

Table 19  Dataset B

Assay 1 Assay 2

G1 5 2

G2 3 5

G3 8 7

G4 3 5
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The process of learning association rules on datasets A and B combined is simple. We 
run the SARL algorithm on the normalized dataset B until all support values are found. 
We can then merge the support values found for dataset B with the support values found 
for dataset A. After eliminating infrequent itemsets based on the new minsup value, we 
can generate the association rules.

Appendix
The appendix section is intended to provide a brief overview of the SARL heuristic [18].

Theorems  The followings are the theorems we proposed in our SARL heuristic paper 
[18]. The proofs are available in the same refenced paper.

 

Theorem 1: Soundness—all frequent itemsets and association rules generated by the 
SARL heuristic are correct.
Theorem 2: Computing the frequent two itemsets is considered relatively trivial com-
pared to computing the frequent three or more itemsets.
Theorem 3: Consider a value of minsup such that the fraction of frequent one itemset 
over the total number of unique items, d, denoted by f, is less than (1—the maximum 
imbalance rate), where the maximum imbalance rate is usually set to 3% based on 
the MLkP algorithm. If the partition by MLkP is k-way, then each partition contains 
less than d/k unique items, where d is the total unique items in the original dataset. 
As a consequence, the complexity of each partition can be reduced.

Finding frequent 2 itemsets using the apriori algorithm or dirct_gen algorithm

The first step of the SARL heuristic is to find the frequent 2 itemsets efficiently.
Although the Apriori algorithm has scalability issues for very large datasets, it pro-

vides a fast and convenient feature to extract intermediate results and a tolerable speed 
for the first two passes.

Another method to find frequent one and two itemsets is through direct counting and 
generation. The algorithm to find frequent one itemsets is the same as the Apriori algo-
rithm. To find frequent two itemsets, we can simply find all two-item pairs in each trans-
action and count the occurrence of them. The advantage of this algorithm is that it does 

Table 20  The combined dataset

Assay 1 Assay 2 Assay 3

G1 5 7 1.43

G2 6 2 7.5

G3 3 1 57.14
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not require candidate generation from L1, and avoids many unnecessary membership 
testing during support counting. However, this method is not efficient on large datasets 
since it does not use pruning and saves all two itemsets.

In the SARL heuristic, we ask the user for a threshold of the dataset size. If the dataset 
is larger than the threshold, the SARL heuristic will use the modified Apriori algorithm. 
Otherwise, it will use the direct_gen algorithm to compute the frequent one and two 
itemsets.

Construction of the item association graph

The item association graph G is constructed based on the two itemsets generated by the 
Apriori algorithm. G is an undirected, weighted graph. A node Vi is created for each 
unique item i in the two itemsets T with the maximum item number being n.

The edges E in graph G are formed for each itemset in T:

The weight of each edge Eij is equal to the support of itemset {i, j} in T:

Partition the IAG using the multilevel k‑way partitioning algorithm (MLkP)

The Multilevel k-way partitioning (MLkP) algorithm [17] is an efficient graph parti-
tioning algorithm. The time complexity is O(E), where E is the number of edges in the 
graph.

The general idea of MLkP is to shrink (coarsen) the original graph into a smaller graph, 
then partition the smaller graph using an improved version of the KL/FM algorithm. 
Lastly, it restores (uncoarsen) the partitioned graph to a larger, partitioned graph.

METIS is a software developed by Karypis at the University of Minnesota [18]. It 
includes an implementation of the MLkP algorithm that takes a graph as the input 
and outputs groups of nodes separated after the partition.

Transaction partitioning

Based on the results of the MLkP algorithm that divide the items into groups P1, P2,…
,Pm, we can partition the transactions into the same number of groups, where each 
group Di contains only the items in partition Pi . This guarantees that each partition 
fits into the memory. Refer to paper [18] for more details.

{V } = {

n
⋃

i=0

Vi|i ∈ |T |}

{E} = {

n
⋃

i=0,j=0

Eij|{i, j} ∈ T }

W
(

Eij
)

= Support
({

i, j
})

|{i, j} ∈ T
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Selecting an algorithm on transaction partitions

One of the benefits that come with our solution is that the association rule learning 
on each transaction partition can be optimized by using an algorithm that best fits the 
partition.

Since the modified Apriori algorithm has already computed the one itemsets and 
two itemsets during the preparation phase, the candidate generation feature of the 
Apriori algorithm is handy in this case. We modify the Apriori algorithm to skip the 
frequent one/two itemsets finding stages and start with the frequent three itemsets 
from the transaction partitions. This modification is particularly helpful when minsup 
is set to a high value so that the expected number of itemsets is limited after the two 
itemsets are found.

The average transaction length provides a fast and straightforward reference for 
selecting the best algorithm for each transaction partition. The SARL heuristic choose 
between the modified Apriori algorithm and FP-Growth algorithm to complete the 
computation of frequent itemsets.

Time complexity and space complexity

The theoretical time and space complexity of the Apriori algorithm is O(2d) where d is 
the number of unique items in the dataset.

Time complexity

If the modified Apriori algorithm is selected, the theoretical time complexity for each 
partition is O(21.03d/k) where the coefficient 1.03 comes from the 3% maximum imbal-
ance of the partitions caused by the MLkP algorithm. The total running time for all 
the partitions is O

(

k ∗ 2
1.03d
k

)

= O(2
1.03d
k ) , and the total time complexity of the SARL 

algorithm, when the modified Apriori algorithm is selected, is 
O
(

d2T + n+ d2 + d2 + n+ 2
1.03d
k

)

= O(d2T + n+ 2
1.03d
k ) . Assume n"d , and 2

1.03d
k "n , 

the time complexity can be simplified to O(2
1.03d
k ) . Compared with the time complex-

ity of the Apriori algorithm, the SARL is O
(

2d

2
1.03d
k

)

= O(2
k−1.03

k
d) times faster than the 

Apriori algorithm. The exponential speed up comes from the smaller number of 
unique items in each transaction partition. The algorithm chosen to mine frequent 
itemsets from the transaction partitions only needs to consider a portion of all the 
items for each partition.

Space complexity

If the modified Apriori algorithm is selected, the theoretical space complexity for each 
partition is O

(

2
1.03d
k

)

, where the coefficient 1.03 comes from the default 3% maximum 

imbalance of partitions caused by the MLkP algorithm. The total space complexity for all 
partitions is therefore O

(

k ∗ 2
1.03d
k

)

= O(2
1.03d
k ) , and the total space complexity of the 

SARL heuristic, when the modified Apriori algorithm is selected, is 
O
(

(3− 1) ∗ d2 + n
k
+ 2

1.03d
k

)

= O(d2 + n
k
+ 2

1.03d
k ) . Assume nk "d , and 2

1.03d
k "n

k , the space 

complexity can be simplified to O(2
1.03d
k ) . Compared with the space complexity of the 
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Apriori algorithm, SARL uses only O
(

2
1.03d
k

2d

)

= O
(

2
1.03−k

k
d
)

= o( 1

2
k−1.03

k
d
) space com-

paring to the Apriori algorithm. The exponential reduction of space usage comes from 
the smaller number of unique items in each transaction partition. If the modified Apriori 
is chosen to mine frequent itemsets from the transaction partitions, it only generates a 
smaller number of candidates for each transaction partition, since it does not consider 
items in other partitions.

Error bound

The SARL heuristic sacrifices some precision to obtain the speed up. However, every 
frequent itemset found by the algorithm is correct, and the support associated with each 
frequent itemset is also correct. The heuristic may miss some trivial frequent itemsets, 
i.e., the itemsets with low support. During the IAG partition phase, the MLkP algorithm 
makes cuts on the IAG to minimize the sum of the weights of the edges that are cut off. 
This feature helps to prevent large weights from cut off, while some trivial, small-weight 
(support) edges may be lost.

We can make a rough estimation by introducing a parameter Pout , the ratio of the 
edges cut off in the IAG. Pout = Ecut

Etotal
 . This parameter is determined by the characteris-

tics of a dataset, the minsup choice, and the number of partitions we choose. Pout is also 
a rough estimation of the error rate for the frequent two or more itemsets. Assume the 
ratio of the frequent two or more itemsets found is Pm , Pm =

#frequent2+itemsets
#totalfrequentitemsets

 , then the 
total error bound can be computed as Errortotal = Pm ∗ Pout.

Benefits of having datasets fit into the memory

The transaction partitions are guaranteed to be small enough to fit into the memory. 
Therefore, any operations performed on these in-memory datasets should be faster than 
before. For example, the Apriori algorithm makes the number of passes on the dataset 
equal to the maximum length of frequent itemsets. Each of these passes requires read-
ing the dataset from the disk. With our solution, the SARL heuristic makes at most two 
passes to the dataset. The first pass is to generate the frequent one and two itemsets, and 
in the second pass, the algorithm brings a fraction of the dataset into the memory. All 
further passes are made directly in the memory, resulting in speedup.

Abbreviations
K-itemset: An itemset with k items; Minsup: The minimum requirement of support. The user usually provides this. Item‑
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this. Rules with confidence < minconf are eliminated.; IAG: Item-Association Graph; MLkP: Multilevel k-way Partitioning 
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