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Introduction
The World Health Organization (WHO) proclaimed the Coronavirus COVID-19 a pub-
lic health emergency with pandemic potential on March 11, 2020 [1]. The pandemic’s 
rapid spread has caused chaos and necessitated quick responses to mitigate the dam-
age. All positive COVID-19 cases have been required to be hospitalized from the begin-
ning of the pandemic, regardless of the severity of the sickness and with the significant 
increase in cases worldwide, hospitals have reached 100% occupancy, causing medical 
facilities to be overburdened [2]. Thus, having techniques allowing rapid identification of 
patients at high risk of severe and non-severe forms for prioritization hospitalization is 
critical [3].

Abstract 

The purpose of this study is to develop and test machine learning-based models for 
COVID-19 severity prediction. COVID-19 test samples from 337 COVID-19 positive 
patients at Cheikh Zaid Hospital were grouped according to the severity of their illness. 
Ours is the first study to estimate illness severity by combining biological and non-
biological data from patients with COVID-19. Moreover the use of ML for therapeutic 
purposes in Morocco is currently restricted, and ours is the first study to investigate the 
severity of COVID-19. When data analysis approaches were used to uncover patterns 
and essential characteristics in the data, C-reactive protein, platelets, and D-dimers 
were determined to be the most associated to COVID-19 severity prediction. In this 
research, many data reduction algorithms were used, and Machine Learning models 
were trained to predict the severity of sickness using patient data. A new feature engi-
neering method based on topological data analysis called Uniform Manifold Approxi-
mation and Projection (UMAP) shown that it achieves better results. It has 100% accu-
racy, specificity, sensitivity, and ROC curve in conducting a prognostic prediction using 
different machine learning classifiers such as X_GBoost, AdaBoost, Random Forest, 
and ExtraTrees. The proposed approach aims to assist hospitals and medical facilities in 
determining who should be seen first and who has a higher priority for admission to 
the hospital.
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The SARS-CoV-2 virus RNA test is currently used to diagnose COVID-19 [4]. This is a 
qualitative test that evaluates whether the patient is infected with the virus. CT scans are 
a useful tool for diagnosing COVID-19. However, roughly 20% of COVID-19 patients 
had no evident imaging alterations in their lungs [5]. Furthermore, CT presentsa num-
ber of drawbacks, including unnecessary irradiation and the misuse of a limited resource 
for the purpose of screening [6]. Despite the availability of protein-based antibody and 
antigen tests with quicker turnaround times, there are still concerns about their accu-
racy [7].

Common laboratory procedures, such as total blood cell count, blood biochemistry, 
and immunological testing, offer a viable alternative to SARS-CoV-2 diagnosis. In fact, 
several investigations have found that COVID-19 patients had reduced white blood 
cell, lymphocyte, and platelet counts [5, 8] as well as high serum ferritin and C-reactive 
protein (CRP) levels [9]. According to Wynants et al. [7] several clinical characteristics, 
including age, gender, lactic dehydrogenase (LDH), C-reactive protein (CRP), and lym-
phocyte count, are significantly associated with the severity of COVID-19 individuals. 
Furthermore,a report released recently by a Chinese team discovered that three impor-
tant indicators (LDH, CRP, and lymphocyte) can be used to predict COVID-19 mortality 
with over 90% of accuracy [10]. Thus,we hypothesize that using Machine Learning to 
classify severity and assess prognosis for COVID-19 patients across a variety of routinely 
performed laboratory tests may be advantageous. In fact, Machine Learning (ML) has 
been shown to be a useful technique for supporting caregivers in medical decision-mak-
ing, and it has been utilized in multiple COVID-19 studies [11–13] to construct a model 
that compares positive and negative SARS-CoV-2 patients. Other research [14–17] has 
focused on COVID-19 detection, prediction, and treatment formulation [18, 19]. More-
over, in many cases, no additional material expenditure is necessary because the neces-
sary information is already contained in the patients’ medical records. This would make 
it possible to examine a large number of patients in a short period of time. Findings may 
be generated in near real-time.

Several researchers have attempted to use machine learning to predict the severity of 
Covid 19. Pourhomayoun and Shakibi [2] employed a variety of machine learning tech-
niques to predict the mortality risk of COVID-19 patients, including Support Vector 
Machine (SVM), Artificial Neural Networks, Random Forest, Decision Tree, Logistic 
Regression, and K-Nearest Neighbour (KNN). The Neural Network method had the best 
performances in predicting the mortality rate, with an overall accuracy of 89.98%. The 
goal of Vaishya et al. was to identify seven key AI applications for the COVID-19 pan-
demic. By collecting and evaluating all past data, they demonstrate that AI plays a vital 
role in detecting clusters of cases and predicting where this virus would affect in the 
future [20]. Zhou et al. use a machine learning model to predict the evolution of illness 
severity based on a cohort of training, validation, and internal test sets. In the feature 
selection step they use a genetic algorithm (GA) [21] and SVM algorithm forprediction. 
Wungu et al. used ML to investigate the link between different cardiac indicators and the 
severity/mortality of COVID-19 patients [22]; they conclude that High CK-MB, PCT, 
NT-proBNP, BNP, and d-dimer could be predictive markers for severity of COVID-19. 
Cai et al. wanted to see how CT measurement of COVID-19 pneumonia affected dis-
ease severity assessment and clinical outcome prediction in COVID-19 patients [23]. 
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The severity of the disease was divided into three categories: moderate, severe, and criti-
cal. They created random forest (RF) models for classification and regression in order to 
determine the severity of the condition (Moderate, Severe, and Critical). In the classifica-
tion of moderate vs. (severe + critical) and severe vs. critical, the AUCs of RF classifiers 
were 0.927% and 0.929%, respectively. The goal of Yaşar et al’s study [24] study was to use 
deep learning (DL), random forest (RF), and gradient boosted trees to categorize three 
COVID-19 positive patient groups (moderate, severe, and critical) and a control group 
based on blood protein profiling (GBTs). They found that RF had a greater accuracy rate 
(96.21%) than DL (94.73%). The ensemble classifier GBTs, on the other hand, generated 
the best results (96.98%). The two most important proteins linked with disease sever-
ity were TGB1BP2 in the cardiovascular II panel and MILR1 in the inflammatory panel. 
Banoei et al. [25] use statistical method SIMPLS to predict hospital mortalityand Latent 
class analysis (LCA) was carried to cluster the patients with COVID-19 to identify low- 
and high-risk patients.Using training and validation sets, the SIMPLS model was able to 
predict hospital mortality in patients with good accuracy (AUC > 0.85). Vafa Bayat et al. 
[26] use pairwise correlations to compress their dataset of 70 characteristics, and the 
X_GBoost model for prediction. They conclude that ferritin, CRP, LDH, and D-dimers 
may be used to detect SARS-CoV-2 infection. Yan et al. [27] established a model to pre-
dict COVID-19 patients’ criticality and mortality. The researchers used data from 375 
patients (201 survivors) at Wuhan’s Tongji Hospital. The ML method X_GBoost was 
used, and it was found to be 93% accurate. LDH, lymphocytes, and high-sensitivity CRP 
were the important features for predicting mortality risk in this model. Wang et al. [28] 
used a data set of 296 patients from the First People’s Hospital of Jiangxia District in 
Wuhan, China, to predict severity in COVID-19 patients. The model was created using 
the ML technique X_GBoost. The clinical model had an AUC of 83% and was based on 
age, hypertension history, and coronary heart disease. Age, hs_CRP, oxygen saturation 
(SpO2), neutrophil and lymphocyte count, D-dimer, and AST were used to create the 
model. In the validation cohort, this model performed better, with an AUC of 88%. Hu 
et al. [29] built a machine learning algorithm for predicting COVID-19 patients’ mor-
tality risk. The prediction model was built using data from 183 patients. According to 
the model’s performance, the researchers tried ten methods and chose five of them (LR, 
partial least squares (PLS) regression, elastic net (EN) model, RF, and bagged flexible dis-
criminant analysis (FDA). According to the AUC, the LR model, RF, and bagged FDA all 
performed similarly. Because of its simplicity and interpretability, LR was chosen as the 
final model. The models used age, hs CRP level, lymphocyte count, and D-dimer level as 
the most important four variables. On the validation set, the model’s AUC, sensitivity, 
and specificity were 88.1%, 83.9%, and 79.4%, respectively.

Using blood or urine test results, Yao et  al. [30] established a model to predict the 
severity of COVID-19. The study included 137 patients from Huazhong University of 
Science and Technology’s Tongji Hospital (75 of them were critically ill). The severeness 
detection model was built using the machine learning technique SVM, which had an 
accuracy of 81.48%. Age, blood test values (neutrophil percentage, calcium, and mono-
cyte percentage), and urine test values (urine protein, red blood cells (occult), and pH 
(urine) were the highest-ranking features found by the model.In patients with moderate 
COVID-19, Zhao et  al. [31] created a model for predicting severity. LR models, both 
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univariate and multivariate, were used to pick six important features from a total of 22. 
The prediction model was created using the SVM technique, and it had 0.91% accuracy, 
0.90 sensitivity, and 0.94 specificity. IL-6, high-sensitivity cardiac troponin I (cTnI), pro-
calcitonin, hs_CRP, chest discomfort, and calcium were the top six indicators for pre-
dicting severity (Fig. 1).

These studies have a number of drawbacks. First, due to the small sample size, some 
relevant signs and symptoms such as comorbidities and age were not found to be sig-
nificant predictors of Covid 19 severity. Second, most studies do not use data feature 
engineering models, which is an important step in locating relevant features, and while 
some studies do use a reduction algorithm, we find that they are content to use only one 
method, which is typically a statistical method that produces poor predictions [19]. As 
a result, the data in this study was examined and tested utilizing five feature engineer-
ing models: Chi 2, Mutual information, F test Anova, PCA, and UMAP, a new feature 
extraction approach. These models were used to determine which features are most use-
ful in predicting disease severity.

Data description
Patients’ samples

From July 1st to September 15th, 2020, 337 SARS-CoV-2 patients were hospitalized to 
the Cheikh Zaid Hospital for observational research. Nasopharyngeal swabs were taken 

Fig. 1  High-level system architecture
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on admission to the departments dedicated to managing of patients suspected of having 
COVID-19.The Coronavirus genomic material was detected at Cheikh Zaid laboratory, 
using real-time PCR, the reference method for the molecular diagnosis of SARS-CoV-2 
[32, 33]. In addition, the patients had a chest CT examination at the time of admission. 
COVID-19 diagnosis was confirmed at the time of admission by reverse transcription 
polymerase chain reaction (RTPCR) analysis of samples from the nasopharyngeal swabs, 
and patients were subsequently divided into non-severe and severe COVID-19 groups 
on the basis of clinical criteria using the American Thoracic Society guidelines for com-
munity-acquired pneumonia. Briefly, severe COVID-19 patients showed significant lung 
damage and required mechanical oxygenation. The classification of the patients in our 
cohort into two groups (severe and non-severe). This allowed us to pinpoint the factors 
that would most likely serve as predictors of COVID-19 severity.

Clinical laboratory examinations

Viral nucleic acid test by reverse transcription–polymerase chain reaction (RT-PCR) 
is the first line screening method of choice, biological and imaging markers that also 
contribute to the diagnosis of COVID-19, confirmation of this viral disease is done by 
identifying SARS-CoV-2 RNA in biological samples. The detection of the viral genome 
(RNA) in the upper airways (nasopharynx or oropharynx) is one of the mainstays of the 
diagnosis of SARS-CoV-2 infection and is done by analyzing the presence of the virus in 
a nasopharyngeal swab taken from a patient. In the laboratory, we use the “Berlin Proto-
col”, developed and made available worldwide in mid-January 2020 by Professor Chris-
tian Drosten, Director of the Institute of Virology at the Charite Hospital in Berlin. This 
test targets the E and RdRp gene of SARS-CoV-2. RT-qPCR is used to quantify the viral 
load in a sample and measure the evolution over time [34].

The hospital’s biology department conducted many analyses to acquire clinical data for 
this study. As a result, a database was created containing the variables listed in Table 1.

Ethic aspects

The Cheikh Zaid Foundation supported this study. Accordingly, it was approved by the 
Local Ethics Committee of Cheikh Zaid Hospital, Rabat, Morocco, Project: CEFCZ/
PR/2020-PR04.

Materials and methods
Data processing: Mean Encoding Target

Mean Encoding Target is a method of substituting a category value with the target varia-
ble’s mean. From a mathematical approach, the Mean Encoding [35] represents the like-
lihood of the target variabledepending on each value of the feature. The transformation 
turns the value xi of a categorical property X to a scalar Siwhich represents a probabil-
ity estimate for Y given X, and the encoded value wraps the target variable so that. The 
transformation’s formula is as follows:

Si reflects the modified attribute’s probability; it is automatically normalized between 0 
and 1.

xi → Si = P(Y |X = xi)
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Data visualization: RadViz visualizer

RadViz [36] is a multivariate data visualization algorithm that plots points on the inte-
rior of a circle, normalizing their values on the axes from the center to each arc, and then 
depicts each feature dimension equally around the circumference of a circle. This strat-
egy is used to discover class separation, if there is a potential to learn from the feature 
set, or if there is just too much noise. It allows as many dimensions as can fit on a circle, 
greatly increasing the visualization’s dimensionality.

Machine learning: feature engineering

Feature engineering is crucial since the number and quality of features in a dataset 
substantial impact on whether or not a model performs well in ML applications. Fea-
ture engineering is made up of two parts: feature selection and feature generation or 
extraction.

Feature extraction aims to develop more relevant features from the data’s current raw 
features in order to improve the learning algorithm’s predictive power, whereas feature 
selection is a critical problem in machine learning, where we will have multiple features 
in line and must choose the best features to build the model. We used ANOVA (Analysis 
of Variance), Chi-square test, and Principal component analysis (PCA) from the statisti-
cal field, Mutual Information from the theory information field, and UMAP from topo-
logical data analysis. These methods help us to solve the problem of feature selection by 
testing the relationship between the features and the response variables, and the best 
features are the features that are highly dependent on the response variable.

Table 1  Descriptive for the features considered in the present study

Variable name Description

Severity classification Severe or non-severe (Target: 194 severe and 146 non_severe)

Sex Male or female

Age (years) The patient age in years

Platelet Elements found in the blood. They are best known for their role in blood clotting, and are 
activated in the event of vascular damage to stop bleeding

Lymphocyte Elements found in the blood. They have an important role in the immunity process

PLR They are considered prognostic factors in many inflammatory diseases, cardiovascular 
diseases and heart disease

ALT Alanine aminotransferase is an enzyme necessary for the proper functioning of the body, 
allowing certain liver diseases to be identified or their progression to be monitored

AST Aspartate aminotransferase is an enzyme normally found in the liver, heart and muscles. 
A high level of AST in the blood can be a sign of liver or heart damage, certain cancers or 
other diseases

LDH Lactate dehydrogenase is an enzyme present in almost all tissues and organs of the 
human body: muscles, liver, lungs, red and white blood cells play an important role in the 
transformation of sugars into energy

D-dimers They are the molecules resulting from the destruction of fibrin, a protein produced mainly 
during blood coagulation

C_reactive protein It is a protein that appears in the blood during acute inflammation. Its level increases 
rapidly after the onset of inflammation

Weight Patient weight

Comorbidities Comorbidity refers to the combination of two diseases in one person, or the presence of 
one or more disorders that occur at the same time as a primary disease
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These feature engineering algorithms are utilized in this study to select the best set of 
features or components from all of the data. We’ll choose a feature engineering method 
that has a high performance rating from multiple ML Classifiers.

Mutual information

Mutual information determines how statistically dependent two variables are. It assigns 
a score to each characteristic based on how much information is communicated on 
average in one random variable about another. Thus, a high mutual information score 
between two variables suggests a significant reduction in uncertainty; a low mutual 
information score shows a minor reduction, and a zero mutual information score indi-
cates that the variables are unrelated. Cover and Tomas [37] define the mutual informa-
tion between two discrete variables X AND Y, abbreviated I(X; Y), as follows:

Here PX (x) and PY (y) are the marginals:

ANOVA F‑statistic ensemble (AFSE)

ANOVA stands for “analysis of variance,” It is a parametric statistical hypothesis test 
that determines if the means from two or more samples of data (usually three or more) 
originate from the same distribution. An F-statistic, also known as an F-test, is a class of 
statistical tests that use a statistical test like ANOVA to calculate the ratio between vari-
ance values, such as the variance from two separate samples or the explained and unex-
plained variance [38]. An ANOVA F-test is a sort of F-statistic that uses the ANOVA 
approach, and it can be used to identify the top k most relevant features in a feature 
selection strategy.

Uniform Manifold Approximation and Projection (UMAP)

UMAP (Uniform Manifold Approximation and Projection) is an innovative manifold 
learning algorithm for dimension reduction, invented by Leland McInnes et al. [39]. Fur-
thermore, the UMAP algorithm arguably conserves the global structure with higher per-
formance and no computational restrictions on embedding dimensions [40]. In addition, 
UMAP is among the fastest manifold learning applications available, and it consists of 
two principal stages:

•	 Creating a graph in high dimensions and calculating the bandwidth of the exponen-
tial probability, σ , through the binary search and the fixed number of the nearest 
neighbours.

•	 Applying Stochastic Gradient Descent (SGD) to optimize the low dimensional rep-
resentation to improve the computation speed. UMAP calculates the exponential 
probability distribution in high dimensions as:

I(X;Y ) =
∑

x,y

PXY (x, y)log
PXY (x, y)

PX (x)PY (y)
= EPXY log

PXY

PXPY

PX (x) =
∑

y

PXY (x)



Page 8 of 21Laatifi et al. Journal of Big Data             (2022) 9:5 

where: p represents the distance from each i-th data point to its first nearest neighbour. 
Moreover, UMAP uses the number of the nearest neighbour’s k as follows:

Evaluation metrics

To compute the performance of the suggested model, we will evaluate true positives 
(TP), true negatives (TN), false positives (FP), and false negatives (FN), such as:

•	 TP: A severe case of COVID-19 is labeled as severe.
•	 FP: A non-severe case is classified as severe.
•	 FN: A severe case is classified as non-severe.
•	 TN: A non-severe is classified as non-severe.

Additional metrics will be computed, including Accuracy, Specificity, Sensitivity, Roc 
Auc score, and loss. The following formula is used to calculate these figures:

•	 Accuracy is the ratio of correctly predicted observations. Where: 

•	 Specificity is the metric that evaluates a model’s ability to predict true negatives of 
each available category: 

•	 Sensitivity is the metric that evaluates a model’s ability to predict the true positives of 
each available category. Where: 

•	 Zero-one loss: Standard losses function in classification.
•	 AUC score: Regardless of the classification threshold chosen, the AUC assesses the 

quality of the model’s precision and the ranking quality of predictions.

Experimental results and discussion
Data processing

The datasets were processed by removing missing values and encoding categori-
cal attributes before machine learning models were deployed. Indeed, we notice 
that many of the patient entries in the dataset contain missing values. Missing data 
can be attributed to a variety of factors, including data entry errors, the inability of 
some patients to attend the clinic, and so on. Data analysis outputs may be wrong 
and erroneous if missing values are not handled, resulting in bias in later phases and 

pi|j = e
−

d(xi ,xj )−pi
σi

pij = pi|j + pj|i − pi|jpj|i

Accuracy = (TP + TN )/All predictions

Specificity = TN/(TN + FP)

Sensitivity = TP/(TP + FN )
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inadequate models used in decision-making processes. Replacing missing values with 
estimated abundances is considered inappropriate because it introduces knowingly 
false measurements, such as the presence or absence of elements such as D-dimers, 
C-reactive protein, and other characteristics of the collected data, which can differ 
greatly from patient to patient. As a result, the alternative is to delete the samples 
with missing values, which account for only 3.6% of the data, resulting in a new data-
set with 322 entries (Table 2).

On the other side, we dealt with the dataset’s categorical feature, Comorbidities. 
To substitute the values of the variable, we apply the Mean Encoding technique while 
keeping the goal column Y, which is the severity classification, in mind. Because our 
Dataset’s target Y (Severity Classification) is binary, Y ǫ{0, 1} Mean Encoding algo-
rithm converts all values of the Comorbidities variable into a probability normalized 
between 0 and 1 (Fig. 2).

Data visualization and multivariate analysis

According the gathered dataset, 54 % of men (43.35 %) had the severe form, and 46% 
of women (37.58%) had the severe form .According to DeGrace et al. and Ya’qoub et al. 
[41, 42] Men are the most damaged by COVID-19, because they are more inclined to 
neglect public health initiatives to control COVID-19. Biological factors such as hor-
monal, immunological, and inflammatory responses to infection, on the other hand, 
are responsible for the differences in Covid19 severity between men and women, 
according to Bulubas [43]. Female hormones (Estrogens) have been demonstrated to 
boost both innate and adaptive immune responses in women, potentially leading to 
faster pathogen clearance and less symptoms [44]. Moreover, we can see using the 
RadViz Visualizer that the COVID-19 severity discriminators in our data included 
Platelet, Age, Sex, comorbidities, weight, CRP, D dimer, LDH value, and AST value 

Table 2  Percent of missing values

Feature with missing values Percent of 
missing 
values

D_dimer 3.6

C_reactive protein 3.6

Weight 1.2

Fig. 2  Comorbidities feature before and after encoding
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(Fig. 3). However, numerous studies [45–51] have established that the most important 
markers are CRP, D-dimer, and platelets. That is why, in this study, we will focus on 
these parameters in order to determine their impact on the severity of Covid 19.

The detection of certain biomarkers associated with viral infection is a more inter-
esting avenue, which can be achieved by simply re-adapting our existing infrastruc-
ture; SARS-CoV-2 viral infection triggers various inflammatory, biochemical and 
haematological biomarkers. Due to the route of infection it takes, the virus causes 
a significant inflammatory reaction. Accordingly, various inflammatory markers have 
been reported to be closely associated with this infection, such as C-reactive proteins, 
interleukin-6, procalcitonin and ferritin. Detection of these biomarkers can simulta-
neously help understand the disease level of the affected patient [52].

C-reactive protein is a major biomarker present in the bloodstream at the time of 
infection or inflammation and is produced by liver cells in response to inflammation 
[53]. CRP levels below 0.3 mg/dL are considered normal in healthy adults [54]. The 
concentration in COVID-19 patients is said to be higher. A work by Ali et  al. [55]. 
shows that elevated CRP levels may be early indicators of the course of the COVID-19 
disease, which is consistent with the result of our study. In the event of infection or 
inflammation, the levels of this protein increase by approximately 1000 times [56]. It 
is involved in cardiovascular disease, diabetes and neurodegenerative diseases [57].

Several studies show that CRP increases with severity in patients with COVID-19 
[48, 49, 51–55]. The studies identified markers of inflammation, showing the strong-
est association with the patient’s need for mechanical ventilation and severity which 
is followed by the CRP peak [59].

Wang et al.report that the initial and peak concentrations of D-Dimer and CRP in 
the critical group were higher than those in the severe group, the initial and trough 
counts of lymphocytes were lower than those in the severe group [47].

For Taj et al., the median (IQR) CRP (p-value 0.0001) was higher in patients with 
severe disease. Platelet count did not show a statistically significant association with 
disease severity [60]; however, in our study the severity was more important when the 
platelet count decreased.

According to our findings, CRP levels were higher in severe cases (Fig. 4), particu-
larly in men. The activation of gender-specific T cells is connected to the increased 

Fig. 3  RadViz Visualizer’s main distinguishing features, classified by severity
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pro-inflammatory response, which increases the probability of COVID-19 infection 
in male population [61] (Fig. 5).

COVID-19 severity and CRP readings rose in older males over 60 years old in our 
group, as in earlier studies (Fig. 6). Reduced testosterone levels in elderly men lead to 
higher levels of pro-inflammatory cytokines, which may hasten the onset and severity 
of COVID-19 in these men [62, 63]. CRP is one of these cytokines, and an early eleva-
tion in CRP has been used as a predictor of illness severity [64, 65].

Fig. 4  CRP, D-Dimer and Platelet distribution in severe and no severe COVID-19 patients

Fig. 5  CRP, D-dimer and Platelet rates in women and men suffering from severe COVID-19

Fig. 6  CRP, D-Dimer and Platelet levels in patients with severe COVID-19 at different age groups
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On the other hand, D-Dimer is one of the most important aspects in determining 
severity, which is understandable because patients with severe disease are more likely 
to have dysregulated coagulation function and a much higher D-dimer level (Figs. 4, 
5).

According to Yu et  al. [61], patients with severe COVID-19 had a higher level of 
D-dimer than those with non-severe disease, and D-dimer greater than 0.5 g/ml is 
related with severe infection in both men and women with COVID-19 (Figs. 4, 5, 6). 
On the other hand, Ooi et al. [62] discovered that D-dimer readings might be used to 
guide anticoagulant therapy and prognosis.

Both men and women with severe COVID-19 had reduced platelet counts, accord-
ing to our data (Fig. 5). Our findings are consistent with those of Seyit et al. [63]. Low 
platelet counts have also been linked to COVID-19 severity, as per the researches 
[66–68], and Platelets in COVID-19 patients are higher in men than in women; this 
difference could be explained by a variety of factors, including biological differences 
(chromosomal, hormonal, etc.) and gender-specific behavioural factors, as well as 
pre-existing rates of comorbidities [69, 70].

Feature engineering

The proposed feature engineering techniques were built and applied throughout the 
full dataset using Scikit-learn, a freeware Machine Learning toolbox for the Python 
programming language.To assess these approaches, we utilized a variety of Machine 
Learning classifiers, including Logistic Regression, Decision Tree, Gaussian NB, SVM, 
and KNN, which were trained on 70% of the reduced data created by each feature 
engineering methodology and tested on 30% of that data.

The p-value and Chi Score are two essential outputs of the Chi-square test. When 
the p-value is larger, it indicates that the input feature is independent of the target 
and cannot be used in model training.

On the other hand, higher the Chi-Square Score, the feature is more dependent on 
the response and it can be selected for model training.

Figure 7 shows that the greatest p-values are for Sex, Lymphocyte, and Weight, indi-
cating that these factors and the outcome variable are independent. So, as a result, we 
can get rid of it.

Fig. 7  p values for Chi2 tests and Chi2 scores
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In addition, Platelet, PLR, LDH value, and CRP, have particularly high Chi2 Scores, 
indicating that the relationship between these variables and the target variable is statisti-
cally significant (Fig. 7).

On the other hand, as shown in Fig. 8, the Mutual Information scores for the features 
Platelet, D-dimers, CRP, and Comorbidities are the highest. Others do not, implying that 
they had no bearing on the classification decision.

For Anova test, the variance of a feature determines how much it is impacting the 
response variable. If the variance of a feature is low, it implies there is no impact of this 
feature on response and vice-versa, and as shown in Fig 9, the attributes Platelet, LDH 
value, D-dimers, CRP, and Comorbidities, are the features with the highest ratings for 
Anova,. Others do not, meaning that they had no bearing on the outcome.

Fig. 8  Mutual information scores

Fig. 9  Anova scores

Fig. 10  Variance of PCA components and PCA Projection
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Moreover,we used the PCA method to calculate the percentage of explained variances 
of the features, and as shown in Fig. 10, the first three components only reflect 42% of 
the data, and we can gain 90% of the information with only ten components, negating 
the need for the PCA approach for reduction.

Finally, Fig.  11 displays the COVID-19 dataset projected in three dimensions using 
UMAP. As can be seen, UMAP divides the output groups clearly, keeping as much of the 
local and global data structure as feasible while reducing runtime.

To compare the proposed features engineering approaches, several Machine Learn-
ing algorithms are employed, including Logistic Regression, Decision Tree, GaussianNB, 
SVM, and KNN. For this, we create five subsets, each of which comprises the most sig-
nificant features according to each feature engineering method (Table 3). Each subset is 
divided into two groups, one for training and the other for testing (Table 4).

The performances of Machine Learning algorithms that were applied to each ensemble 
are shown in Tables 5, 6, 7, 8 and 9.

Discussion

When comparing the Chi2 set to the Mutual Information set, the latter is made up of 
the following characteristics: Platelet, D-dimers, CRP, and Comorbidities, whereas the 
Chi2 set includes the features: Platelet, PLR, LDH, and CRP, and as shown in Tables 4 
and 5 and Fig. 12, the Chi2 findings are worse than Mutual Information, implying that 
Machine Learning have trouble estimating the severity of COVID-19 based on PLR and 

Fig. 11  UMAP projection

Table 3  The various ensembles created through feature engineering methods

Set Features Selected

Chi square set Platelet, PLR, LDH value, CRP

Mutual Information set Platelet, D-dimers, CRP, Comorbidities

Anova set Platelet, LDH value, D-dimers, CRP, Comorbidities

PCA set Three components

UMAP set Three components

Table 4  split of each subset in train and test

Non_severe Severe

Train set 131 94

Test set 60 37
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Table 5  Performances of machine learning algorithms applied to Chi square set

Classifier Accuracy Sensitivity Specifity Loss AUC​

Logistic Regression 0.70 0.76 0.59 0.29 0.74

Decision Tree 0.67 0.66 0.67 0.32 0.67

GaussianNB 0.63 0.6 0.70 0.36 0.73

SVM 0.70 0.75 0.62 0.29 0.73

KNN 0.65 0.7 0.59 0.34 0.71

Table 6  Performances of machine learning algorithms applied to mutual information set

Classifier Accuracy Sensitivity Specifity Loss AUC​

Logistic Regression 0.74 0.78 0.67 0.25 0.81

Decision Tree 0.70 0.81 0.51 0.29 0.67

GaussianNB 0.73 0.8 0.62 0.26 0.79

SVM 0.74 0.81 0.62 0.25 0.79

KNN 0.73 0.78 0.64 0.26 0.8

Table 7  Performances of machine learning algorithms applied to Anova set

Classifier Accuracy Sensitivity Specifity Loss AUC​

Logistic Regression 0.71 0.71 0.70 0.28 0.81

Decision Tree 0.63 0.66 0.59 0.36 0.63

GaussianNB 0.71 0.73 0.67 0.28 0.78

SVM 0.75 0.78 0.70 0.24 0.79

KNN 0.75 0.81 0.64 0.24 0.76

Table 8  Performances of machine learning algorithms applied to PCA set

Classifier Accuracy Sensitivity Specifity Loss AUC​

Logistic Regression 0.71 0.73 0.67 0.28 0.79

Decision Tree 0.65 0.65 0.67 0.34 0.66

GaussianNB 0.70 0.75 0.62 0.29 0.77

SVM 0.71 0.71 0.70 0.28 0.78

KNN 0.64 0.68 0.59 0.35 0.70

Table 9  Performances of machine learning algorithms applied to UMAP set

Classifier Accuracy Sensitivity Specifity Loss AUC​

Logistic Regression 0.98 1.0 0.97 0.01 1.0

Decision Tree 1.0 1.0 1.0 0.0 1.0

GaussianNB 0.98 1.0 0.97 0.01 1.0

SVM 1.0 1.0 1.0 0.0 1.0

KNN 0.98 1.0 0.97 0.01 1.0
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LDH properties;and that the Platelet, D-dimers, CRP, and Comorbidities features are 
more relevant in differentiating the severity of COVID-19.

Moreover, we noted that comorbidities and other signs and symptoms had no signif-
icant impact on severity using these techniques. Furthermore, while age was not one 
of the most predictive factors related to severity in this analysis, it has previously been 
found to be an essential risk factor in prognosis.

On the other hand, Tables 5, 6, 7, 8, 9 and Figs. 12 and 13 indicate that ML with UMAP 
produced the best outcomes with only 3 components, which could be due to UMAP’s 
low noise sensitivity and ability to keep as much of the local and global data structure as 
possible, making it easier for classifiers to learn by deleting linked features and having 
smaller dimensions.

As a result, we chose UMAP as a reduction method to extract the embedding features 
that would be employed throughout the training and testing phases and compare our 
results to state-of-the-art COVID-19 risk prediction models.

To accomplish so, we use the XGB Classifier, AdaBoost Classifier, Random Forest, 
and ExtraTrees models, as well as other machine learning algorithms, to estimate Covid 
19 severity. The performance of our model was assessed using various metrics such as 
accuracy, sensitivity, F-measure, and precision.The results of this experiment phase are 
shown in Table 10 and Fig. 14.

To assess the analysis of our experimental results, we compared our work to the 
state-of-the-art COVID-19 risk prediction models listed in Table 11. The main reason 

Fig. 12  Roc curves of different Machine Learning on the Chi2 set, ANOVA set, and Mutual Information set 
(from left to right)

Fig. 13  Roc curves of different machine learning on PCA set and UMAP set (from left to right)
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for selecting these models is because they produce good findings and use similar data-
sets, making comparisons more feasible and reliable. Each model’s accuracy, specific-
ity, sensitivity, and AUC values are listed in Table 11. The sensitivity measure piques 
our interest because it is the most appropriate evaluation in this domain, as misclas-
sifying a severe illness as non-severe results in a substantially larger medical cost than 
the converse scenario.

Table 10  The results of our model using additional machine learning

Accuracy Sensitivity Specifity Loss AUC​

XGB Classifier 1.0 1.0 1.0 0.0 1.0

AdaBoost Classifier 1.0 1.0 1.0 0.0 1.0

Random Forest Classifier 1.0 1.0 1.0 0.0 1.0

ExtraTrees Classifier 1.0 1.0 1.0 0.0 1.0

KNN 0.98 1.0 0.97 0.01 1.0

Fig. 14  The ROC curve performance of various Machine Learning algorithms in predicting the severity of 
Covid 19

Table 11  Our model’s performance in comparison to other models

Models Method of 
reduction

Model of 
Prediction

Accuracy Specifity Sensivity (%) AUC​

Bayat et al [56] Features Impor-
tance

X_GBoost 86.40% 86.8% 82.39 _

Brinati et al [4] _ Random Forest 82% 65% 92 84%

Tschoellitsch et al 
[6]

Feature importance Random Forest 81%, 82% 60 74%

Tordjman et al [57] _ Logistic Regression _ _ 80.3 88.9%

Soltan et al [58] Feature importance Extreme Gradient 
Boosted Tree

_ 94.8% 77.4 94%

Alakus and Turkoglu 
[59]

_ LSTM 86.66% _ 99.42 62.50%

Our approach UMAP Various Machine 
Learning

100% 100% 100 100%
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Conclusion
During the severe acute respiratory syndrome-new coronavirus-2 pandemic, clini-
cians turned to more quick diagnosis approaches due to a lack of laboratory diag-
nostic instruments and a long wait period. Although techniques based on proteomic 
analysis can efficiently diagnose COVID-19 at an early stage, it is equally crucial to 
recognize serious COVID-19 patients before they display severe symptoms.In this 
study, a set of methods for pre-processing data, manipulating categorical variables, 
and a feature selection procedure based on various statistical, mathematical and data 
analysis algorithms was performed to identify the most efficient feature engineering 
algorithm, for a prognostic prediction of severity. We utilize many Machine Learning 
algorithms to construct a predictive model to classify the data once pre-processed 
and reduced.

In terms of accuracy, sensitivity, specificity, and roc curve, the proposed system has 
proven successful and high performances. Our model may vary if starting from dif-
ferent datasets. As more data become available, the whole procedure can easily be 
repeated to obtain more accurate models.

This study’s main difficulty is the size of the data. Most of the medical records 337 
patients had their information included, but lab results were unavailable for a handful 
of patients. Another drawback of our model is that it was developed with a predomi-
nantly male patient population.

Future research directions

Additional study in other places will be required to compare the results acquired 
with other data collected from other laboratories in order to guarantee the accuracy 
of these results. Furthermore, several decision-making procedures can be utilized to 
identify patients with distinct degrees of Covid 19 disease severity.
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