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Introduction
The increase in the percentage of the urban population in the world shows that peo-
ple more and more are moving to cities. According to United Nations (UN), the urban 
population as of 2020 is about 56.15% [1]. And it is expected that it will become 68% of 
the world’s population will live in urban cities by 2050 [2]. The growth of urbanization 
and industrialization causes several problems logistics, health care, and air quality. In 
order to resolve these issues, and improve the quality of its citizens’ lives, The smart city 
concept was created by integrating Information and Communication Technology (ICT), 
and fixed/mobile sensors. These last are installed within the city to observe real human 
practice. This concept become an endless source of urban data.

In the last decades, the frequent occurrence of smog caused by the increase in indus-
trialization has harshly brought environmental pollution to its serious peak. That is, it 
becomes more severe than ever before. One of the hazardous pollutants is a fine par-
ticulate matter whose size is 2.5µm or less, also known as PM2.5 . Such particle results 
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in serious health damage. According to the World Health Organization WHO, almost 
90% of people breathe polluted air that exceeds the limits of WHO guidelines in terms of 
air quality [3], bringing about respiratory problems [4, 5], moreover, even a few hours to 
weeks of short-term exposure to PM2.5 can trigger cardiovascular disease-related mor-
tality and events [6]. The Global Burden of Diseases GBD identified that Exposure to 
PM2.5 contributed to 4.2 million deaths and 115.1 million disability-adjusted life years 
(DALYs) globally in 2015 [7] with an increase in 2017 (4.58 million deaths and 142.52 
million DALYs) [8]. This poor air quality not only threatens the health and lives of indi-
viduals but the economies as well. The report carried out by the Organization for Eco-
nomic Cooperation and Development OECD has shown that air pollution could cost 1% 
of world Gross domestic product GDP [9].

Due to the coronavirus pandemic (COVID-19), the epidemic center in China is the 
first to announce a lockdown on January 23, 2020. after, other countries did the same 
to reduce the spread of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2). Universally the COVID-19 lockdown creates a unique and precious opportunity 
to evaluate and to understand human activities, and the factors affecting air pollutants. 
Many studies have reported the environmental effects of lockdown policies on PM2.5 
concentration in different regions due to the COVID-19 pandemic [10–12] . Moreover, 
various hypotheses have been studied on the relationship between PM2.5 and covid-
19. Among them, searchers are found that PM2.5 has been an important vector in the 
acceleration of the spread of the COVID-19 [13]. Another paper identifies that a signifi-
cant relationship between air pollution and COVID-19 infection [14]. The exposures in 
the long term of PM2.5 are positively associated with higher county-level city COVID-
19 mortality rates after accounting for many area-level confounders [15]. Based on the 
hypothesis that there is a relationship between the spread of the virus and the presence 
of PM2.5 in the air, the researchers propose an innovative metric to predict COVID-19 
with the machine learning model quote mirri2020covid.

An effective system for monitoring and predicting air pollution in advance has great 
importance for human health and government decision-making. However, the mecha-
nism and process of PM2.5 formation are very complex due to the complexity of its 
properties, such as non-linear properties in time and space [16], which have a signifi-
cant impact on the accuracy of prediction. It thus requires an examining consideration. 
Furthermore, the air quality data is closely related to time, which means that it belongs 
to time series and has an apparent periodicity. Due to the data’s timeliness, time pre-
dictions have become essential topics that undoubtedly require meticulous attention by 
academics and scholars. So doing showcases that Time series analysis plays a paramount 
role in many different applications, including economics, medicine, astronomy, geology, 
and others.

Traditional statistical methods have been widely used to process air quality forecasting 
problems. These methods are significantly based on the approach of using historical data 
for learning. Some of the notable statistical methods that have been used for air quality 
forecasting are Autoregressive Moving Average ARMA [17], and Autoregressive Inte-
grated Moving Average ARIMA [18]. With the increase in the amount and the complex-
ity of the data obtained, however, these methods can no longer meet the actual demand 
because of training-length time.
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With artificial intelligence and big data evolution, prediction methods based on 
machine learning technologies are becoming more and more common. Because these 
types of models do not require an understanding of atmospheric pollutants’ physical or 
chemical properties. The most popular machine learning algorithms are Multiple Lin-
ear Regression (MLR), Random Forest (RF) [19], Support Vector Regression (SVR) [20], 
Artificial Neural Networks (ANN) [21] that incorporate complex nonlinear relation-
ships between the concentration of air pollutants and meteorological variables. Various 
ANN structures have been developed to predict air pollution over different study areas, 
such as neuro-fuzzy neural network (NFNN) [22], and Bayesian neural network [23], An 
Ensemble Approach which incorporated several different machine learning algorithms, 
has shown to be a robust and accurate measure of pollution levels in the Greater London 
area [24].

With the popularity of Artificial Intelligence, many deep learning algorithms have been 
developed respectively, such as Recurrent Neural Networks (RNN) and their variants. 
Long short-term memory (LSTM) is the most widely used model in air quality forecast-
ing [25, 26] because it considers the temporal dependencies of a typical phenomenon 
observed in the PM2.5 concentration series. Due to the complexity of PM2.5 formation, 
the high accuracy and demand for predictive efficiency are essential in developing an 
effective model for predicting PM2.5 concentration. We accordingly suggest compar-
ing multivariate deep learning models based on several metrics (Average absolute error 
MAE,Root mean square error RMSE,The coeffcient of determination R2).

To this end, this paper seeks to undergo a research study on the application of deep 
learning (LSTM, Bi-LSTM, GRU, CNN, CNN-LSTM,CNN-GRU). Hence, the study aims 
to unearth a comparison between the results obtained with these techniques to learn 
more about their efficient use in predicting PM2.5 concentration. Moreover, our research 
aims to provide a PM2.5 forecasting model with good accuracy with meteorological data 
and the concentration of adjacent stations.

In this study, we designed a system for the Prediction of PM2.5 by utilizing advanced 
deep neural networks. We, therefore, proposed a hybrid CNN-LSTM forecasting model. 
Seven baseline predictive deep learning models were also built in this study for compari-
son with our proposed model. The key contributions of this study are : 

1.	 This study combines the pollutant components, meteorological data, and adjacents 
stations in different time periods into the input variables. After preprocessing data by 
filling the missing values, encoding, normalizing data and analyzing the correlation 
between features and PM2.5 concentration as a features selection. Spatial and tem-
poral correlations are complex and comprehensive. In our study, historical data from 
the target station and adjacent stations are integrated with other features and entered 
into the model. From the results, the proposed combination is found more effective 
in extracting spatiotemporal features and performs PM2.5 prediction accuracy more 
than others.

2.	 Through the proposed model, the Spatio-temporal characteristics of the data are 
extracted. By combining the advantages of the Convolutional Neural Network CNN 
model, which is effective at filtering out the spatial characteristics include the charac-
teristics of the data between pollutant components and Weather and between differ-
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ent adjacent stations. At the same time, an LSTM network is used for the extraction 
of temporal features.

3.	 Comparing the performances of seven popular deep learning methods in the air pol-
lution prediction problem, we validated the practicality and feasibility of the pro-
posed model in PM2.5 concentration prediction by comparing the Metrics in differ-
ent batch sizes, and lags. Moreover, the results achieved in this work are comparable 
to other state-of-the-art deep learning approaches reported in the literature.

This paper is organized as follows: “Related works” section briefly reviews the related 
work. "Deep learning models" section  defines the basic concepts of the deep learning 
models, namely LSTM, Bi-LSTM, GRU, CNN, CNN-LSTM, and CNN-GRU. "Material 
and methods" section  describes the detailed methodology of the proposed approach, 
including the implementation and experimental results, whereas "Results and discus-
sions" section covers the paper’s conclusion.

Related works
Since the topic of PM2.5 air pollution in cities needs urgently to be solved, PM2.5 fore-
casting is absolutely a vital topic for the development of smart cities. The difficulty of 
prediction can be seen in the fact that PM2.5 propagation is impacted by variations in 
meteorological variables, e.g. Wind speed and direction. Wind speed and direction data 
have a high degree of randomness and constantly change over different periods [27, 28].

Several PM2.5 prediction methods are developed by researchers based on statistical 
models and machine learning techniques. Recently, the academic community has begun 
using deep neural networks for pollutant concentration prediction. Deep learning may 
solve problems by using more layers and more extensive data sets and processing all lay-
ers simultaneously to obtain more accurate results [29]. These favorable properties of 
deep learning make it suitable for modeling and predicting air pollution.

A wide variety of models can be used for this purpose. Authors in article [30] ana-
lyse and study the prediction PM2.5 levels on 12 stations in Beijing using four models 
ARIMA, FBProphet (Facebook prophet), LSTM, and CNN. With historical air quality 
data, meteorological data, weather forecast data. Most of the stations showed that LSTM 
performed better than all other models MAE = 13.2 and RMSE = 20.8. In this study 
[31], the authors propose a predictive model of PM concentration at the 25 monitor-
ing stations in Seoul, South Korea, historical PM2.5 concentration, and meteorological 
data is used for comparing LSTM, and DAE (Denoising AutoEncoders). The comparison 
showed that the LSTM prediction model was more accurate than the DAE model.

In article [32] , the authors develop a bidirectional long short-term memory (Bi-
LSTM) model to predicted PM2.5 Concentration in China. The PM2.5 Concentration and 
weather from the hourly data of the US Embassy, recorded for Beijing city as input. The 
proposed model achieved accuracy as follows MAE = 7.53, RMSE = 9.86, and SMAPE 
= 0.1664. Other researchers have been interested to Predict the PM2.5 contamination 
of stations in Beijing by using long short-term memory-fully connected (LSTM-FC), 
LSTM, and an artificial neural network (ANN) with historical air quality data, meteoro-
logical data, weather forecast data, and the day of the week data. They showed that the 
LSTM-FC model outperforms LSTM and the ANN, with MAE = 23.97 and RMSE = 
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35.82 over 1-6 h [33]. However, none of these models can make use of pollutant con-
centration information in neighboring areas. Changes in pollutants are related not just 
to time but also to space. Because a pollutant in one place may travel to other regions, 
spatial information must be considered.

A CNN is consisting of a series of convolutional layers used to extract the spatial fea-
tures of neural networks. CNN achieved remarkable results in multi-dimensional spatial 
arrays Which makes it a good topic for researchers to know the environmental situa-
tion through digital images. In the article [34], the authors propose an ensemble of deep 
neural networks to estimate PM2.5 concentrations from outdoor images. Three convolu-
tional neural networks, VGG-16, Inception-v3, and Resnet50, are used as the base learn-
ers. The experimental results demonstrated that the proposed ensemble can provide a 
more accurate PM2.5 estimation than all three individual deep learning networks used. 
CNN has proven to be powerful in spatial data processing. This method has also been 
used to estimate the concentration of pollutants in urban areas, usually by analyzing sat-
ellite images [35, 36]. However, sometimes there is no image data but only abstracted 
monitoring data, e.g., wind direction, temperature, and location.

To solve the problem of Air Pollution in Seoul city in Korea, the researchers proposed 
the usage of the Convolutional Long Short-Term Memory (ConvLSTM), a combination 
of Convolutional Neural Networks and Long Short-Term Memory, which automatically 
manipulates both the spatial and temporal features of the data [37]. In this paper, this 
Spatio-temporal model includes air pollution data, meteorological data, traffic volume, 
average driving speed, and air pollution indicators in outdoor areas. The proposed model 
has proven its superiority over the various models. In another paper [38], the authors 
verified the feasibility and practicability of CNN-LSTM to estimate PM2.5 concentration 
in Beijing for the next hour, cumulated wind speed, and cumulated hours of rain over 
the last 24 h. They showed that the CNN-LSTM model outperforms other models with 
MAE = 14.6344 and RMSE = 24.22874.

Deep learning models
In this work, our goal is to investigate the performances of several deep learning models 
to forecast the concentration of PM2.5 . Thus, we decided to use the LSTM, Bi-LSTM, 
GRU, CNN, CNN-LSTM previously mentioned. Next, we briefly describe each network:

LSTM

LSTM is a type of recurrent neural network (RNN) that was developed in 1980 [39, 40]. 
RNNs are a powerful type of artificial neural network and are most likely used for time-
series forecasting problems. RNN can internally maintain memory to remember things 
from past occurrences that can predict future events. However, RNNs frequently suffer 
from vanishing and exploding gradients, which leads the model learning to become too 
slow or stopped altogether. LSTMs were created in 1997 [41] to solve these problems. 
LSTMs have longer memories and can learn from inputs that are separated from each 
other by long time lags.

An LSTM has three gates: an input gate that determines whether or not to let the new 
input in, a forget gate that deletes information that is not important and an output gate that 
decides what information to output. These three gates are analogical gates based on the 
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sigmoid function, which works on the range between 0 and 1. These three sigmoid gates 
can be seen in Fig. 1 below. A horizontal line that can be seen running through the cell rep-
resents the cell state.

LSTM formulas are listed below:

GRU​

GRU, Gated recurrent unit is an advancement of the standard RNN [33] is included in 
RNN, and it is similar to an LSTM unit. The GRU unit consists of the reset and updates 
gate. Figure 2 shows the GRU architecture. The reset gate is designed to forget the previous 
state between the prior activation and the next candidate activation, whereas the update 
gate is used to select the number of the candidate activation that updates the cell state.

GRU formulas are listed below:

(1)Inputgate : it = σ(W (it)xt +W (it)ht−1)

(2)Forgetgate : ft = σ(W (if )xt +W (hf )ht−1)

(3)Outputgate : it = σ(W (io)xt +W (ho)ht−1)

(4)ProcessInput : C̃t = tanh(W (ĩc)xt +W (hc̃)ht−1)

(5)Cellupdate : Ct = ft ∗ Ct−1 + it ∗ C̃t

(6)Output : yt = ht = Ot + it ∗ tanh(Ct)

(7)Resetgate : rt = σ(W (ir)xt +W (hr)ht−1)

(8)Updategate : zt = σ(W (iz)xt +W (hz)ht−1)

Fig. 1  Architecture of the LSTM cell
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Bi‑LSTM

Standard RNN and LSTM often ignore future information in time-processing, while Bi-
LSTM can take advantage of future information. The basic structural idea of Bi-LSTM 
is that the front and back layers of each training sequence are two LSTM networks, 
respectively. Moreover, the LSTM networks are both connected to one input and one 
output layer. The output layer can obtain past information of each point from the input 
sequence and get future information from each point through this structure. as shown in 
Fig. 3.

CNN

CNN has been successfully applied to computer vision and medical image analysis 
[42]. Moreover, in this paper auteurs proposes a multiscale fully convolutional neural 
network (MFCN) for change detection in high-resolution remote sensing images [43]. 

(9)ProcessInput : h̃t = tanh(W (ih̃)xt +W (hh̃)ht−1)

(10)Hiddenstateupdate : ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

(11)Output : yt = ht

Fig. 2  Architecture of the GRU cell

Fig. 3  Architecture of the Bi-LSTM model
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In our model, the convolutional layers are constructed using one-dimensional kernels 
that move through the sequence (unlike images where 2D convolutions are utilized). 
These kernels act as filters that are learned during training. As in many CNN archi-
tectures, the deeper the layers get, the higher the number of filters. The architecture 
of CNN is shown in Fig. 4.

CNN‑LSTM

The use of classical CNN architecture is the best choice when input networks are 
2-D or 3-D tensors like images or videos [44]. Since LSTMs architectures are more 
adapted for 1-D Data, a new variant of LSTM called Convolutional LSTM or Con-
vLSTM [45] has been designed. In this architecture, the LSTM cell, which contains a 
convolution operation and input dimension of data, is kept in the output layer instead 
of just a 1-D vector. A convolution operation replaces matrix multiplication at each 
gate of classical LSTM. We can say that ConvLSTM architecture merges the capabili-
ties of CNN and LSTM Network. It was normally developed for 2-D Spatio-temporal 
data such as satellite images.

Another approach to working with Spatio-temporal data is to combine CNN and 
LSTM layers, one block after another. Such architecture is called Convolutional-
LSTM (CNN-LSTM) and was initially named Long-term Recurrent Convolutional 
Network or LRCN model. In the first part of this model, convolutional layers extract 
essential features of input data, and the results are flattened in a 1-D tensor so that 
they can be used as input for the second part of the model (LSTM). Finally, before 
passing data in the last hidden layer, information has to be reshaped in the original 
form of input data. The architecture of CNN-LSTM is shown in Fig. 5.

Fig. 4  Architecture of the CNN model
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Material and methods
Dataset

The dataset chosen in this article (420768 instances and 18 attributes) comes from 
the UCI Machine Learning Repository [46]. this dataset shows the concentration of 
air pollutants and air quality at 12 sites. The air quality data comes from the Beijing 
Municipal Environmental Monitoring Center. The meteorological data indicating 
the air quality for each site is matched with the nearest meteorological station of the 
China Meteorological Administration. as shown in Fig. 6.

Data pre‑processing

Missing values

This dataset includes 35064 records with multi-features in each station. The period 
of recording is from March 1st, 2013, to February 28th, 2017. The data are composed 
of: date, the concentration of PM2.5 , PM10 , Sulfur dioxide SO2 , Nitrogen dioxide NO2 , 
carbon monoxide CO, ozone O3 , dew point, temperature, atmospheric pressure, com-
bined wind direction, cumulated wind speed, cumulated hours of snow, and rain. 
However, Air quality and meteorological monitoring equipment will cause leakage in 
data collection due to machine failure, due to some uncontrollable reasons. The exist-
ence of such missing values will have some impact on data mining.

In time-independent (non-chronological) data to replace missing field values, the 
most popular approaches are the mean or median value. However, in the case of a 
time series, this is not the case. To resolve incomplete data problems, many imputa-
tion techniques are adopted. A study has shown that the linear interpolation method 
is the best method to estimate hourly monitoring data for PM10 for all percentages of 
simulated missing values [47].

Fig. 5  Architecture of the CNN-LSTM Model
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The processed data set contains less than 4% missing values, these missing values were 
addressed by linear spline imputation. The SL(x) equation can adapt to local anomalies 
without affecting the interpolation values at other points.

The equation of the spline linear interpolation function is:

where x is the independent variable, x0 , x1 , ... xn are known values of the spline and SL(x) 
the linear spline that interpolates f at these points.

Encoding categorical variables

In this analysis, the wind factor is an essential indicator of atmospheric activity. The pol-
lutant concentration is affected by the wind speed [27], and the wind direction is crucial 
in determining the concentrations of PM2.5 [28]. The wind direction attribute is categor-
ical data, admits 16 values: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, 
WNW, NW, and NNW. To convert each cardinal wind direction to a value of degrees 
azimuth. We have divided the compass into 16 sectors of 22.5 degrees each. North was 
given a value of zero and with clockwise displacement, the value increase by 22.5. The 
direction of each segment is 22.5 degrees. as shown in Fig. 7.

Normalization

In order to improve the prediction accuracy, we normalize the values of PM2.5 concen-
tration using the Min-Max normalization, the method is given in the equation 13:

(12)SL(x) = f (xi−1)
x − xi

xi−1 − xi
+ f (xi)

x − xi−1

xi − xi−1

x ∈ [xi−1, xi], i = 1, 2, 3, ..., n

Fig. 6  The distribution of monitoring stations in Beijing
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Feature selection

In machine learning applications, features selection is an essential step that can be done 
in several ways. Most of the previous work has applied a mathematical correlation to 
find the relationship between the input and output variables [48–51]. When there are 
many features to enter the network for training, finding the correlation between the tar-
get output value and those features reduces the complexity of training and improves per-
formance [48].

The Pearson correlation is the most popular method used to find the correlation 
between two variables. The following equation can calculate its coefficient r:

where x and y represent variables, and x̄ and ȳ represent the mean of the variables.

Air quality feature

In the atmosphere, we detect different pollutants, the increase of their concentrations 
negatively affects the quality of the air. We calculated the correlations between the fea-
tures, of the air quality and we found a high correlation value between PM2.5 , PM10 , and 
CO as shown in Fig. 8.

Meteorological feature

Weather parameters (atmospheric temperature, atmospheric pressure, wind speed, wind 
direction, and relative humidity) affect air quality. For example, high wind speed will 
reduce the concentration of PM2.5 , high humidity generally worsens air pollution, and 
high air pressure generally results in good air quality [50, 51]. Therefore, meteorological 
parameters are of prime importance for the task of forecasting air quality (Fig. 9).

(13)x =
x −min

max −min

(14)r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi−x̄)2

√∑n
i=1(yi−ȳ)2

Fig. 7  Wind Direction and Degree Values
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Spatial analysis

We performed the spatial correlation between Aotizhongxin station (target) and 
other adjacent stations. We used Pearson correlation to select the correlated PM2.5 
monitoring stations around the target.

The results are shown in Fig. 10. All correlation values are above 0.80 indicate that 
there is a strong spatial correlation between the selected stations.

The data set has been split into two, a training set and a test set. 80% (28,052 h) of 
the dataset was taken as a training set. The remaining 20% (7012 h) becomes the test 
set used to test the model and analyze its accuracy.

Evaluation index of the models

Once the structure of the model is determined, the training set is used to train the 
network until convergence. In order to assess the efficiency of the model, three indi-
cators are used in this article, including the mean absolute error (MAE), the mean 
squared error (RMSE), and the coefficient of determination ( R2).

Fig. 8  The correlation matrix of the air quality features

Fig. 9  Graphical representation of Meteorological data and PM2.5
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MAE

MAE (Mean Absolute Error) is the arithmetic mean of the absolute values of the devia-
tions between the true value and the model prediction value of all samples, which can bet-
ter reflect the real prediction error situation. The calculation formula is as follows:

RMSE

RMSE (Root Mean Square Error) is the square root of the mean of the square of all of the 
error. It may well reflect the accuracy of the prediction error. The calculation formula is 
shown below:

R
2

The coefficient of determination reflects the proportion of all variations of the dependent 
variable that can be explained by the independent variable through the regression relation-
ship. The closer the value of R2 is to 1 becomes, the better the independent variable can 
explain the dependent variable. See the calculation formula below:

In these three equations, n is the sample size, yi and ŷi represent the real value and pre-
dicted value at time, respectively; ȳi denotes the mean of all real values.

(15)MAE =
1

n

n∑

i=1

∣∣yi − ŷi
∣∣

(16)RMSE =

√√√√1

n

n∑

i=1

(yi − ŷi)2

(17)R2 =

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2

Fig. 10  The Spatiotemporal Correlation Analysis
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Results and discussions
We designed our models with various Python packages, including Scikit-Learn, Keras, 
and native TensorFlow. For hardware, We ran our heavier workloads on Google Colab, 
which housed NVIDIA’s Tesla T4 GPU.

In this research, the prediction of the concentration of PM2.5 was simulated using 
various deep-learning models. In this section, the historical observation PM2.5 data are 
compared with the computed PM2.5 from artificial neural networks such as LSTM, GRU, 
Bi-LSTM, Bi-GRU, CNN, CNN-LSTM, and CNN-GRU tested in one and seven lag days. 
Figure 11 shows the workflow for predicting PM2.5 concentrations.

Each network attempts to predict the results as accurately as possible. The value of the 
accuracy in the network is achieved by the cost function trying to punish the network 
when it fails. The optimal output is the lowest cost.

In this study, for all networks, we applied MSE (Mean Squared Error) as a cost func-
tion. A repetition step in training generally works with a division of training data named 
a batch size. The number of samples for each batch is a hyperparameter, generally 
obtained by trial and error.

The value of this parameter in all models is 24, 32, 64, and 128, respectively, as this 
study has shown. In each repetition step, the cost function is computed as the mean MSE 
of these observed and predicted PM2.5 concentration samples. The number of iteration 
steps for neural networks is named an epoch; in each epoch, the streamflow time series 
is simulated by the network once. Like other networks, neurons or network layers can be 
selected arbitrarily in recurrent networks. In our study for comparing models with each 
other, the structures of all recurrent network models are created identically.

•	 In LSTM, GRU, BI-LSTM, and BI-GRU each network, four hidden layers are used, 
200 units in the first layer, then 100 in the second layer, and 50 units in the last two 
layers. The last layer output of the network is linked to a dense layer with a single 
output neuron. Between the layers, a dropout equal to 10% is used. In all networks, 
the ReLU [52] activation function is applied for the hidden layers.

Fig. 11  Workflow for predicting PM2.5 concentrations
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•	 In CNN-LSTM and CNN-GRU each network of them contains 1D CNN, which 
Contains three convolutional layers, with 64, 64, and 32 feature detectors succes-
sively, the length of the convolution window is 3 with causal padding. Between the 
three convolutional layers, the BatchNormalization layer is used. All is followed by 
a MaxPooling1D layer with a pool size of 3. This last is linked to LSTM/GRU, which 
Contains two layers with 100 and 50 units per layer, then a dense layer with a single 
output neuron. An overview of the proposed CNN–LSTM models architecture is 
depicted in Fig. 12.

The main advantage of using ReLU is that there is a fixed derivative for all inputs 
greater than 0. This constant derivative speeds up network learning. Each method 
is run with 200 epoch, and a EarlyStopping(min_delta = 1e − 3, patience = 50) . All 
models are run with different Batch sizes. As seen in Table 1, the Batch size as one of 
the influential parameters plays a primary role. We used Adam as an optimizer with 
the learning rate ( 0,001) and learning rate decay (0.0001). As showcased in Table 1, 
three different evaluation criteria compare seven different prediction methods.

Table 1 summarizes the MAE, RMSE, and R2 values for the concentration of PM2.5 
in air generated by the model prediction models. In 65 models, the RMSE values for 
the 1-day lags were the smallest. However, the results show that the CNN-LSTM per-
formed best in a one-hour forecast compared to other models under the same condi-
tions, and different batches sizes. Moreover, these results show that the CNN-LSTM 
with 32 in batch size is more accurate in the different lags, with an advantage in 1-day 
lag.

Figures 13, 14, 15 shows the MAE, RMSE, and R2 in 1 and 7-days lags of the seven 
models in 32 Batch size. These values are between the predicted and true values of 
PM2.5 concentration.

This Figure indicates that :

Fig. 12  The architecture of the proposed CNN-LSTM
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Table 1  Results of different models in 1 and 7-days Lags (Bold indicates the best results.)

Model Batch 1 Day 7 Day

MAE RMSE R
2 MAE RMSE R

2

GRU​ 24 9.960 16.571 0.979 12.868 21.526 0.953

32 9.541 16.609 0.978 11.055 18.122 0.974

64 10.021 17.220 0.977 12.258 19.797 0.965

128 9.842 16.904 0.978 11.899 19.560 0.970

LSTM 24 9.102 15.999 0.980 11.916 19.255 0.969

32 9.503 16.217 0.980 11.623 19.154 0.972

64 9.252 16.044 0.980 11.551 19.155 0.970

128 9.725 16.997 0.978 11.823 19.227 0.971

Bi-LSTM 24 8.947 15.710 0.982 12.204 20.050 0.966

32 8.868 15.597 0.982 11.253 18.488 0.974

64 9.561 16.380 0.980 12.055 19.323 0.969

128 9.488 16.456 0.979 11.753 18.113 0.971

Bi-GRU​ 24 9.907 16.859 0.978 11.488 18.854 0.969

32 9.692 16.712 0.978 11.984 19.294 0.970

64 9.192 16.196 0.981 11.631 19.289 0.969

128 9.230 16.046 0.981 11.553 19.113 0.970

CNN 24 9.663 17.062 0.978 10.693 17.962 0.973

32 9.591 16.981 0.979 11.150 18.606 0.975

64 9.261 16.667 0.979 10.621 18.431 0.975

128 9.974 17.636 0.977 10.674 18.636 0.974

CNN-LSTM 24 9.198 16.523 0.981 9.353 16.724 0.978

32 6.742 12.921 0.989 9.034 16.625 0.979
64 7.869 15.757 0.982 9.885 18.373 0.976

128 8.940 16.337 0.980 9.037 16.524 0.979

CNN-GRU​ 24 9.812 17.554 0.977 9.912 18.564 0.965

32 9.459 17.700 0.977 9.459 18.700 0.967

64 9.433 16.836 0.979 9.653 17.856 0.976

128 9.499 17.285 0.979 9.949 17.885 0.976

Fig. 13  Comparison of the MAE for the 1day and 7day lag for the different deep learning models
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•	 By comparing CNN with LSTM in 1-day lags, the MAE and RMSE of LSTM 
decrease, R2 increases, MAE decreases from 9.591 to 9.503, and RMSE decreases 
from 16.981 to 16.217, so LSTM was better than CNN. However, the error meas-
urement indexes MAE and RMSE of CNN-LSTM are the smallest, and the maxi-
mum R2 is close to 1.

•	 By Comparing CNN-LSTM with LSTM based on metrics MAE and RMSE. The 
proposed model in this paper has the smallest value of MAE and RMSE than those 
LSTM without the CNN layer, R2 has a certain improvement, MAE decreases 
from 9.503 to 6.742, RMSE decreases from 16.217 to 12.921, and R2 increases 
close to 1.

•	 By comparing CNN-LSTM in 1-days lags with 7-days lags, the MAE and RMSE 
increases, R2 decreases, MAE increases from 6.742 to 9.034, and RMSE increases 
from 12.921 to 16.625 (Fig. 16).

Overall, observations from Table 1 and Figures 13, 14, and 15 show that the perfor-
mance of CNN-LSTM in 1-day lags is the best among the Seven models. In terms of 
forecasting accuracy, MAE is 6.742 and RMSE is 12.921, which is the smallest among the 
seven forecasting models and has high forecasting accuracy, in terms of forecasting per-
formance, and the R2 of CNN-LSTM is 0.989, Therefore, the CNN-LSTM proposed in 

Fig. 14  Comparison of the RMSE for the 1day and 7day lag for the different deep learning models

Fig. 15  Comparison of the R2 for the 1day and 7day lag for the different deep learning models



Page 18 of 21Bekkar et al. Journal of Big Data           (2021) 8:161 

this paper is superior to the other comparative models, so the predicted value has a good 
explanation for the true value.

Comparison with recent work

Four recently published models are suggested, such as AC-LSTM by [53], LSTM-FC 
by [33], XGBoost by [54], and CNN-LSTM by [55], which are evaluated for compar-
ing the performance of the proposed model. Those four models were also used to 
forecast pollutant particles PM2.5 . The comparison investigation was using the same 
two metrics, MAE, RMSE.

A comparative examination of MAE and RMSE, as shown in Fig.  17, shows that 
not only the lowest mean absolute error but also the lowest root mean square error 
occurs in the suggested model.

In this study, we developed a CNN-LSTM, which can effectively perform Spatio-
temporal prediction, and used it to predict air quality in Beijing. The data of PM2.5 
concentration, concentrations of air pollutants highly correlated with PM2.5 , mete-
orological data, and PM2.5 concentrations were collected from several locations of 
adjacent monitoring stations. The PM2.5 prediction model showed high predictive 

Fig. 16  PM2.5 concentration forecasting results for 10 days

Fig. 17  Comparison of the RMSE and MAE for the proposed model and other model
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accuracy and explanatory power, as well as the potential for future improvement by 
introducing a long-term prediction model.

•	 First, the CNN-LSTM prediction model can be expected to produce high PM2.5 pre-
diction accuracy by learning Spatio-temporal information from big data. In the case 
of previous prediction models, it is difficult to effectively learn Spatio-temporal infor-
mation. The CNN-LSTM prediction model directly manages space-time information 
from adjacent stations.

•	 Second, we can learn effectively with the CNN-LSTM model by using data from 
adjacent monitoring stations. Existing air quality monitoring models have shown 
limitations in measuring and predicting particulate matter, due to ignorance of the 
effects of pollution in places not covered by the monitoring station. However, the 
prediction model proposed in this article can support the effects of uncovered areas.

•	 Third, our model was only applied in the city of Beijing in China due to the limitation 
of hourly open access data. In the future, the proposed model can be comprehen-
sively evaluated by applying it to other study areas or to other time periods once the 
greatest amount of data is available.

However, our study has a limit. The concentrations of pollutants of foreign origin affect-
ing Beijing were not taken into account in this study. For example, the air pollution 
caused by other Chinese cities is carried by the wind.

Conclusion
In this paper, we proposed a hybrid model based on CNN and LSTM, which was used 
to predict the PM2.5 of air pollutants in the urban area of Beijing. First of all, the histori-
cal data of the stations were analyzed for correlation. After experimental comparison, a 
feature with a higher correlation coefficient with the PM2.5 was selected, weather data, 
and correlation between other stations. Secondly, based on the proposed hybrid model, 
we also used CNN to effectively extract the spatial characteristics of and the internal 
characteristics between different attributes; simultaneously, LSTM was used to obtain 
the time features and obtain a more accurate and stable prediction effect. Through per-
formance evaluation and comparison of results, the main findings of this paper are as 
follows: this model can effectively extract the temporal and spatial features of the data 
through CNN and LSTM, and it also has high accuracy and stability. Due to the perio-
dicity of the air quality data, a 24h was chosen for the input values.
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