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Introduction
Big Data systems provide efficient querying of very large amount of data—typically mil-
lions to billions of records. While the query performance is better than typical database 
systems, it is still not very pleasing to end users. For example, Facebook data warehouse 
has 300 petabytes of data, and a single query processing can take even 350 seconds [1].

Big Data is composed of several components and various researches proposed tech-
niques to improve those components—starting from efficient indexing [2–4] and 
caching/filtering [5], to techniques such as improved query execution plans [6–8] and 
effective data partitioning [9–11]. However, we found one aspect of Big Data which exist-
ing researches failed to address—improving query execution time by avoiding unneces-
sary query delegation to remote nodes in a Big Data cluster when it is pre-known that 
the nodes do not have the data for the requested partition.

Our solution is based on using Probabilistic Filters. A probabilistic filter supports 
set membership queries in such a way that querying a set may result in false positives 
(claiming an element to be part of the set when it was not inserted), but never in false 
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negatives (reporting an inserted element to be absent from the set when it is actually 
present). The most popular probabilistic filter out there is Bloom Filter [5], which is also 
being used in many popular Big Data systems like Google BigTable [12], Apache HBase 
[13] and Apache Cassandra [14]. Probabilistic Filter is an interesting software technique 
that improves query performance by avoiding unnecessary disk accesses, while having 
extremely low memory footprint requirement and providing extremely fast lookup ser-
vice. These characteristics also allow it to be passed around among nodes in a network 
without causing network traffic overhead.

To improve query execution performance in a Big Data cluster, we introduce using 
a probabilistic filter that will store partition keys against which a node has data within 
it (we will be referencing this filter as a Node Filter throughout this paper). The nodes 
will synchronize the filters among themselves. A client connects to a node and executes 
lookup queries (queries that retrieve data) against partition keys, all of which may not be 
present in the connected node. Before the connected node relays the queries to remote 
nodes in the cluster that may contain the requested data, it looks up the filter to see if 
the destination nodes indeed contain the requested data. If not, it can avoid unnecessary 
network round-trip cost that would have otherwise increased query execution time.

An important limitation of the Bloom Filter is that data cannot be deleted from it 
[15]. Data deletion is a regular operation in Big Data systems due to cost minimization, 
privacy issues and effective data analytics [16]. Recently, this limitation of Bloom Filter 
has been addressed efficiently by another probabilistic filter named Cuckoo Filter [15]. 
Again, Big Data systems that offer high-performance query execution usually utilize 
Bloom Filters along with Eventual Consistency model for performance improvement. 
Eventual consistency is a consistency model used in distributed computing to achieve 
high availability that informally guarantees that, if no new updates are made to a given 
data item, eventually all accesses to that item will return the last updated value. In the 
Eventual Consistency model, data deleted is not removed from disk storage and rather 
updated with a deletion marker timestamp called a Tombstone. The data is eventually 
deleted during a data compaction process. This data compaction process takes a lot of 
CPU resource and has other overheads due to which it is scheduled to occur very infre-
quently (commonly every few days). This time interval between tombstoning and com-
paction is called a grace period. During the grace period, any lookup query must access 
disks and retrieve the data only to find out that the data has been deleted. Therefore, 
while the model improves performance, it fails to do so for the case where data deletion 
is a regular occurrence.

In this paper, we propose another scheme that improves performance of lookup que-
ries after data deletion by replacing Bloom Filter with Cuckoo Filter that allows deletion 
of entries from within it. There are a few challenges in implementing this scheme, which 
we also address properly. We then show that lookup queries after data deletion can 
improve performance for up to 2x using our proposed scheme. We also show that none 
of our schemes causes performance degradation as a side effect for any other lookup or 
insertion queries whatsoever.

We have run several carefully-designed experiments in a popular Big Data database 
(Cassandra) with a real data set to evaluate our schemes and have shown that the per-
formance of lookup queries improves for up to 2x in cases where data is deleted or do 
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not exist in local or remote nodes in a cluster. The experiments cover practical use cases 
like varying fraction of queries executed in remote nodes and varying fraction of queries 
returning positive or negative results. We also show that introducing node filters does 
not cause any performance overhead.

To summarize, in this paper we establish the answer to the question—whether using 
probabilistic filters improve query execution performance in a networked Big Data clus-
ter. We also explain the significance of this research by referencing renowned and practi-
cal cases demonstrating the need to improve query execution performance in a Big Data 
cluster.

Contributions

The contributions of this paper are as follows: 

1.	 We propose a scheme to improve query execution performance in Distributed Big 
Data systems.

2.	 We propose another scheme to improve performance of lookup query after data 
deletion in Big Data systems that use the tombstoning technique for data deletion in 
an eventual consistency model.

3.	 We evaluate the proposed schemes using a popular open source Big Data system 
(Cassandra) and demonstrate that query execution performance improves signifi-
cantly.

4.	 We evaluate performance of lookup and insertion queries not covered by our pro-
posed scheme and show that the scheme does not degrade query performance in 
those other cases as a side effect.

Organization

The rest of this paper is organized as follows. "Background" section provides some back-
ground information on Big Data systems and optimizing query execution performance 
on those systems. "Related works" section provides an overview of researches in con-
cepts related to our scheme. "Proposed Scheme  1: improving performance of lookup 
queries after data deletion in Big Data systems"  and "Proposed Scheme  2: improving 
performance of lookup in remote nodes in a Big Data clusterookup inRemote Nodes in 
a Big Data Cluster" sections present our two schemes respectively along with the chal-
lenges in implementing those. In "Experimentations" section, we describe our experi-
ment setup with Cassandra, and show the results of evaluations of our proposed schemes 
and related cases. Finally, we conclude in "Conclusions and future work" section.

Background
Improving query performance in Big Data systems is challenging. There are two primary 
factors that affect query performance in a distributed Big Data system—huge amount 
of data to be processed and data transfer among nodes inside a cluster. Naturally, to 
improve query efficiency, data is partitioned and stored into several nodes. The more 
nodes need to be accessed to process a single query, the worse the query performance 
becomes. Consequently, researches to improve query performance in Big Data have 
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been carried out in three directions—improving query execution performance within a 
single node, letting less data transfer happen among nodes, and improving query perfor-
mance by producing efficient query execution plans.

Several researches address the issue of query execution performance within a sin-
gle node. Accessing storage to retrieve data is the primary bottleneck of query execu-
tion. Hence, Big Data systems employ different indexing [2–4], and caching/filtering [5] 
schemes to improve disk access performance.

To lessen data transfer among nodes, researchers suggest using better data partitioning 
techniques and schemes. While some researches provide general partitioning technique 
applicable to any Big Data system with any type of data [9–11], other researches propose 
schemes to improve query performance for specific categories of data (e.g. geo-spatial 
[17], locality-aware [18] etc.). It is common to use some form of summary structures 
to eliminate partitions which are not relevant to a predicate. Most of these techniques 
improve query performance of a single-server database system (see for example [19] 
and [20]) and do not apply for distributed database systems. Zigzag Join [21] and Track-
join [22] use Bloom Filters with other techniques to minimize data movement over the 
network for distributed joins. Although these techniques allow eliminating remote data 
access, they fail to handle the case where they do allow accessing remote data, but the 
data in reality do not exist in the remote nodes (due to deletion, for example).

We propose a system that can detect absence of data against a partition key from 
within the node processing the query, thus avoids a network round-trip cost that would 
otherwise fetch no result for the query. We show that based on the percentage of par-
tition keys that result in no data from different nodes, our scheme can improve query 
execution performance for up to 100%.

Our proposed scheme basically uses a probabilistic data structure called a Filter that 
provides approximate answer to membership queries. Querying a set for a set member-
ship results in either true negative (i.e. reporting an element to be absent from the set) or 
false positive (i.e. claiming an element to be part of the set when it is not). The filter can 
be queried before reaching a node to know if the node contains records matching the 
partition key. Thus, a lot of unnecessary network round trip time can be prevented if a 
probabilistic filter is used. Further information on how probabilistic filter works can be 
found in [5].

Big Data systems that offer high-performance query execution service usually uti-
lize Bloom Filters along with Eventual Consistency model [23] for improving perfor-
mance of lookup from disk storage. In the Eventual Consistency model, data deleted is 
not removed from disk storage immediately and rather updated with a deletion marker 
timestamp called a Tombstone. The data is eventually deleted during a data compac-
tion process. This data compaction process takes a lot of CPU resource and has other 
overheads due to which it is scheduled to occur very infrequently (commonly every 
few days). This time interval between tombstoning and compaction is called a grace 
period. While the model improves performance, it fails to improve performance for the 
case where data deletion is a regular occurrence. During the grace period, any lookup 
query must access disks and retrieve the data only to find out that the data has been 
deleted. This is due to the fact that Bloom Filter does not support deletion of elements 
from within it. If, while marking data with tombstones, keys of the marked data could be 
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removed from Bloom Filter, then this issue would not have caused the performance deg-
radation. To improve performance in this case, we propose a scheme for storage filtering 
that replaces Bloom Filter with Cuckoo Filter [15]—another probabilistic filter that sup-
ports deletion of elements from within it. The scheme tweaks the Cuckoo Filter, too, so 
that it doesn’t cause any side effect when used in a distributed storage environment. We 
use that modified Cuckoo Filter instead of a Bloom Filter as our chosen storage filter as 
well as node filter, and show that based on the percentage of partition keys that result in 
deleted data in remote nodes, our scheme can improve query execution performance for 
up to 100%.

To summarize, in this paper, we introduce the use of Cuckoo Filters for data lookup in 
the storage system of a node, as well as for data lookup in remote nodes in distributed 
Big Data systems. Through experiments, we show that these filters can improve query 
execution performance for up to 100%.

Related Works
Researches have proposed improvement of various components of Big Data to boost 
overall query performance. MapReduce is a popular technique that can efficiently query 
against very large amount of data. A lot of research works have focused on improving 
the performance of MapReduce [6, 7]. Indexing against large amount of data in Big Data 
systems is challenging. Researches have been carried out to innovate efficient indexing 
schemes for Big Data [2–4]. Probabilistic filters have been used to improve query exe-
cution performance by avoiding unnecessary disk storage access. Google BigTable [12], 
Apache HBase [13] and Apache Cassandra [14] are the popular Big Data solutions that 
utilize Bloom Filter, the most popular probabilistic filter. Several data placement [24, 25] 
and partitioning techniques [9–11, 17, 18] have been proposed to improve data transfer 
throughput among nodes in a Big Data cluster. Bloom Filters combined with other tech-
niques are used in distributed joins to minimize data movement over the network (for 
example, [21] and [22]). However, these techniques fail to handle the case where data 
in reality do not exist in the remote nodes (due to deletion, for example). We introduce 
a novel technique of using probabilistic filters to efficiently determine existence of data 
before relaying query execution to different nodes in a cluster, thereby improving perfor-
mance for up to 100% in the cases where data do not exist in remote nodes, or data have 
been deleted from there.

The technique of probabilistic filters was first published by B. H. Bloom [5], which 
became known as Bloom Filter. While having an extremely small memory footprint, 
Bloom Filter has the disadvantage of not supporting deletion operation on items within 
it. Several variations of Bloom Filter have been proposed to address these issues (see 
[26] for a comprehensive list, and [27] for another recent variation named Master-Slave 
Bloom Filter), but none can address all the issues of Bloom Filter at the same time.

More recently, Bin Fan and others proposed Cuckoo Filter [15] that supports count 
and deletion operations, does not introduce false negatives during deletion operation, 
has fewer bits per entry for optimum false positive rate ( < 3% ), and can maintain stable 
false positive rate with higher load for up to 95%. After its introduction, recently, several 
research works have used Cuckoo Filter to speed up the lookup process in the areas of 
Networking and Security [28–32]. However, there have not been significant researches 
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utilizing Cuckoo Filter in the area of Big Data—only a few on semi-structured data [33], 
encrypted data [34] and dynamic data-sets [35].

Cuckoo Filter has a drawback that during insertion, more items may need to be kicked 
out and placed into alternate buckets, increasing the insertion time. And if exhausted, 
the filter needs to be resized. Researches have been carried out to devise variations of 
Cuckoo Filter or Cuckoo Hash that can be used to reduce the insertion time. Smart-
Cuckoo [36] efficiently predetermines insertion failures without paying a high cost of 
carrying out step-by-step probing. A. Kirsch et al. [37] showed that the failure probabil-
ity can be dramatically reduced by the addition of a very small constant-sized stash.

In this paper, we utilize the deletability feature of Cuckoo Filter and propose a method-
ology where querying for data after deletion can improve query execution performance 
for up to 2x.

Proposed Scheme 1: improving performance of lookup queries after data 
deletion in Big Data systems
We first describe the scenario where existing Big Data systems fail to improve query 
performance. Then we propose our scheme to overcome the limitation. Finally, we state 
the challenges that we encounter while implementing the proposed scheme and discuss 
solutions to overcome those.

Query performance degradation in case of data lookup after deletion in existing Big Data 

systems

Bloom Filter has the limitation that it does not allow deletion of items from within it. 
Combined with the Eventual Consistency model, this limitation degrades performance 
significantly for queries looking up data after it has been deleted. The following scenario 
demonstrates the significance of the issue. 

1.	 When a client deletes a row, instead of actually removing the data from storage, the 
Big Data database updates the row to add a tombstone marker. The Bloom Filter 
keeps the row key though, as the key cannot be deleted from the filter.

2.	 Before the database system runs a storage compaction procedure to actually remove 
the data (which can be up to a few days later), a client queries with row keys that 
include the key for the deleted row. Now, Bloom Filter will suggest that the row data 
exists on disk, as it has the key still stored in it.

3.	 The database system will read the disk storage only to find out that the row data has 
been marked with a tombstone and hence removes the row from the resultant set of 
rows to be returned to the client. This unnecessary storage access increases query 
execution time significantly and hence degrades query performance.

Proposed scheme to improve performance of lookup query after deletion

We propose a scheme that replaces Bloom Filter with Cuckoo Filter that allows deletion 
from the filter. Following is an illustrative scenario of how the proposed scheme works 
and improves performance. 
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1.	 A client makes a row deletion query. The query is executed exactly the way executed 
by the current system, that is, data on disk is marked with a tombstone. We do not 
propose instant deletion of data and instead propose utilizing the existing tombston-
ing technique, because data deletion is a very expensive operation that should not be 
done very frequently.

2.	 The corresponding row key is deleted from the Cuckoo Filter associated with the row 
data deleted.

3.	 The Cuckoo Filter is subsequently flushed into disk to persist the change in it. To 
make sure the flushing of the filter is handled robustly in a fail-safe way and cre-
ates minimal overhead, we propose using Adaptive Cuckoo Filter [38], a variant of 
Cuckoo Filter that removes keys resulting in false positives from itself. "If flushing the 
updated filter fails after data deletion" section expands upon the issue in detail.

4.	 Afterwards, during a lookup query, the key will not be found in the filter and hence a 
costly disk access operation can be avoided, thereby improving performance.

Modifications of Cuckoo Filter to implement proposed scheme

Replacing Bloom Filter with Cuckoo Filter creates new challenges to make the proposed 
scheme work properly in a fail-safe manner. In this section we discuss the challenges and 
propose solutions to overcome those.

When consistency level requirement is more than one node

As Eventual Consistency model is a weak consistency model designed to improve per-
formance, Big Data systems employing it usually provide an option to increase confi-
dence in data consistency as may be required by clients. It is worth mentioning here that 
clients requiring strong consistency should not use Big Data systems that utilize Even-
tual Consistency; however, there may be cases where a client may not require strong 
consistency for most of the data, but a particular table/data may be required to maintain 
greater consistency than the rest.

To specify consistency level requirement, Big Data systems usually provide the option 
for a query to specify its requirement of consistency level. If there are multiple repli-
cas of a node, a query can ask for higher consistency level of data and the system then 
executes the same query on multiple nodes and converge the results based on update 
timestamp to make sure the latest data is returned. Now, let us consider the following 
scenario for a cluster of two nodes (one being a replica of the other) with our proposed 
method implemented in place. 

1.	 Data is deleted from Node 1. The corresponding key is also deleted from the filter. 
Node 2 has not been updated with the changes yet.

2.	 A lookup query is executed with consistency level requirement of 2, that is, two 
nodes should be compared to find the latest data. The Big Data system will try to 
converge data from both nodes and see that the former has no data (because the fil-
ter says so) while the latter has data, and will conclude that the data in Node 2 is the 
latest one, which is clearly wrong. The system derives this conclusion based on com-
paring update timestamps of the data returned from the nodes, and for the former 
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node, there is no data while the latter one has data with timestamp, which is consid-
ered the latest timestamp by the system (Fig. 3).

This can be handled properly by using a modified version of Cuckoo Filter where 
it will not only respond with whether a key is stored in it or not, but also whether 
a key in it has been deleted. Thus we can also modify the behavior of the Big Data 
system to detect this case where consistency level requirement is greater than 1, and 
let it access the disk to retrieve the row data so that when the timestamps of the data 
from both the nodes are compared, the system will find the row deletion timestamp 
to be later than the row creation timestamp and conclude the latest state to be the 
row deletion, which is the expected result. Following is an illustration of the opera-
tions of the modified proposed scheme. 

1.	 A client makes a row deletion query. The query is executed exactly the way executed 
by the current system, that is, data on disk is marked with a tombstone.

2.	 The corresponding row key is deleted from the Cuckoo Filter associated with the 
row data deleted. At the same time, the Cuckoo Filter now maintains a list of deleted 
keys, and the key is entered into the deleted key list.

3.	 The Cuckoo Filter is subsequently flushed into disk to persist the change in it. The 
change in data has not been propagated to the other nodes yet.

4.	 A lookup query is executed with consistency level requirement of 1, that is, a single 
node’s data will suffice—no convergence of data from multiple nodes needs to be car-
ried out. In this case, the filter will respond that the key is deleted and the database 
system will avoid the costly disk access operation; resulting in improved query per-
formance.

5.	 Now, suppose a lookup query is executed with consistency level requirement of 2, 
that is, two nodes should be compared to find the latest data. The system now detects 
this and finds the filter responding that the data is deleted. In this case, the system 
still reads the data and returns the row. The result from two nodes will be converged 
by the system and as the deleted row will contain the tombstoned timestamp which 
is the latest timestamp, the system will remove it from the resulting rows of data 
(Fig. 4).

If flushing the updated filter fails after data deletion

Once a key is deleted from the filter, if flushing the filter into disk storage fails, due 
to for example crashing of node, then the key will come back into the filter once the 
node recovers. This will hinder performance improvement of subsequent lookup que-
ries against this key. The following scenario illustrates this point. 

1.	 Data is marked with tombstone and deleted from filter.
2.	 The filter is scheduled to be flushed into disk.
3.	 The node crashes before the filter is flushed into disk, and later recovers.
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4.	 Now the data is tombstoned, but the filter also contains the data. Our proposed 
method will not gain any performance benefit for that deleted data.

The proper way to ensure reliable updating of filter is using a journaling method to 
log changes in filter before it is flushed and replaying the log in case the filter fails to 
get flushed successfully. However, it is a complex process that also has performance 
overhead.

A rather simpler and more efficient technique would be using the Adaptive Cuckoo 
Filter variant [38], which removes false positives from the filter once detected. So, in this 
case, once a lookup query finds out that a row key exists in the filter but the row data is 
tombstoned, it gives the feedback to the Adaptive Cuckoo Filter and it removes the row 
key from within it.

Proposed Scheme 2: improving performance of lookup in remote nodes 
in a Big Data cluster
Let us first describe a scenario of how a query is executed in a typical Big Data cluster of 
nodes. 

1.	 A client first connects to a node and executes a query.
2.	 If the node does not own the partition of data, it fetches the data from the node that 

owns the partition and relays it to the client (Fig.  1). Note that in this case, if the 
remote node does not contain any data against the queried partition key, then an 
unnecessary network round trip occurs, which increases query execution time.

3.	 If the node, that has been connected to, owns the partition of data queried by the 
client, it executes the query and returns the result to the client (Fig. 2). In this case, 
a storage filter is looked up to see if the data actually exist on the disk storage. If 
the storage filter confirms that the data do not exist on the disk storage, then a disk 
lookup cost can be avoided. However, when Bloom Filter is used as storage filter, for 
case of deleted data, it replies with a false positive that the data exist on disk storage. 
It thereby increases query execution time.

Now let us describe our scheme and show how it fits into the above-mentioned scenario 
and improves performance. 

Fig. 1  Query execution path when cluster node does not own partition of data requested by client
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1.	 Each node in a cluster of node maintains a filter (we call it a Node Filter) against each 
table in the database. A node filter contains all the keys against which data is stored 
on that node. The node filter is synchronized among all the nodes in the cluster, so 
that each node has a copy of node filters of all other nodes in the cluster.

2.	 When a client needs to look up data from a Big Data system, it first connects to a 
node in a cluster of nodes and executes a lookup query against a set of keys.

Fig. 2  Query execution path when cluster node owns partition of data requested by client

Fig. 3  Failure of Database System to infer correct result with our proposed scheme applied, in the case 
where Consistency Level requirement > 1

Fig. 4  Modifying the behavior of Cuckoo Filter makes sure the Database System infers correct result with our 
proposed scheme applied, in the case where Consistency Level requirement > 1
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3.	 For each key, the database system looks up whether data against it is stored in that 
node, or in some remote nodes in the cluster.

4.	 If the data against a key is stored in that node, the database system queries the storage 
filter to see if the data really exist on the local storage. If the filter replies in affirma-
tive the database system looks up the storage to retrieve the data. If the filter replies 
in negative, it then knows that data against the key cannot be found.

5.	 If the data against a key is not stored in that node, the database system identifies the 
remote node to look up. It then checks the node filter of that remote node to see if 
data really exist on that node. If the filter replies in affirmative, the database system 
delegates the query to that node to retrieve the data from it. If the filter replies in 
negative, it then knows that data against the key cannot be found in the remote node, 
and thus save a network round-trip latency.

Figure 18 shows the system architecture as a whole.

Using Cuckoo Filter to improve lookup performance after data deletion

Step 1 in the above proposed scheme states that any change against a key in the data 
stored in disk would trigger corresponding change to the key stored in the Node Filter. 
This is always true for data insertion. However, not in the case of data deletion. Most 
databases employ the Eventual Consistency model to improve read/write performance. 
Due to constraints of that model, data deletion is not executed immediately. Rather 
data to be deleted is updated with a deletion timestamp called a Tombstone. In regu-
lar intervals, data is compacted and at that time tombstoned data is actually removed. 
The interval typically is set to a few days due to the performance impact of the compac-
tion process. Hence, queries executed after tombstoning but before compaction need to 
retrieve all the data from storage, then remove the tombstoned data from the resultant 
row set. As Bloom Filter cannot delete elements from within it, the tombstoned keys 
cannot be deleted from the node filter; thus Bloom Filter cannot improve performance 
in this case. However, as Cuckoo Filter supports data deletion, tombstoned keys can 
be removed from the node filter, allowing to skip queries from being executed in the 
remote nodes and improve query execution performance thereby. It is for this reason 
we propose using Cuckoo Filter so that the performance benefit of our scheme becomes 
applicable in case of data deletion changes, too. We compare the performances of using 
Bloom Filter versus Cuckoo Filter in case of data lookup after deletion and show that 
Cuckoo Filter can improve query execution performance for up to 100% in this case.

Challenges and issues

Obviously introducing a level of filtering comes with its own overheads and challenges. 
In this section we address the challenges associated with Node Filter and Storage Filter 
and propose effective solutions.

Synchronizing node filters among nodes

The most effective way to synchronize node filters among nodes is whenever a node fil-
ter changes. However, a node can become unresponsive due to crashing for example, and 
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hence it will fail to receive the changed node filters from other nodes. Then when that unre-
sponsive node recovers, it now has an outdated version of node filters; and if node filters 
do not change further, that node will always contain an outdated node filter (Fig. 19). The 
usual way to address this issue is to implement an agent that will take care of detecting node 
crashing and recovery and synchronize node filters accordingly. The implementation of this 
solution is different for distributed master-client architecture (Fig.  20) and peer-to-peer 
architecture (Fig. 21). However, this solution is complex and has its own overhead.

Instead, we propose to synchronize node filters periodically. This is based on the fact that 
the size of the Filter is extremely small (only 1 megabyte for having 1 million entries, assum-
ing false-positive probability is 0.01%), and hence network data transfer overhead to syn-
chronize the filters will not degrade overall network performance significantly. The interval 
of synchronization can be set based on number of stored partition keys. For example, if 
there are 1M keys stored in a node partition, then node filter size will be pretty small and 
we can set the synchronization interval to 5 minutes only. If, however, there are 1B keys 
stored in a node partition, then node filter size will be around 1GB and so we can set the 
synchronization interval to 1 hour. Note that having 1B unique partition keys is not practi-
cal as it will degrade query performance heavily. In any case, if filter size becomes an issue, 
we can always tune the false positive probability of the filters to make the filter size signifi-
cantly lower.

False‑negatives within the time duration of filter update and synchronization

If we choose to synchronize filters among nodes periodically, then there is a corner-case 
that may be unwelcoming. Consider the scenario when data with new partition keys are 
inserted into a node, but the next interval for node filter synchronization is yet to come. At 
that moment, a client connects to another node and executes a query that needs to look up 
from the newly inserted data. Then the connected node will not reach the node having the 
new data because the node filter in the connected node will respond that partition keys for 
those newly inserted data do not exist (Fig. 22).

This is a common scenario in Big Data systems that provide high performance and availa-
bility. That is why most Big Data systems choose to employ Eventual Consistency, which is a 
form of weak consistency. Similar to expectations from a weak consistency system, the filter 
synchronization can also be considered as a weak consistency one. It should be emphasized 
here that due to the extremely small size of the filters, filter synchronization interval can 
be set to as low as every few seconds, without causing increase in network traffic. In case 
the filter size becomes large, false positive rate of the filter can be sacrificed for lowering 
filter size, and that would still improve query execution performance significantly. Finally, 
in case of strong consistency requirement, the database system or queries can be config-
ured to probe data from multiple replicas and converge the results into the most consistent 
result set. That will in any case make sure of producing consistent data irrespective of using 
node filters.

Experimentations
Experiments setup

Most Big Data systems currently in use employ Eventual Consistency as well as Bloom 
Filters. Eventual Consistency is a popular choice because it allows faster read/write 
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operations, and Bloom Filter plays a vital role in improving query execution perfor-
mance by avoiding disk access in the case where data do not exist on disk. Examples 
of popular Big Data systems incorporating these features include Google BigTable [12], 
Apache HBase [13] and Apache Cassandra [14]. Among these, we choose Cassandra to 
be our experimental Big Data system. The driving factors for choosing Cassandra are as 
follows. 

1	 Apache Cassandra is a free and open-source distributed Wide-Column-Store NoSQL 
database management system designed to handle large amounts of data across many 
commodity servers, providing high availability with no single point of failure.1 Cas-
sandra offers robust support for clusters spanning multiple datacenters [39] with 
asynchronous masterless replication allowing low latency operations for all clients

2	 It is the most popular Column-Store Big Data database as of Jan. 2020 according to 
DB-Engines ranking.2

3	 The source code of Cassandra is organized and clean. Also, querying the database 
is very simple syntactically and programmatically compared to other Big Data data-
bases, along with having performance tracing feature built-in.

We forked the Cassandra source code repository into our own repository on Github3 
and plugged an open-source implementation of Cuckoo Filter4 into it. We made neces-
sary changes according to our proposed methodology.

We compiled the source code and ran our experiments in a Cassandra Cluster set up 
in Amazon Web Services (AWS).

As for the experimentation of our proposed scheme for improving performance of 
lookup queries after data deletion, we set up Cassandra on a single AWS node that was 
an m5.xlarge EC2 instance—2.5 GHz Intel Xeon Platinum 8175 processor with 4 virtual 
CPUs, 16 GB RAM and 200 GB io1 EBS volume with 10,000 IOPS, having up to 3500 
Mbps dedicated EBS bandwidth.

As for the experimentation of our other proposed scheme for improving performance 
of lookup in remote nodes, we set up a Cassandra cluster on 6 AWS nodes. The 6 nodes 
in the cluster was spread in three availability zones (us-east-2a, us-east-2b, us-east-2c) 
in the US-East (Ohio) region. Each node had the same configuration as the one used for 
experimenting the first scheme. The experiments were executed from a same-configura-
tion node in one of the availability zones of the cluster (us-east-2a).

As for a real-world experiment dataset, we chose to use Amazon Customer Reviews 
dataset ( ∼136M records, ∼50GB total data size) that is available publicly.5 We inserted 
the dataset into our Cassandra instance using the built-in CQLSH tool for data 
manipulation.

1  https://​en.​wikip​edia.​org/​wiki/​Apache_​Cassa​ndra.
2  https://​db-​engin​es.​com/​en/​ranki​ng/​wide+​column+​store.
3  https://​github.​com/​shara​fat/​cassa​ndra.
4  https://​github.​com/​MGunl​ogson/​Cucko​oFilt​er4J.
5  https://​regis​try.​opend​ata.​aws/​amazon-​revie​ws.

https://en.wikipedia.org/wiki/Apache_Cassandra
https://db-engines.com/en/ranking/wide+column+store
https://github.com/sharafat/cassandra
https://github.com/MGunlogson/CuckooFilter4J
https://registry.opendata.aws/amazon-reviews
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We developed a program in Java6 to connect to our Cassandra instance, execute que-
ries and collect execution time.

Experiments setup and execution details

This section outlines the steps of setting up and running the experiment.
First, a cluster of our modified version of the Apache Cassandra system needs to be set 

up. Each node should be set up on different physical machines. The Cassandra system 
on the master node should be configured so that it can identify the rest of the nodes 
in the cluster. Then, the experiment dataset should be loaded on the master node. Due 
to cluster configuration, the dataset would get replicated to all the nodes in the cluster. 
This completes the experiment setup. Afterwards, the Cassandra Query Language Shell 
binary file (cqlsh) is used to execute the various selection queries and measure perfor-
mance of the query execution.

Experimental results 1: performance of lookup queries after data deletion

In "Lookup performance after deletion" section, we evaluate the performance of our pro-
posed scheme to improve performance of lookup query after data deletion in an eventu-
ally consistent database system. To show that the core change proposed in our scheme, 
that is, replacing the Bloom Filter with Cuckoo Filter, does not degrade performance of 
Cassandra, we measure lookup and insertion query performances in general and present 
the result of our evaluation in "Lookup performance in general" and "Insertion perfor-
mance" sections.

Lookup performance after deletion

From Table 1 and Fig. 5 we see that allowing deletion in filter improves query execu-
tion performance significantly (in this particular instance for 99.96%) for querying 
data that have been deleted. This leads to the conclusion that the more query results 
in empty result, the faster the query executes. We have also done an experiment that 

Fig. 5  Lookup performance after deletion (lower is better). Cuckoo Filter improves performance for up to 
100%

6  https://​github.​com/​shara​fat/​cuckoo-​filter-​perfo​rmance-​analy​zer.

https://github.com/sharafat/cuckoo-filter-performance-analyzer
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proves this conclusion is correct. Table 2 and Fig. 6 shows the query execution times 
where fraction of queries look up keys that have their data deleted. We can see that 
when none of the queries contain keys that have been deleted, that is, fraction of 
deleted data queries is 0%, the performance is almost identical. The more the fraction 
of queries look up keys having their data deleted, the better performance becomes; up 
to the point where query execution time comes down to few milliseconds from many 
seconds, yielding almost 100% (2x) performance gain.

It should be noted here that in case of Bloom Filter, along with increase in fraction 
of deleted data queries, the query execution time decreases a bit. That is because the 
query execution time includes the data transfer time from the server to the client, and 
hence the lesser the data for transfer, the lesser query execution time becomes.

Fig. 6  Lookup performance after deletion for varying percentage of queries returning deleted data (lower is 
better). Cuckoo Filter improves performance for up to 100%

Fig. 7  Lookup performance after deletion for varying data size (lower is better). Cuckoo Filter improves 
performance for up to 100%
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Fig. 8  Lookup performance for varying query result positiveness (that is, percentage of queries returning 
rows, as opposed to returning 0 rows) (lower is better). Performance of Cuckoo Filter is not worse than Bloom 
Filter

Table 1  Experimental results 1: lookup performance after deletion. Query execution time in 
milliseconds

Bloom filter Cuckoo Filter Improvement

56.71 0.02 99.96%

Table 2  Experimental results 1: Lookup performance after deletion for varying queries retrieving 
deleted rows. Query execution time in seconds. (Each query results in 5M rows)

Deleted key fraction (%) Bloom Filter Cuckoo Filter Improvement 
(%)

0 161.368 157.392 2.46

25 148.943 128.170 13.95

50 127.332 101.672 20.15

75 109.944 53.448 51.39

100 56.709 0.004 99.99

Table 3  Experimental results 1: Lookup performance after deletion for varying data size.  Query 
execution time in seconds

Data size (GB) Bloom filter Cuckoo Filter Improvement (%)

1 10.258 0.005 99.95

10 130.664 0.002 100.00

20 248.105 0.006 100.00

30 318.843 0.009 100.00

40 440.009 0.014 100.00

50 506.697 0.020 100.00

We also experimented with lookup after deletion performance against varying data 
size, and from Table 3 and Fig. 7 it can be seen that the more data is deleted, the more 
performance improvement Cuckoo Filter achieves.
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Lookup performance in general

Table 4 and Fig. 8 shows the comparison result for varying the fraction of queries that 
return positive results, that is, return rows as opposed to resulting in 0 rows. Naturally, 
the more queries return positive results, the more data need to be transferred from 
server to client, hence the query execution time increases. But the query execution time 
for both the cases of Bloom Filter and Cuckoo Filter remains very similar, with Cuckoo 
Filter not causing performance degradation of lookup queries in general.

Insertion performance

Table 5 and Fig. 9 shows the result of our experiment with insertion query execution ( ∼
136M rows) and it clearly shows that Cuckoo Filter performance is again equivalent to 
Bloom Filter, while being slightly better.

Experimental results 2: performance of lookup in remote nodes

In "Lookup performance after deletion" section, we evaluate the performance of our 
proposed system to improve lookup performance in a Big Data cluster by knowing 
beforehand if a remote node actually contains a requested partition of data. The eval-
uation is conducted by comparing the default implementation to Node Filters utiliz-
ing Bloom and Cuckoo Filters. We show in "Lookup performance in general" section 
that Cuckoo Filter dramatically improves performance over Bloom Filter in case of 

Table 4  Experimental results 1: Lookup performance varying the fraction of queries yielding 
positive results. Query execution time in seconds

Positive result fraction (%) Bloom filter Cuckoo Filter Improvement 
(%)

0 0.025 0.021 16.00

25 59.904 47.155 21.28

50 75.618 54.873 27.43

75 121.482 105.444 13.20

100 187.531 170.694 8.98

Fig. 9  Insertion performance for varying filter load (that is, how full the filter is) (lower is better). Performance 
of Cuckoo Filter is not worse than Bloom Filter
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lookup query after data deletion. In "Lookup performance when remote nodes do not 
contain data against queried partition key" section, we evaluate the performance of 
our proposed system when 100% queries result in positive data and conclude that the 
proposed system does not degrade performance. Again, in "Insertion performance" 
section, we evaluate the performance of the system in case of data insertion and show 
that it does not degrade performance. Finally, section   compares the CPU and net-
work bandwidth utilization of our proposed system to that of the default system, and 
yet again we show that the resource utilization overhead of our proposed system is 
negligible.

Lookup performance when remote nodes do not contain data against queried partition key

We first evaluate the performance of our proposed method by measuring query exe-
cution time against varying a fraction of queries to be executed in the remote nodes. 
We maintain that none of the queries that are executed in the connected node or the 
remote nodes results in any row. Table 6 and Fig.  10 shows the result and from it we 
can see that while the performance of the default implementation degrades along with 
increased number of queries to be executed in remote node, the node filter implementa-
tion improves performance for up to around 70% (1.7x).

Lookup performance after data deletion

Due to the constraints of Eventual Consistency model used in most distributed Big 
Data systems, data is actually not deleted for a long time (typically few days), but rather 

Table 5  Experimental results 1: Insertion performance. Query execution time in seconds

Filter load (%) Bloom filter Cuckoo Filter Improvement 
(%)

0 84.565 84.457 0.13

25 85.572 85.224 0.41

50 85.863 85.183 0.79

75 86.029 85.255 0.90

100 85.435 85.413 0.03

Fig. 10  Lookup performance by varying fraction of queries executed in remote node, while all queries 
executed locally or remotely returns negative results (lower is better). The performances of Node Bloom and 
Node Cuckoo are very similar and hence overlap
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marked with a deletion marker called Tombstone. As Bloom Filter does not support dele-
tion of items from within it, the Node Bloom Filter allows querying the remote node 
which returns empty result upon detecting the tombstones. Cuckoo Filter supports dele-
tion of items from within it and in this case, it can prevent the unnecessary round trip. 
Though the performance of Node Cuckoo Filter and Node Bloom Filter is similar, in this 
case, Node Cuckoo Filter outperforms Node Bloom Filter for up to 100% (2x), as can be 
seen from Table 7 and Fig. 11.

It is worth mentioning here that when all queries are executed in remote nodes, 
the database system can save time as no further processing is required for retrieving 
rows from the local storage of the node. That is why in Table 7 and Fig. 11 the query 

Table 6  Experimental results 2: lookup performance when remote nodes do not contain data 
against queried partition key. Query execution time in milliseconds

Fraction of queries executing in connected vs 
other nodes, while all keys returning negative 
results (%)

Default 
Implementation

Node Bloom Node 
Cuckoo

Improvement 
(%)

0 2 2 2 0

25 4 2 2 50

50 5 2 2 60

75 6 2 2 67

100 7 2 2 71

Table 7  Experimental results 2: lookup performance after data deletion. Query execution time in 
seconds

Fraction of queries executing in 
connected vs other nodes, while all keys 
returning deleted results (%)

Default 
Implementation

Node Bloom Node Cuckoo Improvement 
(%)

0 81.333 81.26 81.67 0

25 92.879 91.60 82.91 11

50 94.189 94.81 58.10 38

75 100.382 100.83 34.31 66

100 87.539 86.29 0.00 100

Fig. 11  Lookup performance after data deletion, by varying fraction of queries retrieving rows from 
remote node (lower is better). All the queries result in deleted data. Node Cuckoo Filter improves 
lookup performance for up to 100%, depending on the fraction of queries executed in other nodes. The 
performances of the default implementation and Node Bloom are very similar and hence overlap
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execution time of the default implementation as well as Node Bloom takes less time 
when 100% of the queries are executed locally or remotely, compared to when some 
of the queries are executed locally and some remotely.

We also experimented with lookup after deletion performance against varying data 
size, and from Table 8 and Fig. 12 it can be seen that the more data is deleted, the 
more performance improvement Node Cuckoo Filter achieves.

Lookup performance when remote nodes contain data against all queried partition keys

We now evaluate the performance of our proposed method by measuring query exe-
cution time against varying a fraction of queries to be executed in remote nodes. 
We maintain that all of the queries that are executed in the connected node or the 
remote nodes result in some rows. Table 9 and Fig. 13 shows the result of the experi-
ment that the performance is very similar for all implementations. Hence, we con-
clude that introducing node filter does not significantly degrade performance of 
lookup queries that return positive results.

Fig. 12  Lookup performance after data deletion, by varying deleted data size (lower is better). All the queries 
are relayed to remote nodes for execution. Node Cuckoo Filter improves lookup performance for up to 100%

Table 8  Experimental Results 2: lookup performance after data deletion by varying data size. Query 
execution time in seconds

Data size (GB) Default 
Implementation

Node Bloom Node Cuckoo Improvement 
(%)

1 0.007 0.002 0.001 50

10 114.364 111.930 0.001 100

20 184.581 183.720 0.002 100

30 239.622 240.370 0.001 100

40 322.622 321.272 0.002 100
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Insertion performance

Table 10 and Fig. 14 shows the performance comparison of data insertion (6 nodes 
and ∼136M rows). The performance of all implementations are almost the same. 
Therefore, our proposed system does not degrade performance in case of insertion 
queries either.

Resource utilization comparison

Our proposed system has two overheads compared to the default implementation—(1) 
during data insertion and deletion, node filter needs to be created/updated; and (2) the 
node filters need to be synced among nodes.

While running the experiments, we also measured the CPU utilization and network 
bandwidth utilization of both the default and our proposed system using AWS Cloud-
Watch Monitor.

Fig. 13  Lookup performance by varying fraction of queries executed in remote node, while all queries 
executed locally or remotely returns positive results (lower is better). The performances of all the 
implementations are very similar and hence overlap

Table 9  Experimental results 2: lookup performance when remote nodes contain data against all 
queried partition keys. Query execution time in seconds

Fraction of queries executing in 
connected vs other nodes, while all keys 
returning positive results (%)

Default 
Implementation

Node Bloom Node Cuckoo Improvement 
(%)

0 200.290 200.852 200.737 0

25 236.479 237.785 237.603 0

50 248.119 249.285 248.927 −1

75 276.972 277.024 277.042 0

100 254.769 255.881 255.497 0

Table 10  Experimental Results 2: insertion performance. Query execution time in minutes

Default implementation Node bloom Node Cuckoo

78.27 78.03 77.94
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Fig. 14  Insertion Performance (lower is better). The performances of all the implementations are very similar

Fig. 15  CPU utilization (lower is better). The CPU overhead of the proposed solution is negligible

Table 11  CPU utilization by Node Filter

Time (n-th Minute) Default implementation (%) Node Filter 
(Cuckoo) (%)

0 0.3 0.8

5 0.0 0.6

10 3.1 13.3

15 22.6 22.9

20 21.5 21.2

25 21.8 23.3

30 22.5 22.3

35 20.9 21.5

40 22.7 20.9

45 19.8 21.4

50 22.8 21.8

55 22.7 21.8

60 20.9 22.0

65 23.2 23.2

70 22.5 20.3

75 16.5 22.8

80 23.2 21.7

85 22.5 23.7

90 16.5 6.5

95 0.0 0.0

100 0.0 0.1

105 0.0 0.1

110 0.0 0.0

115 0.0 0.1

120 0.0 0.1
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Table 11 and Fig. 15 show the CPU utilization comparison. We can see that our pro-
posed solution does not cause any significant overhead. Even during the node filter syn-
chronization, the CPU overhead of our proposed system is zero.

Table  12 and Fig.  16 show the Network bandwidth consumed by incoming data; 
whereas Tables 13 and 17 show the Network bandwidth consumed by outgoing data. 
From the figures it can be seen that again, the network bandwidth overhead is negligi-
ble. During the node filter synchronization interval, the bandwidth overhead is equal 

Fig. 16  Network bandwidth consumption (incoming) in megabytes (lower is better). The overhead of the 
proposed solution is negligible

Table 12  Network bandwidth consumption (incoming) in megabytes by Node Filter

Time (n-th Minute) Default Implementation (MB) Node Filter 
(Cuckoo) (MB)

0 0.6 0.0

5 0.5 0.1

10 33.1 74.6

15 128.0 136.0

20 151.0 187.0

25 196.0 153.0

30 128.0 151.0

35 157.0 138.0

40 136.0 138.0

45 119.0 123.0

50 144.0 145.0

55 138.0 130.0

60 166.0 173.0

65 135.0 151.0

70 158.0 146.0

75 143.0 133.0

80 148.0 185.0

85 165.0 135.0

90 103.0 40.9

95 0.1 0.1

100 0.1 3.5

105 0.1 3.5

110 0.1 0.1

115 0.0 3.5

120 0.0 0.1
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to the node filter size; which, in our experiment was only around 3.55 megabytes, as 
is evident from Fig. 16 (during 100th minute and onwards). For most practical pur-
poses, the network bandwidth overhead will be negligible.

Conclusions and future work
Improving query performance is one of the most challenging issues in Big Data. Sev-
eral techniques have been utilized by various Big Data systems to improve query per-
formance as much as possible, including employing the Eventual Consistency Model 
and Bloom Filters. Bloom Filter degrades performance of lookup queries after data 
deletion in an Eventual Consistent database. Also, none of the techniques address 

Fig. 17  Network bandwidth consumption (outgoing) in megabytes (lower is better). The overhead of the 
proposed solution is negligible

Fig. 18  System Architecture to lookup data in a Big Data cluster
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the issue of performance improvement by having pre-existing knowledge of partition 
data existence in each node of a Big Data cluster.

This paper proposes two schemes that improve query performance significantly. The 
first scheme improves performance of lookup queries after data deletion in an Eventually 
Consistent Big Data system by replacing Bloom Filter with a modified version of Cuckoo 
Filter. The other scheme improves performance of lookup in remote nodes in a Big Data 
cluster by placing and synchronizing a probabilistic filter with each node and looking it 
up to see if data exist in remote nodes before relaying queries to those directly. We also 
recommend using Cuckoo Filters instead of Bloom Filters in the proposed system, that 
will result in the added benefit of improved performance of lookup queries after data 
deletion.

Both the schemes have been evaluated with a popular Big Data database (Cassandra) 
with a real dataset. The first scheme has been shown to improve performance of lookup 
queries after data deletion for up to 100% (2x) in an Eventual Consistent database. This 
is in consistent with the expectation based on previous researches that Cuckoo Filter 
outperforms Bloom Filter in cases where data is deleted in regular interval. The other 
scheme has been shown to improve performance of lookup queries for up to 100% (2x) 
in cases where data do not exist in remote nodes, or have been deleted there (in case 

Fig. 19  Node filter synchronization issue during failure of a node
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Table 13  Network bandwidth consumption (outgoing) in megabytes by Node Filter

Time (n-th minute) Default implementation (MB) Node filter 
(Cuckoo) 
(MB)

0 0.1 0.0

5 0.5 0.2

10 27.4 83.1

15 122.0 133.0

20 144.0 173.0

25 193.0 176.0

30 146.0 153.0

35 137.0 121.0

40 140.0 138.0

45 138.0 137.0

50 130.0 139.0

55 133.0 117.0

60 167.0 183.0

65 139.0 155.0

70 154.0 132.0

75 135.0 132.0

80 144.0 191.0

85 180.0 141.0

90 99.0 34.8

95 0.1 0.1

100 0.1 0.1

105 0.1 0.1

110 0.1 0.1

115 0.0 0.1

120 0.0 0.1

Fig. 20  Proper way to synchronize node filter in master-client distributed architecture
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of Eventual Consistent databases). The experimental results for this scheme prove our 
hypothesis that using a Probabilistic Filter can improve query execution performance 
significantly in distributed Big Data clusters. We believe that utilizing the most popu-
lar column-store Big Data system (namely Cassandra) to prove our hypothesis would 
encourage researchers and Database System experts to further experiment with Proba-
bilistic Filters to improve query performance in distributed Big Data systems.

Fig. 21  Proper way to synchronize node filter in peer-to-peer distributed architecture

Fig. 22  False-negatives within the time between filter update and synchronization
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Our proposed scheme improves query performance significantly when data deletion 
is performed regularly. There are various practical needs for regular data deletion. One 
is that unnecessary data costs storage a lot. For example, FTI Consulting, the renowned 
business advisory firm revealed that it worked with a bank to help delete hundreds of 
terabytes of useless data, and in the process the company saved over $3 million over 5 
years [16]. Apart from storage costs, cloud providers offering Big Data services charge 
for query executions based on how much data the query needs to process to return 
result. Therefore, the more data is there, the costlier each query execution becomes; and 
hence deleting unnecessary data would cut down costs at a great extent. These practi-
cal use-cases show the necessity of deleting/cleaning data regularly, which implies that 
using our proposed schemes, distributed Big Data systems can save not only time, but 
also money.

In future, we would like to analyze the false positive rate of node filters, as the less 
false positive rate exhibited by probabilistic filters, the better performance improvement 
becomes. We will also explore and evaluate other filtering techniques that may improve 
query performance further. Moreover, we plan to explore the consistency and availability 
models used by Big Data systems to investigate cases where query performance may be 
hampered and come up with schemes to address those limitations.
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