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Introduction
Due to the rapid improvement in low-cost camera technology, there is explosive 
growth in the number of images/videos. For humans, it is easy to understand the vis-
ual content and give a description of it. But for the machines, it is a complex task until 
it learns completely. So recently, research on image and video captioning grabbed 
the attention of the research community. The computer vision-based automation of 
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the big data domain with advanced deep learnings is essential. The works in [1–3] 
have shown those data domains can also be processed with the help of different deep 
learning-based approaches.

Image/video captioning aims to automatically provide a meaningful and appropriate 
natural language description of the target image/video’s visual content. The challenges in 
this are manifold. It needs to recognize the objects and their interaction in the sequence 
of images and arrange words from natural language sequentially.

Video captioning [4–6] is a task of automatically describing the video content using 
natural language. It is easy for humans to watch a brief video clip and give an appropriate 
caption to it. Nevertheless, it is quite difficult for machines to do it as they have to read 
raw pixel data, process, and generate a fitting caption to the video clip without seman-
tic errors. It has various applications, such as video comprehension, text-based video 
retrieval accessibility for blind users, and multimedia recommendation. The exponential 
growth and research advances triggered the quick shift in the deep CNN domain, and 
other optimal variants prominently contributed to image captioning. However, due to 
the complexity of understanding the diverse sets of objects, and their relations, video 
captioning is usually a different task as compared to image captioning. In spite of dif-
ferent research issues in visual captioning, few attempts are mainly supported by recent 
technology like LSTM for more extended word prediction, Recurrent Neural Network 
(RNN), Gated Recurrent Units (GRU) [7, 8]. All natural language processing tools are 
very much efficient in some aspects. The LSTM model overcomes the problem of van-
ishing gradients and exploding problem by allowing the model to learn and update hid-
den states. The recent advancement in Natural Language Processing (NLP) has made 
machines understand that very efficiently with different word representations and used 
in many related areas.

Though the basic LSTM and its variants have been adapted to various other applica-
tions, the efficacy is always explorable and debatable in conjunction with a visual neural 
network. Thus, this work proposed to use stacked LSTM to generate a visual sentence. 
The past attempt [9] involves a deep visual model as a layered LSTM network.

The explicit non-usage of semantic attributes of different frames in visual attention 
models [6] for video captioning may be non addressed challenging area. For example, 
some words (i.e., “boy,” “is,” and “running”), here “boy” and “running” belong to visual 
words. In contrast, another word (i.e., “is”, ) a non-visual word, which requires no visuals 
but language context. The shortfall of current visual attention models [10] that gener-
ate non-semantic and non-contextual captions mislead visual understanding. The video 
captioning model requires a semantic correlation between visual contents and generated 
words, which has not been simultaneously considered in present models.

The widespread application of the LSTM based network with different contextual 
attention seen in many sequence generation tasks [4]. The success of any standard neural 
networks’ is attributed to layering approach and each layer leverages contextual features. 
Each layer learns some essential features of the visual frames and passes this contextual 
information to the next higher-level layers. However, most of the necessary and existing 
visual information captioning methods utilize various LSTMs with a single layer. The 
very well developed and efficient deep CNN is able to capture the contextual spatial fea-
tures in the image frames of the video clips on any scale.
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The research community’s recent trend is to find and experiment with the different 
visual attention mechanisms [11, 12] with different decoder architecture. This method 
succeeded in recent years. Specifically, this visual attention method is first used in vis-
ual captioning effectively [13]. It explains that the specific objects in an image are high-
lighted and extracted with visual contexts. These visual features are fused with weights 
giving more attention to the specific regions that are interested. The process of attention 
confronts the human behaviour of focus on the most exciting features of any visuals.

The sequence-based attention mechanism [14] prepares a fixed dimensional relevant 
feature vector. The method has become the most featured method on deep neural net-
works used for machine language translation, visual content identification, and question 
answering recommender-based systems. In this approach, we have used attention as a 
hidden layer that determines an unambiguous feature distribution to make a soft atten-
tion [15] selection over a fixed source feature vector.

The emphasis of attention is mostly on resolving the many difficulties outlined. To 
begin, close the gap between video frame visuals and summarize them to obtain a lin-
guistic description suitable for encoding and decoding. By honing a well-tuned atten-
tion mechanism on the decoding model, one can forecast the most accurate and closely 
related language descriptions. Second, the semantic context of words and image regions 
is efficiently extracted and assigned to the feature vector production process. The sug-
gested approach thoroughly investigates the temporal information contained in the 
entire sequence of video frames. Additionally, an effort is made at the decoding step to 
create an efficient joint model by merging stacked LSTM, CNN features, and an atten-
tion mechanism.

To the extent, the proposed framework’s primary contributions are: Firstly, using 
GloVe word embedding [16], specifically used 100-dimensional GloVe vectors depending 
on the size of the vocabulary in the dataset. Secondly, a layered LSTM encoder experi-
ment combined with visual Feature Extractor networks is used to extract temporal infor-
mation from videos in order to comprehend their actions. Thirdly, a hybrid loss function 
is applied to bridge the gap between the semantic context of the video and word predic-
tion. Finally, evaluate the proposed framework’s efficacy using eight widely used perfor-
mance evaluation measures.

The paper’s remaining part is organized as follows: Section “Related works” explores 
existing works on captioning videos. Section “Proposed methodology” explains various 
modules involved in the proposed framework. The detailed explanations about experi-
ments conducted and the results for video captioning are in Section “Experimental 
results and analysis”. Section “Conclusions” concludes the paper with future thinking.

Related works
Generating captions for videos and images gained momentum in recent years. The 
advances in this area are manifold, and the current works in this direction have shown 
promising results. This trend has become widespread and a hot research topic. This sec-
tion discusses related work on image and video captioning.

Several approaches [17] proposed to interpret the image’s visual contents and to gen-
erate natural language descriptions. However, all of them lack attention mechanisms. In 
[18] an end-to-end deep neural network automatically learns the visual content of an 
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image and generates a corresponding sentence using RNN. Because RNN exhibits van-
ishing gradients, a still better alternative like LSTM would increase the model efficiency. 
Giving image description with semantic context [19] combines two strategies to abstract 
the image’s deeper level information and combines with a decoder that can appropri-
ately select rich semantic associations. The work in [20] suggests a method that learns 
to extract specific information in the image and guides a decoder model to generate text 
descriptions. However, these approaches utilized only available image content for cap-
tioning, which does not include any temporal information.

A video is a sequence of frames, so it includes temporal information too. The success 
of several image captioning approaches allured researchers to focus on temporal infor-
mation available in the sequence of frames of a video and generating a suitable descrip-
tion or caption for the visual content. Bin et al. [4] used two layered LSTM for the visual 
encoding and natural-language generation. Their stacked global temporal structure in 
video clips is achieved by encoding video sequences with a forward and backward direc-
tional LSTM network and attributing attention to the original neural network structures. 
However, they paid attention only to the CNN features, not the embedding semantics. 
The research articles [21–26] used a variety of machine learning algorithms to retrieve 
significant characteristics and reduce the dimension of high-dimensional datasets for 
the purpose of classification.

The two-stage training method in Olivastri et al. [5], wherein the first-stage, the archi-
tecture is pre-trained with encoders and decoders. The second-stage trained the entire 
network to learn the most appropriate video visual captioning features end-to-end man-
ner. The visual attention module in [6] selectively picks most related frames and the 
appropriate regions in each frame. The method also suggested an attention module to 
focus on the most similar phrases to exploit more accurate text descriptions. However, it 
[6] used two attention modules. A method which follows hierarchical LSTMs with two-
level abstraction proposed in [27] for captioning. Hossain et al. [28] presented two lay-
ered self-attention to obtain the words’ diverse context in captions. The advantage of 
this method over the other is that it captures long-range dependencies of text sequence 
and less computation time. To guarantee the sentence description’s semantic consist-
ency and the visual video content, an attention mechanism with a local two-dimensional 
encoder and LSTM decoder to map the visual and textual features into a joint space is 
suggested in [29].

The approach in [30] uses a soft attention mechanism with a dynamic spatial atten-
tion mechanism to consider the spatial context of the image regions. The [31] proposes 
to encode an input video sequence to output shot sequences. In this method, the LSTM 
part has supplemented with two additive and multiplicative objective functions. The idea 
in [32] is to mine and construct multitask attributes from the human captioned videos 
by learning models with CNN and RNN. Xu et al. [13] combined the Vector of Locally 
Aggregated Descriptor (VLAD) and the Recurrent Convolution Networks (RCNs) 
framework to develop a sequential layer called Sequential Vector of Locally Aggregated 
Descriptor (SeqVLAD), which generates a better representation of video. Gao et al. [7] 
proposed a neural architecture with an LSTM decoder, attention, and new loss function.

A bidirectional LSTM (BiLSTM) tried to exploit global features of videos in [8, 33] as 
most of the existing methods only capture local temporal information. Song et al. [34] 



Page 5 of 22Naik and Jaidhar ﻿Journal of Big Data            (2022) 9:17 	

proposed a novel captioning framework for videos, which combines two-directional 
LSTM and an attention layer to generate better representations across entire video 
frames. Multiple encoder attention and fusion module explored in [35]. This approach 
adaptively learn the salient features. Yang et  al. [8] has proposed standard Genera-
tive Adversarial Network (GAN) architecture. This standard approach with generator 
and discriminator maintain a balance between texts generated and the accuracy. The 
discriminator part works as an “adversary” to the generator. To efficiently use all the 
advancements in advanced machine learning, primarily to address the research gaps in 
image understanding and caption, we proposed a new framework that could better han-
dle the problems. The proposed framework bettered some of the state-of-art methods.

Proposed methodology
Proposed framework

The proposed framework consists of encoder-decoder for generating an appropriate 
caption for a video as shown in Fig. 1. The pre-processing stage focuses on preparing the 
image frames derived from the input video to match the dimension requirements of pre-
trained CNN. The visual encoder combines CNN-based visual features and the stacked 
LSTM. The decoder part is defined as a combination of attention and a single LSTM 
layer. To select the significant features, the Soft Attention has been used.

The advantage of NASNet and stacked LSTM is that a varying number of convolu-
tional cells and the number of filters in the convolutional cells yields better accuracy 
than the traditional methods. Another view is that nonlinearity, and careful selection of 
connections among neurons together add to better results. Although two stages search 
the feature space created by two types of cells, stacked LSTM predicts the best captions.

The deeper layers in stacked LSTM are understood to combine the learned representa-
tion from previous layers to create new representations at high levels of abstraction. This 
adding depth is a type of representation optimizations.

In this proposed framework, the visual language model called encoder-decoder was 
used with NASNet [36], InceptionV3 [37], VGG16 [38]. The decoder consists of the 
attention mechanism to address long sequences in machine translation-this action of 
selectively concentrating on a relevant word to be predicted while ignoring others in 

C

Visual Encoder
Using Stacked

LSTM

Decoder Using
LSTM+Attention+Glove

Vector

A
tt
e
n
tio

n
A
tt
e
n
tio

n
A
tt
e
n
tio

n

L
S
T
M

Glove Vector

F1

F2

Fn

FV1

FV2

FVn

A
 W

o
m

a
n

 i
s
 r

id
in

g
 a

 h
o

rs
e

Input Video

Feature
Extractor

(VGG16/
InceptionV3/

NASNet)

S
t
a
c
k
e
d

L
S
T
M

. 
. 

. 
,

. 
. 

. 
, . 

. 
. 

,

. 
. 

. 
,

. 
. 

. 
,

L
S
T
M

L
S
T
M

. .
 . 

,

. 
. 

. 
,

P
r
e
p
r
o
c
e
s
s
i
n
g

M
e
r
g
e

. 
. 

. 
,

Fig. 1  Proposed framework
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succession. Each sub-components of the proposed framework is described in the follow-
ing section of the paper.

Preprocessing

In the preprocessing stage, extraction of frames are done. The extracted frames are 
resized to meet the input dimensions of deep learning models, namely VGG16, NASNet, 
and InceptionV3.

Feature extraction

Primarily, feature vectors are extracted, which are a high-level representation of videos, 
using three distinct models with varying dimensions.

NASNet large

The NASNet is a convolutional network originally used for image captioning. It takes 
331 × 331 image size as input and resulting feature vector dimension of 4032 per frame. 
The NASNet architecture is defined as the blocks or cells, and these blocks are defined as 
the feature map with normal and reduction dimension. The blocks are called as Normal 
Blocks and Reduction Blocks. The Normal Block usually measures the feature map from 
the respective layer, and the Reduction Cell/Block reduces the feature map by a factor of 
2. The controller decoder finds these Normal and Reductions Blocks information.

InceptionV3

Google developed this deep learning architecture for image captioning. The input image 
size should be 299 × 299. It results in a vector of dimension 2048 per frame. This model 
consisting of an “inception cell” working in parallel and then ultimately give the con-
catenated results. The kernel size in this model uses 1 × 1 convolutions to reduce the 
input channel depth. Each cell consists of different kernels with 1 × 1, 3 × 3, 5 × 5 dimen-
sions, which learn to extract features from the input. Max pooling and padding is used 
to retain the dimensions for concatenation.

VGG16

Oxford developed VGG16 deep neural network. It takes an input image of size 224 × 224 
pixels. The output feature vector is of size 4096. This deep neural network’s advantage is 
using a small receptive field with a kernel size 3 × 3 dimension. The smallest possible size 
kernel captures the abstract information within frames through traversal all along the 
image grid’s directions. The potential smaller values as the kernel with 11 dimensions act 
as a linear transformation of the input. The process is followed by a ReLU unit.

Given a video as a sequence of frames V = { F1 , F2 , ..., Fn }, where the video V has n 
frames and Fi represents ith frame of the video. The Feature Extractor generates set of 
feature vectors FV = { FV1 , FV2 , ..., FVn}.

Visual encoder

The visual encoder is a stacked/layered approach. Visual features are further processed 
using stacked LSTM to capture temporal information. LSTM units’ output is merged 
and then send to the decoder.
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Single LSTM unit

The LSTM Network introduced in [39]. Architecture of single LSTM unit based on [40] 
is given in Fig. 2, and relation is defined in Eq. (1).

Where, it , ft , and ot denotes input, forget, and output gates respectively. xt , Ct , and ht 
represent the current input, cell state, and hidden states, respectively. Ct−1 and ht−1 are 
the input from preceding timestep. The symbol * represents the element wise multiplica-
tion. Wxi , Whi , Wxf  , Whf  , Wxo , Who , Wxg , Whg , bi , bf  , bo , and bg are the parameters.

Stacked LSTM with dropout

We introduce a stacked LSTM visual encoder to encode the spatial CNN feature vectors 
and to exploit temporal information. To improve Deep learning model performance and 
avoid overfitting, the dropout is used on the feature vectors to randomly switch off few 
cells during the training. We used multiple layers of LSTM and finally, the output of lay-
ers are merged, and the result is given to the next layers. The output of layer i is defined 
as in Eq. (2).

The output of each previous LSTM layers are concatenated to obtain the output vector 
o
(f )
t  of the encoder as shown in Eq. (3).

The proposed framework of the stacked LSTM unit is given in Fig. 3. The network length 
is the measure of the time span of a training set. The ht , ct and xt denotes the output of 
last moment, current cell state and, current input respectively. The experimental result 

(1)

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxf xt +Whf ht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

C̃t = tanh(Wxgxt +Whght−1 + bg )

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(2)o
(i)
t , h

(i)
t = LSTM(i)(xt , h

(i)
t−1)

(3)o
(f )
t =

n∑

t=0

o
(1)
t + o

(2)
n−t

Fig. 2  LSTM unit [40]
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showed that 2-layered LSTM with combinations of NASNet, attention, and embedding 
is better than 3-layered LSTM. Though the 3-layered LSTM seems better in abstract rep-
resentation, overall better performance has resulted in 2-layered stacked LSTM because 
of different combinations.

Decoder

The decoder takes the feature vector from the encoder and utilized give best match to 
the original input using attention and GloVe vectors.

Attention mechanism

The output context vector from the encoder is fed to the decoder and generates a 
sequence of words describing the video. Training the model and giving the input 
sequence with a very long text sequence is not good. This sort of single, less contextual 
information from the encoder does not give the decoder excellent semantic and specific 
information. The attention approach gives more contextual meaning to the used decoder. 
The decoder learned how much semantic “attention” it should give to each input word at 
every decoding step.

The encoder output ( o(f )t  ) fed to the decoder which is more contextually meaningful. 
The decoder’s last hidden state and encoder hidden states are combined to calculate 
attention weights. A feed-forward neural network learns these weights.

The value for context vector ci for the output word yi is determined using Eq. (4).

The value for weights αij is computed by using a standard softmax function given by the 
Eq. (5).

eij is the calculated output score for the input at j and output at i using Eq. (6).

(4)ci =

n∑

j=1

αijo
(f )
j

(5)αij = exp(eij)/

n∑

k=1

exp(eik)

LSTM UNIT LSTM UNIT LSTM UNITLSTM UNIT
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Attention based LSTM

The decoder is an attention-based LSTM network. Attention mechanism combined with 
LSTM to focus on input sequence when predicting specific output sequence with more 
contextual understanding. Hence, the proposed decoder attention helps in selecting sali-
ent features for producing output sequence using a layer of LSTM.

In the proposed framework, every word in the caption encoded using GloVe. The vec-
tor representation model GloVe is used as an unsupervised learning technique to ena-
ble word representations of the given input word sequence. This model’s training stage 
gives a cumulative global word-word co-occurrence representation from an input word 
corpus. The resulting vector depicts more informative and exciting linear structures of 
the word vector space. These embeddings are passed to the last layer to generate the 
sequence.

The previous hidden states ht−1 , the previous predicted word wt−1 , and the present 
context vector are combined to form the LSTM’s [9] hidden state. During each time step 
context vector is adjusted so that decoder selectively attends the input sequence. Hence, 
the output of the decoder is given by Eq. (7).

Loss functions

The approach used here is an attention-based LSTM. The main idea of using two loss 
functions is to ensure the contextual relationship between words generated and the 
semantic relations between the video features and the descriptions to be developed for 
the video’s respective scene. The process maintains a simultaneous check between video 
translation and semantic efficiency.

Loss 1: translation from videos to words

Cross entropy loss is used for calculating the cost of translation and is given in Eq. (8).

where, N = represents number of training examples, y indicates actual values, and a 
denotes predicted values.

Loss 2: to bridge the semantic gap

Mean squared error loss helps bridge the semantic gap by estimating how far off the 
average predicted value is from the ground truth value. Thus, minimal value sees the 
close relationship between an estimated and actual value and ensures higher semantic 
similarity. The relation is defined in Eq. (9).

(6)eij = a(si−1, o
(f )
j )

(7)ot , ht = LSTM([wt−1 + Attention[ht−1; o
(f )
t−1]], ht−1)

(8)Loss1 = −
1

N

N∑

n

y ln a+ (1− y) ln(1− a)
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where, N represents number of training examples, c indicates dimension of output vec-
tor, y denotes actual values, and a represents predicted values.

Combined loss

The combined loss measure is given in Eq. (10).

Where, � is a hyperparameter between 0 and 1.

Experimental results and analysis
Dataset

The experiments performed on Microsoft Video Description (MSVD) [41] dataset, 
which is a benchmark dataset for video captioning. The dataset consists of a total of 
1970 short video clips from YouTube and 41 descriptions in English for each video. It 
also contains 80,000 clip-description pairs in different languages. For the proposed 
framework, English captions and dataset split in [9] used.

Experiments

Training parameters

Using the dataset split up mentioned earlier, proposed framework was trained for 600 
epochs. The proposed framework performed well with the following training param-
eters: batch size = 128, learning rate = 0.001, and optimizer = Adam. Figure 4 is a 
plot of training loss against the number of epochs trained for 2-layered and 3-lay-
ered LSTM respectively. One can observe that the loss decreases drastically, up to 
100 epochs, and then the decrease gradual. The proposed framework got stabilized 
between 400 and 600 epochs.

(9)Loss2 = −
1

N

N∑

n

c∑

k

(ynk − ank)
2

(10)NewLoss = �Loss1+ (1− �)Loss2

Fig. 4  Plot of training loss versus number of epochs.: a 2-layered LSTM b 3-layered LSTM
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Sample results with built models

In this work, three models proposed based on the different pre-trained models for fea-
ture extraction in the visual encoder part. Proposed Model_1 utilizes VGG16 based vis-
ual Feature Extractor, Model_2 uses InceptionV3 to extract features, and Model_3 uses 
NASNet as Feature Extractor. All these models used GloVe embedding and attention in 
the decoding part.

Figure  5 shows some frames of five different test samples. The corresponding 
ground-truth and generated captions by three models are given in Table 1. The pro-
posed model with VGG16 feature extractor performs poorly in catching the features 
of blurry images like Sample-5. Deeper networks, such as VGG16, InceptionV3, and 
NASNet, exhibit a slower decline in efficacy. This could be because those networks 
have a more complex structure, which gives them more room to learn attributes of 

Fig. 5  Test samples: a Sample-1 b Sample-2 c Sample-3 d Sample-4 e Sample-5
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the images that are unaffected by noise. The blurring, noise, or fogy produces a tiny 
shift in the filter responses in the primary convolutional layer. However, the penul-
timate convolutional layer exhibits significant variations in the filter responses. This 
modifies the first layer reaction, resulting in more or less significant alterations at the 
higher layer.

Obtained experimental results shows that Model_3 performed well in identifying 
the objects in the images and the semantic consistency than the other two models. 
For test samples in Fig.  5a and c, Model_3 gave captions close to the ground-truth 
captions than other two models. In test sample Fig.  5b, Model_1 identified a non-
existing object. For test samples in Fig. 5d and e all the models gave almost similar 
captions to the ground-truth captions.

Table 1  Sample input and output of proposed framework

Figure No. Ground-truth Model_1 Model_2 Model_3

Figure 5a {A girl is riding a horse 
and jumping barriers}, { 
A girl is riding a horse}, 
{A woman is riding a 
horse in an outdoor 
arena and she makes 
a jump}, { A woman 
is riding a horse}, {A 
person riding a horse is 
jumping hurdles}.

{a man is riding a 
horse}.

{a man is riding a 
horse }.

{a girl is riding a horse}.

Figure 5b {A baby is playing}, {A 
baby is playing with a 
pacifier}, {A baby plays 
on a bed}, {a baby is 
sucking on a soother 
and watching the cam-
era}, {The toddler put 
the pacifier in and out 
of his mouth}.

{a man is slicing a 
potato}.

{a baby is playing with 
toys}.

{3a baby is playing with 
a camera}.

Figure 5c {A cat is playing with a 
bunny}. ; {A cat is play-
ing with a rabbit}, {A 
kitten is playing with 
a rabbit},{a white cat 
playing with a white 
bunny}, {A kitten and a 
rabbit are playing}.

{ a kitten is trying to 
climb a tree}.

{a cat is playing}. { a white kitten is play-
ing}.

Figure 5d {A woman is cut-
ting something},{A 
woman cuts up some 
worms},{someone 
show how to prepare 
the japanese food},{a 
person coking},{ a 
women is making 
dish}.

{A woman is preparing 
a dish}

{The woman is mixing 
ingredients in a bowl}

{A woman is mixing 
some eggs}.

Figure 5e {A person is driving a 
car},{ the man is drive 
the car on the road 
and seeing the place}, 
{Someone is driving 
a car}, {A car is driving 
down a road}, {A car is 
moving}.

{a man is running in 
the water}

{a man is driving a car}. {a man is driving a car }.
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Comparison of models performance

Table  2 shows the BLEU performance metrics evaluated for the proposed framework 
with 2-layered and 3-layered LSTM on the MSVD dataset. The model with NASNet 
extracted features, GloVe, and 2-layered LSTM almost performed equally compared 
to the 3-layered NASNet model. But this NASNet model with 2-layered and 3-layered 
almost outperformed other proposed frameworks with VGG16 and InceptionV3 as 
NASNet identifies videos’ objects more accurately with the help of more abstract repre-
sentations from layered LSTMs.

In stacked LSTM, a level of abstractions of temporal input observations is also added. 
The GloVe represents words in n-dimensional space with unique meaning in each 
dimension. It captures a correlation between other words, which helps the stacked 
LSTM map from videos to descriptions correctly. The overall observations with this 
level of experiment and values conclude that Model_3 with a 2-layered approach is opti-
mal and less costly, considering the BLEU metrics of all three models.

The suggested framework outperforms other current methodologies in terms of over-
all model performance. NASNet’s LSTM and GloVe embedding are unusual in their 
two-layered structure. There are fewer floating-point operations and parameters in 
NASNets than in competing designs. To create a cell with the optimum performance, 
NASNet uses a controller RNN to identify the best combination of operations from a set 
of operations, rather than creating the block by hand. The input values to the network 
are fed through many levels of LSTM and propagate over time within a single LSTM cell 
with two layers of LSTM. Consequently, the parameters are well spread throughout sev-
eral layers of the system. As a result, each time step has a complete set of inputs. While 
Word2Vec relies solely on local statistics (such as the context in which words are used), 
GloVe takes into account global data (such as the co-occurrence of terms) in order to 
produce word vectors.

To further validate the model’s performance, we added an additional LSTM layer than 
the suggested framework, demonstrating the critical role of LSTM and its properties in 
producing superior outcomes to the two-layered strategy. As a result, proposed Model_3 
outperformed the other two methods in the combinations indicated.

Table   3 shows the inappropriate predicted output, which is not very close to the 
ground truth for all three models, which has considered the 2-layer LSTM stack. 
Though the failure cases ascertain, Model_3 is slightly better in giving results than 
the other two models. In this, Figure   6 (a) depicts a sample input image featuring 
ground truth captions. The output is slightly near the ground truth with the combina-
tion of attention and the stacked LSTM in the proposed Model_3, due to the more 

Table 2  Evaluation of 2-layered and 3-layered LSTM in proposed framework using BLEU metrics

Models MSVD

2 Layer Stacked LSTM 3 Layer Stacked LSTM

B@1 B@2 B@3 B@4 B@1 B@2 B@3 B@4

VGG16 + Stacked LSTM + GloVe (Model_1) 69.1 50.1 38.2 27.0 68.1 48.8 37.0 25.58

InceptionV3 + Stacked LSTM + GloVe (Model_2) 74.3 60.1 49.7 40.2 73.6 59.8 49.5 38.5

NASNet + Stacked LSTM + GloVe ( Model_3) 78.4 64.8 54.2 43.7 78.2 65.3 55.1 44
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in-depth learning of parameters without convergence and the increased focus on the 
required captions appropriate for the image locations. The model with NASNet has 
fewer parameters than the other conventional networks, but it makes the best use of 
the features to accurately predict over half of the ground truth words, outperform-
ing some of the existing approaches. Model_1 fared poorly, as there were no matches 
because VGG16 entirely misread the words due to insufficient learning. Model_2 pre-
dicted the terms as accurately as Model_3 but with a better score than Model_1. This 
is due to the inception modules, composed of smaller filters, technically known as 

Fig. 6  Failure cases: a Sample-1 b Sample-2 c Sample-3

Table 3  Failure cases: sample input and output given by the framework

Figure No. Ground-truth Model_1 Model_2 Model_3

Figure 6a {A car running from 
the police},{A guy is 
riding too fast in his 
bike.},{A man is driving 
backward and spins 
the car around.}

{A man is playing a 
guitar}

{A car is going up }. {A car is chasing a car}.

Figure 6b {A dog climbed into 
a clothes washing 
machine.}, {A bull 
dog is jumping into 
a washing machine.}, 
{The puppy went into 
the dryer.}, {The dog 
crawled into the dryer.}

{A man is putting 
some vegetables in 
a pan}

{A man is beating a 
concrete into a water}

{A man is making a 
fancy dish}.

Figure 6c { Airoplane in the Air}, 
{The plane took off 
from the runway.}, 
{An airplane is taking 
off.},{the person going 
on the airplane}

{A man is riding a bike}. {A woman is pushing 
a rock}.

{A woman is running in 
the air }
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pointwise convolutions, accompanied by convolutional layers with various filter sizes 
applied concurrently. This enables Inception networks to learn more complicated fea-
tures and predict words with a high degree of accuracy compared to the ground truth. 
In Fig.  6b and c, all models failed to forecast accurately due to the complicated nature 
of the frames, which prevented them from learning all the features precisely due to an 
abundance of complex textures.

Table 4 provides performance achieved by the proposed three models with 2-layered 
and 3-layered stacked LSTM with four standard metrics mentioned and are compared. 
We observe 2-layered Model_3 result compared to the 3-layered counterpart outper-
forms the latter with efficient utilization of NASNet cells and connections. Though the 
results seem to be significantly closer considering all three models with different LSTM 
levels and different performance metrics, 2-layered proposed framework slightly have an 
edge on their 3-layered counterparts. In general, Model_3 consider being more efficient 
in utilizing inherent features of that models to give the best result.

While the additional strength garnered by the more deeper architecture in LSTMs 
is not fully understood theoretically, it has been observed empirically that deep RNNs 
may perform better than shallower ones on certain tasks and datasets. Generally, two 
layers of LSTMs have been demonstrated to be sufficient for detecting more compli-
cated features [4, 42] . Additional layers make training more difficult due to increased 
layering results in information saturation, and increased complexity and also may 
lead to poor performance. As a result of our trials, it is clear that two-layered LSTM 
performed admirably across all measurement parameters.

Inception has inception layers and fewer parameters than VGG16, which is merely 
a simple array of convolutional max-pooling layers with dropouts added at the outset 
for speed optimization. Also, these dropouts effectively handle the model’s overfit-
ting issues by dynamically flipping connections with the activation layer. For regulari-
sation, there is additionally an auxiliary classifier. A complicated collection of filters 
within a ’cell’ can considerably improve outcomes in InceptionV3. The NASNet model 
outlines creating such a cell as an optimization process and then stacks numerous 
copies of the best cell to create a large network. NASNet has designed a new opti-
mized architecture that employs a controller RNN module to choose the top-per-
forming cells. As we see the unique combinations, all of these structural modules 
performed on the MSVD dataset more effectively.

Table 4  Evaluation of 2-layered and 3-layered LSTM in proposed framework using METEOR, ROUGE, 
CIDEr and SPICE

Models MSVD

2 Layer Stacked LSTM 3 Layer Stacked LSTM

METEOR ROUGE CIDEr SPICE METEOR ROUGE CIDEr SPICE

VGG16 + Stacked LSTM + GloVe 
(Model_1)

24.7 60.7 32.4 3 24.1 60.9 29.6 3

InceptionV3 + Stacked LSTM + GloVe 
(Model_2)

33.3 66.6 58.4 4.8 31.1 67.0 64.4 4.9

NASNet + Stacked LSTM + GloVe ( 
Model_3)

32.3 68.8 70.7 5.1 31.8 67.5 71.4 4.9
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When other indicators such as METEOR, ROUGE, CIDEr, and SPICE are evaluated, 
the proposed Model_3 with two-layered LSTM outperforms the ROUGE and SPICE 
scores. This implies that the SPICE score always takes the textual dataset’s semantics into 
account, as well as the association of an additional attention layer in our model. Whereas 
ROUGE is similar to BLUE and has a higher score, it makes logical that Model_3 con-
stantly outperforms all other measures, as we demonstrated in other measurements. 
The Model_3 with three LSTM layers outperformed the CIDEr score because the more 
abstract level of information learned by the third layer automatically captures better 
grammaticality, saliency, and accuracy.

Evaluation metrics and results

The performance of the proposed framework was evaluated on different metrics. The 
BLUE [43] algorithm evaluates the quality of the text, considered to be the matching 
between machines output and that of reference. The score is always between 0 and 1. 
This score indicates how similar the machines predicted output to that of reference with 
values closer to one representing more similar texts. The METEOR [44] is evaluating 
the machine translation output based on the harmonic mean of unigram precision and 
recall. The SPICE [45], is to alleviate the limitations of existing n-gram based metrics. 
This method uses the semantic propositional context component of caption evalua-
tion. The CIDEr [46] metric measures the similarity of generated text against human-
generated sentence. This measure uses grammaticality, saliency, and accuracy inherently 
captured. The ROUGE [47] is similar to BLUE compares predicted text with reference 
sentence.

Single loss vs hybrid loss

Figure  7 depicts the variation in BLUE4 and CIDEr metrics’ performance while using 
single and hybrid loss during training. It is observed that the proposed NASNet Feature 
Extractor model performed well in the hybrid loss since single loss focus on only transla-
tion loss whereas hybrid loss, considers the semantic gap between video and captions. 
Hence, hybrid loss proved to work better for the proposed framework.
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Fig. 7  Single loss versus hybrid loss
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Table  5 shows the different performance scores experimented for hyperparameter � 
with different values. We observe different performance values are corresponding to the 
different � values. The best performance score has resulted with � = 0.1 for the proposed 
2-layered Model_3.

The values of � , one of the tweaking factors relating with hybrid loss. Overfitting 
occurs in any model primarily as a result of the model learning even the slightest details 
contained in the data. Thus, after learning all conceivable patterns, the model performs 
admirably on the training set however fails to deliver satisfactory results during the test-
ing phase. It crumbles when confronted with previously unknown data. To avoid overfit-
ting, the model’s complexity should be reduced. This applies a regularisation parameter 
� . As a result, comparatively simple models are less prone to overfitting than compli-
cated models. In this context, a simple model is one in which the dispersion of hyperpa-
rameters has a low entropy, and hence many possibilities are attempted. We discovered 
that the optimal value is 0.1.

Comparison with existing works

Table  6 compares the obtained experimental results of the proposed NASNet Feature 
Extractor, Model_3 with some of the existing state-of-the-art video captioning works on 

Table 5  Evaluation of Model_3 using different � hyper parameter

Lambda Values Model_3

BLUE score Other metrics

B@1 B@2 B@3 B@4 METEOR ROUGE CIDEr SPICE

� = 0.1 78.4 64.8 54.2 43.7 32.3 68.8 70.7 5.1

� = 0.3 76.1 62.1 50.9 39.7 31.3 66.9 67.5 4.9

� = 0.7 74.9 60.7 49.7 38.9 30.9 66.6 63.3 4.8

� = 0.8 75.2 61.4 50.7 40.3 31.2 67.1 66.9 5.0

� = 0.9 75.2 61.3 50.4 39.9 30.8 66.6 64.1 4.9

Table 6  Comparison with existing methods

Method B@1 B@2 B@3 B@4

S-VC [48] – – – 35.1

SA [49] – – – 40.3

MM-VDN [50] – – – 37.6

LSTM-E [51] 74.9 60.9 50.6 40.2

HBNEVC [52] – – – 42.5

LVMVP [53] – – – 40.1

LSTM-GAN [8] – – – 42.9

SE-GRU [54] – – – 42.9

BPLSTM [55] 78.4 64.8 53.8 42.9

UTS [56] – – – 43.00

STAT_LOC_V [10] – – – 43.2

STAT_LOC_L [10] – – – 42.9

p-RNN(VGGNet) [11] 77.3 64.5 54.6 44.3
Model_3 (Proposed) 78.4 64.8 54.2 43.7
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the MSVD dataset. The proposed NASNet model gave better results for B@1, B@2, B@3, 
and, B@4 metrics. The reason behind this is because BLEU score calculation searches 
for the same words in the text. The combination of NASNet with layered approach bet-
ters the representation and prediction.

Though the p-RNN [11] outperforms our Model_3 in B@3 and B@4 attributed to the 
fact that their RNN model is not compelled and video features are generally fed into 
the multilayer, our model outperforms all of the other approaches listed in Table  6 
due to the inclusion of soft attention in the decoder and a contextual vector generated 
for the captions. The results in [55] are identical in B@1 and B@2 because the meas-
ure is a just lexical matching of words between reference[input sentence] and candidate 
sentence[predicted sentence].when it comes to B@3 and B@4 the proposed model is 
bettered due to the contextual understanding of preceding and succeeding words of the 
any target word. Moreover the proposed model is attached to an attention mechanism, 
which finds the lexical and semantics of the words surrounded whereas the paper [55] is 
not with attention mechanism.

Table  7 shows the obtained experimental results of the proposed framework using 
NASNet with some of the existing static frame-level approaches on video captioning 
works on the MSVD dataset. The proposed NASNet framework gave better results for 
METEOR metrics because it first compares tokens, synonyms, and paraphrases. Some of 
the existing baseline papers having multiple different features on the same video dataset. 

Table 7  Comparison of proposed framework with the state-of-the-art methods w.r.t METEOR and 
CIDEr score

 Method  METEOR  CIDEr

S-VC [48] 29.3 –

SA [49] 29.6 51.7

S2VT [57] 29.2 –

S2VT[VGGNet+Optical flow] [57] 29.8 –

MM-VDN [50] 29.0 –

MP-LSTM [9] 29.1 –

LSTM-E[VGGNet] [51] 29.5 –

LSTM-E[C3D] [51] 29.9 –

LSTM-E[VGGNet+C3D] [51] 31.0 –

LSTM-GAN [8] 30.4 –

p-RNN[C3D] [11] 30.3 –

p-RNN[VGGNet] [11] 31.1 –

LVMVP [53] 29.9 51.1

BPLSTM [55] 32.0 62.20

HRNE [12] 32.1 –

HBNEVC [52] – 63.5

SE-GRU [54] – 62.3

STAT [58] – 67.5

MA-LSTM [29] – 70.4

UTS [56] 33.20 71.10

STAT_LOC_V [10] 30.5 62.8

STAT_LOC_L [10] 31.0 62.5

Model_3 (Proposed) 32.3 70.7
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We observe that 2-layered Model_3 shows better performance. Table 7 also compares 
the CIDEr metrics and the proposed framework gave better results over the existing 
works because CIDEr uses lengthier n-grams to capture the grammatical properties and 
higher semantics of the text.

Experimentation environment details

All studies are done on a machine configured with an Intel Core i7-10750H CPU run-
ning at 2.60GHz, 2592Mhz, six cores, twelve logical processors, sixteen gigabytes of 
RAM, and an NVIDIA GeForce GTX 1650 GPU. Keras with TensorFlow is used as the 
backend.

Advantages

Real-world applications like automatic video subtitling, surveillance footage, text-based 
video retrieval affordability for blind users, video comprehension, multimedia recom-
mendation is made possible by video and image captioning advances. These include 
helping people with various degrees of vision disability, self-driving vehicles, sign inter-
pretation, human-robot interaction, and intelligent video subtitling. Various 2D-CNN 
models are experimented with layered LSTM to obtain the suitable model to extract spa-
tio-temporal features from the video in the proposed work. Also, the attention mecha-
nism captures the contextual information to predict the best phrases for the videos. The 
experimental results have also proven the same and made the proposed approach practi-
cally applicable in various real-world scenarios mentioned above.

Limitations

While our approach is capable of producing a sentence for video and has demonstrated 
promising outcomes, it has significant drawbacks. The majority of our failures result in 
an inaccurate object name being used in phrases, for example, when small objects with 
similar shapes or appearances are confused. As a result, reliably finding correct objects 
in images, including those that are hazy or obscured, and anticipating associated cap-
tions would remain an open topic. Video and Sentential data goes unidirectionally down 
to the next level via the visual encoder. As a result, utilising the Bidirectional LSTM, 
erroneous information can still be eliminated. While we built a sentence vector with 
GloVe, the model can still incorporate the most recent embeddings such as BERT [59].

Conclusion
The proposed framework fully explores the spatial and temporal information among the 
video frames’ whole sequence. In this paper, an efficient and new framework is proposed 
by integrating multiple LSTM, different Feature Extractors, Soft Attention, hybrid loss 
functions and GloVe embedding mechanism at the decoding stage. The visual encoder is 
a combination of CNN-based visual features and the layered LSTM. The decoder part is 
defined as a combination of attention and a single LSTM layer. To select the significant 
features, the Soft Attention has been used. This paper induced the hybrid loss to focus 
on semantic consistency.

Based on the experiments, the framework achieved approximately 24.5 % more than 
S-VC, 9% more than LSTM-E, and 2% more than BPLSTM in BLUE score criteria. 
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Further, the proposed technique outperformed SA by 9% and 36% in terms of METEOR 
and CIDEr, respectively. Thus, the suggested model outperformed the majority of cur-
rent studies in terms of a variety of evaluation metrics.

In the future, we intend to update our model to work with domain-specific datasets, 
such as movies and documentaries, and to extend the architecture to incorporate Gen-
erative Adversarial Networks (GAN). Additionally, we would like to experiment with 
techniques such as beam search, which is used to determine the optimal word combina-
tion for a caption.
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