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College of CUNY, New York, in compressed format). These datasets have utility in a wide range of diagnostic and
USA investigative pathology applications. However, the datasets present unique challenges:

The size of the files, propriety data formats, and lack of efficient parallel data access
libraries limit the scalability of these applications. Commercial clouds provide dynamic,
cost-effective, scalable infrastructure to process these datasets, however, we lack the
tools and algorithms that will transfer/transform them onto the cloud seamlessly,
providing faster speeds and scalable formats. In this study, we present novel algorithms
that transfer these datasets onto the cloud while at the same time transforming them
into symmetric scalable formats. Our algorithms use intelligent file size distribution,
and pipelining transfer and transformation tasks without introducing extra overhead

to the underlying system. The algorithms, tested in the Amazon Web Services (AWS)
cloud, outperform the widely used transfer tools and algorithms, and also outperform
our previous work. The data access to the transformed datasets provides better perfor-
mance compared to the related work. The transformed symmetric datasets are fed into
three different analytics applications: a distributed implementation of a content-based
image retrieval (CBIR) application for prostate carcinoma datasets, a deep convolutional
neural network application for classification of breast cancer datasets, and to show that
the algorithms can work with any spatial dataset, a Canny Edge Detection application
on satellite image datasets. Although different in nature, all of the applications can eas-
ily work with our new symmetric data format and performance results show near-linear
speed-ups as the number of processors increases.

Keywords: Big data applications, Content-based image retrieval, Cloud networks,
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Introduction

WSI datasets are very large tissue slide images in multi-giga-pixel resolution, produced
by digital scanners and they have utility in a wide range of diagnostic and investigative
pathology applications [1]. Running biomedical analytics applications that process big
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WSI datasets in the cloud presents unique challenges which can be classified as dataset
challenges, cloud architecture challenges, and application challenges.

The first problem with these datasets is that the file size can be quite large. Consid-
ering a typical image can be as large as 200,000 x 200,000 pixels, each image file can
occupy 30-50 GB space in uncompressed format, which makes it unfeasible to bring
into memory as a whole. Bueno et al. [2] used a parallel data access method to bring the
images into the memory of a node using an MPI-based approach. In that study, the mas-
ter process assigns an image id to the worker processes, and the worker processes access
the storage system directly. Parallelism is provided for one single WSI image at a time
and does not consider large datasets that consist of several WSIs. The data size loaded
into the memory depends on the size of the node memory. This limits the scalability of
the application to WSI size/memory size without taking into account the characteris-
tics of the dataset and the analytics algorithm. Also, fixing the tile size brought into the
memory of the node based on the size of the WSI and memory limit of the node may
increase algorithm overhead. Therefore, their performance results show that it can only
scale up to 17 cores. Another downside is that the analytics application has to be written
in MPI to use this access method.

Another problem with these datasets is that there is no uniform format and each digi-
tal scanner brand can produce images in propriety formats. The vast majority of exist-
ing commercial scanners utilize different data formats relying on propriety metadata
and compression techniques. For example, while Aperio-Leica scanner uses SVS format,
Hamamatsu uses VMS or VMU formats [3, 4]. There are only a handful of libraries that
can read these images (e.g., Openslide [5], Bio-formats [6]) and they cannot support all
the different file formats on their own. Also, they provide limited access capabilities for
cloud storage systems (e.g., HDES [7], AWS S3 [8]). Version 5 of Bio-formats can only
work with parallel file systems (e.g., Lustre [9], GPFES [10]) and its pixel data format is
not compatible with OpenCV [11] interfaces. Therefore, a generic scalable data format is
needed to remove these cross-compatibility issues.

The use of parallel processing algorithms and frameworks with whole slide image
datasets is also very limited. Parallel access to the storage system usually is not consid-
ered as part of the parallelization process [12, 13]. In Teodoro et al. [12], several image
processing algorithms including object segmentation, feature extraction, classifica-
tion, and tracking of pixel data access patterns are analyzed for CPU, GPU, and MIC
processor architectures. However, in this paper, only memory access patterns are con-
sidered in their performance analysis, and a master/worker model similar to the work
presented in [13] is adopted. Aji et al. [14] provide a Hadoop-based system for spatial
image data access. However, the images need to be processed into WKT format which
is a text-based format that stores polygon data of the regions of interest. They provide
limited scalability results and store processed features rather than raw WSI pixel data,
henceforth, limiting the range of analytics applications that can use these datasets. In
our previous work [1], we presented a distributed, dynamic asynchronous transfer and
transformation algorithm that works on the Hadoop [15] ecosystem and this algorithm
was able to scale seamlessly based on the capabilities of the underlying resources and
store WSIs in raw format which increases the range of analytics applications that can use
this format.
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The second set of challenges can result from the architecture of the cloud. Although
clouds can provide tremendous opportunities for a plethora of biomedical applica-
tions [16—22], black box object storage systems (e.g., AWS S3) and poor cloud net-
works are the main reasons analytics applications perform poorly [23]. These studies
usually deal with smaller size image formats such as MRIs, microarrays, pCTs and do
not come across with the problems presented by extremely large WSI datasets. The
designed platforms also install their own storage system, thus having full control. In
this case, they can easily predict the load of the system and have real-time access to
the metadata and logs which are almost impossible with black box storage systems
like AWS S3. The third challenge is usually application-specific and also dependent on
the data access patterns of the application. Teodoro et al. [12] present that different
access patterns of a plethora of image processing operations have a great effect on the
performance depending on the architecture used.

In this study, we target these challenges and present novel, distributed algorithms
that can pipeline the transfer and transformation tasks of WSI datasets and scale
seamlessly. The algorithms transform the unstructured format of raw WSIs to a sym-
metric binary format providing easy access to a large set of parallel and distributed
analytics applications. Previous work could only provide processed feature formats
[14, 24] which limit the range of applications that can work with them. The proposed
algorithms outperform widely used cloud transfer tools such as aws s3 cp and s3-dist-
¢p, Amazon Elastic Load Balancing service’s Round-robin algorithm, and our previ-
ous work [1] in an inter-/intra cloud data center setting using AWS S3 storage system
and AWS EMR service.

We tested these symmetric binary datasets using three different case studies. The
first study is a content-based image retrieval application [25] for searching cancer-
ous patterns in a prostate carcinoma WSI dataset. The application is implemented
on the Hadoop MapReduce framework using OpenCV library. The second study is
a deep learning classification application that classifies regions as cancerous or not
in a breast cancer WSI dataset. The application is implemented using Keras deep
learning library on Tensorflow. In the third study, to show that the proposed algo-
rithms will work with any spatial dataset, we targeted big satellite image datasets. We
implemented a distributed edge detection algorithm using Spark [26] and Image] [27]
libraries. The performance results for the applications provided near-linear speedups
as the number of vcpus was increased.

Overall, the contribution of this study includes:

+ Two novel distributed data transfer and transformation algorithms/tools for con-
verting WSI datasets into symmetric formats in the cloud.

» Access libraries to transformed datasets for implementing highly scalable analyt-
ics applications on Hadoop, Spark, and Tensorflow.

+ A distributed implementation of a Content-based Image Retrieval application
with Hadoop MapReduce using prostate carcinoma WSI datasets

« A distributed implementation of Deep Neural Network application for classifica-
tion of images as tumor and normal with Tensorflow/Keras using breast cancer
WSI datasets.
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« A distributed implementation of Canny Edge Detection Algorithm with Spark and
Image] using satellite image datasets.

In the following subsections, we explain the system and algorithm design (Sect. “Meth-
odology: system and algorithm design”), case study applications (Sect. “Methodology:
case studies”), give an extensive experimental study (Sect. “Experimental results”), and
finally end with conclusions and future work (Sect. “Conclusion and future work”).

Methodology: system and algorithm design

In this section, the architecture of the underlying system is presented and three different
algorithms are explained in detail: Dynamic Asynchronous Scheduler 1], Greedy Sched-
uler, and Pipelined Greedy Scheduler.

Utilization of native YARN applications on Hadoop ecosystem

The algorithms are implemented as a native YARN application. YARN is the scheduler
of the Hadoop ecosystem. Figure 1 presents the interactions between the Application
Master task and transfer/transformation tasks. The image access library (e.g., Openslide)
does not know how to interact with a distributed file system (e.g., HDFS) or an object
storage system (e.g., S3). Therefore the transformation task where the WSI files are con-
verted to symmetric binary files happens in the local disk of the transformation nodes.
Most of the algorithm logic is implemented to the Application Master. The list of URLs
of the WSI datasets is given to the Application Master in the form of a text file. The
Application Master distributes these URLs to the transformation nodes each of which
communicates with the source storage system to transfer the files into their local disks
and starts the transformation process. Once the files are transformed they are trans-
ferred back to the destination storage system. Usually, the destination storage system
resides in the same region as the processing cluster. The transformation nodes can rec-
ognize different types of source and destination storage systems such as web servers,
HDES, and S3 and use the proper protocol to transfer these files from/to the storage

system.

Distributed transfer/transformation algorithms

Three algorithms are presented in this section. Dynamic Asynchronous Scheduler is the
algorithm developed in our previous work [1] and used as a baseline algorithm here.
Greedy Scheduler and Pipelined Greedy Scheduler algorithms are novel algorithms that

use intelligent file distribution strategy and pipelining.

Dynamic asynchronous scheduler
This baseline algorithm assigns one transfer/transformation task to each transforma-
tion container. The containers are launched by the YARN scheduler and as soon as one
container finishes with its job another is launched. The number of parallel containers
depends on the capabilities of the computer node and Hadoop configuration parame-
ters. The outline of the algorithm is given in Algorithm 1.

The algorithm takes the input text file which contains the URLs for the WSI images,
the resolution level, and tile size as input parameters. WSI images can have multiple



Yildirim Journal of Big Data (2021) 8:155 Page 5 of 26

Cloud Containers

‘ ppicat‘loh

Master

URLs

http://tcga.org/files/a.svs Input URLs
http://tcga.org/files/b.sv
s3n://bucketname/fastq-dir/ _—
hdfs:///svsimage-dir2/

Transformation
Node

I I Local Disk l
o

Web Servers

Transformation
Node
Local Disk

Cloud Storage System =>Input dataset ———
Transformed dataset

STdN

Transformation <
Node

<_,—) ' Local Disk I
—

<€
Transformation €—
Node

_> I Local Disk I

Local Distributed Storage System

€ Transformation
Node
Local Disk

Openslide
library

Fig. 1 System architecture

resolution levels. The Application Master container goes over the URLs in the text file
and recognizes URL types. Then by using the appropriate protocols for each URL type,
it interrogates the storage systems to make a global list of image files (Line 2). For each
file URL in the list, the application master launches transformation containers that are
responsible for the transfer, transformation and storage of the files on the local HDFS
system or back on the AWS S3 storage system (Lines 3-5). A simple scheduling algo-
rithm is applied in which each container is assigned a single URL to process.

The application running on the transformation container recognizes the URL type
and uses appropriate transfer protocol or API to transfer the file into its local disk
(Lines 7-8). It then uses the image access library (Openslide or bio-format) to read the
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metadata of the file and gathers a list of coordinates based on the resolution level and
tile size parameters(Lines 9, 10). For each tile coordinate, it creates a key that consists of
the WSI file name, x and y coordinates, and the size of the tile. The metadata about each
tile is stored in the key because, in this way, it is easier to implement specific Hadoop
partitioner and groupby classes that can also be used to implement select-where clauses
or join objects. This property allows various analytics applications and different access
patterns to be possible with sequence files.

The transformation container application then reads the raw partial pixel data in the
form of a tile, converts it into a value object, and writes the key-value pair into HDFS or
S3 as part of a binary sequence file (Lines 11-15). Sequence files are compressed binary
object files that can be split by programming paradigms like Hadoop MapReduce and
Spark automatically.

Algorithm 1 Dynamic_Asynchronous_Scheduler

Require: Pyys;r @ Input path of text file containing WSI URLs vV Ty, : Tile width V
Ty : Tile height V R : Resolution level
. Application Master :
Ly gy, < list_of_file_URLs(Py s1)
: for all URLi in LURL do
launch_transformation_container(URL;, R, T, Tp,)
end for
Transformation Container :
: URL_type_x < recognize_URL_type(URL;)
: local_file_path « transfer_to_local_disk(U RL_type_z, URL;)
: Width, Height < retrieve_size_of_WSlI(local_file_path)
10: Listy;es < retrieve_tile_coords(Width, Height, local_file_path)
11: for all T'ile; in Listi;jes do
12: Key «— filename, x_coord;,y_coord,, tile_width, tile_height
13: Value < read_tile_pixels_from_WSI(local_file_path, z_coord;, y_coord;)
14:  write_to_sequence_file( K ey, Value, destination_path)
15: end for

LN RELN

Greedy scheduler

Dynamic Asynchronous Scheduler creates a separate YARN container for each file to
be transferred. However, launching/ tearing down a container is a costly operation, and
as the number of files in a dataset increases, this cost increases respectively. The idea
behind the Greedy Scheduler algorithm is to minimize this cost by launching as many
parallel containers as the underlying system allows. For example, if the computer cluster
has 12 processors, the algorithm then launches only 12 containers. In this case, the dis-
tribution of files among the containers becomes very important as we want all the con-
tainers to finish their tasks approximately at the same time. Therefore, Greedy Scheduler
applies a greedy approach to load balance the distribution of files to the transformation
containers. The outline of the algorithm is given in Algorithm 2.

After the list of URLs is constructed (Line 2), the files are sorted in descending
order of their sizes (Line 3). Then, the transformation container with the list of files of
which total size is minimum is found and in every iteration of the loop, the file in line
is assigned to the list of that container (Lines 4-7). In doing so, we assign the largest
files first to the minimum size list hence maintaining load balance. Then, a transforma-
tion container is launched for each list (Lines 8—10). The only difference in the algorithm
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of Transformation Containers is that now they have a list of files to transfer/transform
instead of a single file (Lines 12-22).

In comparison to AWS Elastic Load Balancing (ELB) algorithm [28], our Greedy
Scheduler is designed to work with datasets that consist of very large files and can sup-
port different URL types. On the other hand, AWS ELB is designed to work with small
size HTTP POST and GET requests. Since ELB algorithm has no idea about how many
requests will be queued up at any specific time, it uses a simple round-robin scheduler
[28]. A round-robin scheduler might be the best choice for similar-size small requests
with unknown sizes, however, our Greedy Scheduler interrogates the file and storage
systems to get an idea about the size of each transfer/transformation request for the
entire dataset. Therefore, it makes a more intelligent decision, starting up with assign-
ing the largest files first to the container of which queue has the minimum total file
size assigned. We present the performance results of ELB’s round-robin algorithm in
Sect. “Experimental results”

Algorithm 2 Greedy_Scheduler

Require: Pys; : Input path of text file containing WSI URLs V Ty : Tile width V
Ty : Tile height V R : Resolution level V N : Number of transformation containers
. Application Master :
Ly gy, < list_of_file_URLs(Py s1)
sort_descending_filesize(Ly r1,)
: for all URLZ in LURL do
Lyrr; < List of URLs of container; with minimum total file size
LURLj add(URLl)
: end for
: forall Lygy; do
launch_transformation_container(URL;, R, T,, Tp,)
: end for
11: Transformation Container; :
12: for all URL; in LURLj do
13: URL_type_x < recognize_URL_type(URL;)
14:  local_file_path < transfer_to_local_disk(URL_type_z,URL;)
15: Width, Height < retrieve_size_of_WSI(local_file_path)
16: Listy;es < retrieve_tile_coords(Width, Height, local_file_path)
17: for all Tile; in Listy;es do

—
L XN ITRWN

18: Key < file-name, x_coord;,y-coord;, tile_width, tile_height

19: Value «— read_tile_pixels_from_WSl(local_file_path, x_coord;,y_coord;)
20: write_to_sequence-_file( Key, Value, destination_path)

21: end for

22: end for

Pipelined greedy scheduler

Once the file lists are assigned to the containers there is no reason that a transfer task
of a file should wait for the transformation task of the previous file in the list. Therefore,
in Pipelined Greedy Scheduler algorithm, the transformation containers have a multi-
threaded producer/consumer architecture. Each container task launches one transfer
and one or more transformation threads where the threads share a common URL buffer.
Once the transfer task finishes, the local URL path is inserted into the buffer (Lines
14-18). The transformation task picks up a URL from the buffer and starts the transfor-
mation (Lines 20-28). In this case, the transfer and transformation tasks are pipelined.
The outline of the algorithm is given in Algorithm 3.
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The only difference in the Application master compared to Greedy scheduler is that
once the file lists are constructed for the containers, they are sorted in ascending order
of their file sizes (Line 9) . The reason for this is that it has been observed that the trans-
formation takes more time than transfer. Therefore, the sooner the transformation task
starts, the better for the pipelining overlap. As a result, the algorithm transfers smaller
files first.

Algorithm 3 Pipelined_Greedy_Scheduler

Require: Pyys;r :  Input path of text file containing WSI URLs V Ty : Tile width V
Ty : Tile height V R : Resolution level V N : Number of transformation containers

. Application Master :

LyRrr «— |iSt,Of,fi|e,URLS(PWS[)

sort_descending _filesize(Ly rr,)

: for all URL; in Ly gy, do

Lugrr; < List of URLs of container; with minimum total file size

LURL; .add(URLi)

: end for

: for all LURLj do

9: sort,ascending,filesize(LURLj )

10: launch_transformation_container(URL;, R, T\, Th)

11: end for

12: Transformation Container; :

13: Transfer Thread :

14: for all URL,L' in LURLj do

15: URL _type_x — recognize_URL _type(URL;)

16:  local_file_path < transfer_to_local_disk(URL_type_z,URL;)

17: prodcons_buf fer.add(local_file_path)

18: end for

19: Transformation Thread/s :

20: for all local_file_path; in prodcons_buf fer do

21: Width, Height < retrieve_size_of WSl (local_file_path;)

22: Listy;es < retrieve_tile_coords(Width, Height, local_file_path;)

23: for all T'ile; in Listy;jes do

24: Key < file-name, x_coord;,y-coord;, tile_width, tile_height

25: Value — read_tile_pixels_from_WSl(local_file_path;, x_coord;,y_coord;)
26: write_to_sequence-_file( Key, Value, destination_path)

27: end for

28: end for

Methodology: case studies

The transformed symmetric datasets can be fed into a variety of big data analysis frame-
works such as Hadoop, Spark, and Tensorflow, increasing their scalability levels. In this
section, we present three case studies: A CBIR application that searches for cancer-
ous patterns in a prostate carcinoma dataset from the Cancer Genome Atlas database,
a deep learning classification application that classifies breast cancer images from the
Camelyon Challenge dataset, and a distributed canny edge detection algorithm using
Natural Earth Dataset.

Case 1: distributed content-based image retrieval

If the transfer and transformation of the WSI dataset is the first step of a bioinformat-
ics application pipeline, then the second step is the implementation of a scalable CBIR
application that can access these datasets. We implemented a distributed content-
based image retrieval application for prostate carcinoma WSI datasets from the Cancer
Genome Atlas database using a coarse searching algorithm presented in [25].
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In Fig. 2, a query patch of glandular prostate carcinoma structure is searched in a tile
cropped from a WSI image. In this case, a tile is a value object in our binary data for-
mat. A sliding window approach is used to search Region of Interests (ROIs) against the
query patch. The size of the query patch defines the size of the sliding window. Both
query patch and ROI are divided into rectangular circles and their color histograms
are calculated using OpenCV library. Chi-square distance formula is used to calculate
the distance between histograms, which provided the best results with our tests. After
the distance of each rectangle is calculated, they are averaged. The mapper task reads
the transformed binary files in the form of key-value pairs. The key of the map task is a
user-defined key class that consists of the file name, x and y coordinates of the tile, and
width and height of the tile. The value is the BGR byte representation of the tile pixels.
The query patch is provided to the map task using distributed cache feature of Hadoop
ecosystem where the patch is shared among all tasks. The mapper applies the searching
algorithm and calculates the distances. The output key is the distance and the output
value is a user-defined class that consists of the file name, x and y coordinates of the tile,
width and height of the tile, x and y coordinates of the ROI, and width and height of the
ROI. Making the distance the output key of the mapper tasks allows the reducer task to
automatically sort the results based on the distance. Once the results are sorted we can
pick the top best ROls.

Case 2: distributed classification via deep neural networks

The second application is a deep convolutional neural network for the classification
of breast cancer images from the Camelyon Dataset. The dataset consists of tumor
WSIs, tumor mask WSIs, and normal WSIs (Fig. 3). Our transfer/transformation
algorithms can add a label (0 for normal, 1 for tumor) to the key as these datasets
are converted into symmetric binary format. For tumor tiles, if the tile tumor mask

Distance between
—
feature sets

Example tile

Sort by distances

Crop 10% of best

results ¢

Output coordinates of
Top 10% ROIs

4 Query patch

Feature Extraction

Fig. 2 Content-based image retrieval application—coarse searching algorithm
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is more than 50% white, we assign the label as tumor. For normal WSI images, a dif-
ferent thresholding method is applied. If the average of the R, G, and B pixels is less
than 150 and the percentage of such pixels in the tile is greater than 80%, we assign
the label as normal. These values can be changed based on the background color of
the WSI image.

Although Hadoop and Spark applications can access the transformed datasets
directly because of their Java serialization compatibility, Tensorflow applications need
an extra step. Therefore, before the training process starts, we add another MapRe-
duce job to the pipeline to transfer the transformed datasets into the local filesystem
in the form of PNG patches. Then, our distributed Convolutional Neural Network
application starts training. We have not been able to find a TFRecordReader class that
can read Java serialized binary sequence files. In our future work, we plan to bypass
Java serialization and write our own serializer for Hadoop and a TFRecordReader
class in C++ for Tensorflow so the incompatibility issue is solved.

The CancerNet model by Adrian Rosebrock [29] is used for our classification appli-
cation. The model uses exclusively 3 x 3 convolution filters, stacks multiple 3 x 3
convolution filters on top of each other before performing max-pooling, and uses
depth-wise separable convolution rather than standard convolution layers. Their
model used 48 x 48 patches from Kaggle Breast Histopathology dataset [30]. Since
we can have any size patches through our transformation algorithms on the fly, we
used a larger patch size 128 x 128 while creating the symmetric datasets. We also
enabled distributed training by using Tensorflow’s MultiWorkerMirroredStrategy.
Therefore, we increased the batch size as well from 32 to 32 x #vcpus initially. The
dataset was divided into training, validation, and testing datasets. 80% of the dataset
was used as the training set while the remaining %20 was used as the testing set. 10%
of the 20% test dataset was also set aside as the validation set. The application scaled
well as we increased the number of vcpus and provided very high accuracy results
(see Sect. “Accuracy and performance results of classication application”).
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Case 3: distributed Canny edge detection

In the third case study, we tested our algorithms with a different type of spatial dataset.
We selected the Natural Earth Dataset [31] which consists of very large (21,589 x 10,762
pixels each) satellite images of the world map. The original image file format is TIFF and
because it is not a microscopy dataset, Openslide library cannot be used to transform
them. To achieve the transformation of these datasets, we changed the library used in
Fig. 1 from Openslide to Java ImagelO. This way, any dataset can be used as input to our
algorithms simply by extending the Java class TileReader.java and providing an imple-
mentation for the abstract method readTile() which takes x and y coordinates, tile width,
and tile height as input parameters. The transformed datasets are then fed into a Spark
Job for applying a Canny Edge Detection algorithm using Image] library (Fig. 4).

Edge information is essential in many image analysis and computer vision applica-
tions. The generic methods that detect edges are usually designed for monochromatic
images and focus on the intensity calculations. However, a superior method is needed
for color images that will treat color RGB channels as vectors but not scalars. Canny
edge detection algorithm [32, 33] designed for color images has proven to provide bet-
ter results than monochromatic image edge detection techniques. The algorithm starts
by smoothing the RGB channels using a Gaussian filter. Then, the color magnitude is
calculated as the squared local contrast obtained from the dominant eigenvalue of the
structure matrix. From this matrix, the local gradient vector is calculated. That is fol-
lowed by non-maximum suppression, edge tracing, and thresholding calculations. The
complete algorithm can be found at [33]. From the edge tracing results, we write the
tracing coordinates as the output of the Spark job. Accuracy and performance results of
the algorithm are provided in Sect. “Accuracy and performance results of Canny edge
detection application”.

Experimental results

In this section, we present an extensive experimental study showing the performance
and accuracy of our algorithms and case study applications. AWS S3 storage system and
AWS EMR service are used for the experiments.Our algorithms will work on any system
with a Hadoop installation and we support different URL types (s3://, hdfs://, http://). So
data can reside on AWS S3, a local or remote cluster’s HDFES system or it can even be on
a web server with a public http:// URL. Also developers extending the class GenericlURL.

Transformation . i Distributed Edge Detection
AIgoEithm Symmetric .seq files With SPark
r

1
o 1 r 1

Satellite Image Dataset

Edge Trace
Coordinates
102, 340
103, 530
126, 120

21589x10762 pixels
Fig. 4 Distributed Edge Detection Pipeline
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java can provide their storage system and transfer protocol. AWS provides a scalable
infrastructure and comes with a readily installed Hadoop system. Therefore, we chose
AWS as our testing environment.

4 different storage locations are selected for the datasets: Virginia, Oregon, Canada,
and Frankfurt. There are two reasons the algorithms were tested in different regions. The
first reason is that we wanted to see how they will perform in different RTT and traffic
pattern situations. Virginia data center is an example of an intra-data center transfer/
transformation case with very small RTT (less than 1 ms) and busy traffic patterns. Ore-
gon data center has busy traffic patterns and a large RT T (50 ms) representing wide-area
data transfers. Canada data center represents short RTTs (15 ms ) and not busy traf-
fic patterns. And finally, Frankfurt data center represents a transoceanic transfer/trans-
formation with very large RTTs (80 ms) and not-so-busy traffic patterns. The four data
centers in general represent 4 different combinations of RTT and traffic patterns. The
second benefit to test different data centers is that medical centers may be geographi-
cally distributed but can form collaborations. In this case, different centers would want
to store their data to the data center closest to them but want to collaborate and share
their data. Hence, algorithms were designed to do transfer/transformations from multi-
ple data sources.

AWS EMR comes with a readily installed Hadoop system. For EMR clusters, mem-
ory optimized instances are selected since these applications require large memory
space. The node types we used range from 4-vcpu (m5.xlarge) to 32-vcpu (mb5.8xlarge)
instances. However, for the classification application, only c3 type instances were availa-
ble in AWS EMR with Tensorflow deployment. Therefore, we used c3.2xlarge, c3.4xlarge,
and c3.8xlarge instances in the experiments.

Comparison of total transfer time

In this experiment, the transfer time of the dataset from the source S3 storage system to
the local file system of the EMR cluster is measured. The transformation feature of the
algorithms was disabled just to see the total transfer time. We compared Dynamic Asyn-
chronous Scheduler (DAS) and Greedy Scheduler (GS) algorithms against widely used
transfer tools in the cloud: aws s3 cp and s3-dist-cp. The reason why we only measured
the transfer time is that these tools are not capable of transforming the datasets. aws s3
¢p is the default transfer tool of the AWS client interface and is a multi-threaded appli-
cation. s3-dist-cp is a Mapreduce application that distributes the transfer of files into
reducer tasks.

In Fig. 5, we transferred a 100 WSI dataset (approximately 19 GB) using m5.xlarge
instance clusters ranging the vcpu number between 4 and 32. The results show similar
characteristics for all source regions regardless of their different RTTs. Although aws s3
¢p outperforms the rest of the tools/algorithms for 4 vcpu results, it cannot scale beyond
the limits of a single instance due to its shared memory architecture. On the other hand,
a multi-threaded architecture has less overhead compared to a multi-container archi-
tecture. We believe its superior performance at 4 vcpus is because of its threaded imple-
mentation providing less overhead.

As we mentioned in Sect. “Methodology: system and algorithm design’, GS algo-
rithm is optimized compared to DAS algorithm because it uses fewer containers, this
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Fig. 5 Performance comparison of total transfer time

statement also applies to s3-dist-cp as it uses as many reducer containers as the underly-
ing Hadoop configuration allows. In all of the cases, GS algorithm outperforms s3-dist-
cp and when the parallelism level is high DAS algorithm slightly outperforms s3-dist-cp
as well.

When we look at the total transfer time in different regions Canada has the best per-
formance although its RTT (= 15ms) is higher than Virginia (less than =~ 1lms). We
believe, the intra-network traffic of the Virginia data center is much higher than the inter
network traffic between Canada and Virginia. This indicates that RTT is a less effective
factor in transfer time compared to the network traffic. Similarly, the total time of Ore-
gon-Virginia (RTT ~ 50ms) transfers is very close to Frankfurt-Virginia (RTT = 80ms)
transfers proving that traffic is a much more definitive factor than RTT when it comes to
cloud networks.

PPGS algorithm is not included in the results because it only differs from GS when the

transformation is enabled.

Comparison of total transfer/transformation time

In the second experiment, we transferred a 50 WSI dataset (approximately 15 GB in
compressed format). The replicas of the dataset are again placed in Virginia, Oregon,
Frankfurt, and Canada data centers. An EMR cluster of m5.4xlarge nodes is created in
the Virginia data center and the transfer/transformation algorithms were tested on this
cluster. The destination is the S3 system of the Virginia data center.

Figure 6 presents the total time it takes to convert WSI files into the symmetric binary
format as we increase the number of vcpus in the cluster between the range [8-32].
In the figure, DAS stands for Dynamic Asynchronous Scheduler, RR stands for Round-
Robin Scheduler, GS stands for Greedy Scheduler and PPGS stands for Pipelined Greedy
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Fig. 6 Performance comparison of transfer/transformation algorithms on AWS S3 and EMR

Scheduler. As the number of vcpus is increased, the number of transformation contain-
ers launched increases for RR, GS, and PPGS algorithms as well. As a result, the num-
ber of files per container dramatically decreases, hence the optimizations we do in these
algorithms lose their effect. That’s why for the 32-vcpu case, all the algorithms perform
similarly except for the RR algorithm. We observe that RR algorithm performs better
than DAS when the number of vpus is 8. However, as we increase the number of vcpus,
it does not scale well and falls behind all the other algorithms. For all the other cases, GS
performs better than DAS and RR, and PPGS performs better than GS algorithm. Also,
as we increase the number of vcpus, the total transfer/transformation time decreases for
all cases. The same observation that there was not much difference between the total
times for different data centers were made in total transfer/transformation times as well.
Then again, the highest total time value belongs to Frankfurt-Virginia transfers as they
are transoceanic transfers. On the other hand, Virginia-Virginia and Canada-Virginia
transfers almost took the same amount of time. Based on these results, it is clear that
our new algorithms (GS and PPGS) outperform the baseline algorithm (DAS) and AWS
ELB’s round-robin algorithm, and they scale well with the number of vcpus.

Effect of pipelining transfer and transformation tasks
Although PPGS algorithm outperforms both GS and DAS algorithms, we expected its
performance to be better. To analyze the results, we took a closer look into four sample
transfers between Canada and Virginia data centers on an 8-vcpu setting.

In Fig. 7, we present a time series graphic for DAS algorithm job execution times.
Since we did not have any control over which job/task was assigned to which vcpu, the
figure presents each file transfer separately through their job ids. It is clear that initially 8
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jobs are started about the same time and as soon as one finishes another one is launched.

In total 50 containers (corresponding to jobs) were launched.

In Fig. 8, we present a time series graphic for AWS ELB’s RR algorithm job execution

times. Eight jobs were run, each of which transferred/transformed a batch of files. By

looking at the figure, we can see that the total execution times of the jobs were unbal-

anced. Although it performs better than DAS algorithm due to the decrease in container

create/destroy overhead, it cannot load balance the batch sizes, because each file can be

of a different size and the standard deviation of the file sizes could be quite large.

In Fig. 9, we present a time series graphic for GS algorithm job execution times. Eight

jobs were run, each one transferring/transforming a batch of files. By looking at the fig-

ure, we can see that the total execution times are quite load-balanced due to the intel-

ligent scheduling technique applied based on the file size distribution.
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In Fig. 10, we present a time series graphic for PPGS job execution times. Since
each job is a 2-thread application the y-axis shows the job id and the thread type.
For example, 1_xfer refers to job 1—transfer thread while 1_xform refers to job 1 -
transform thread. Between the transfer and transformation threads of a job, the same
colors represent the same file transfer and transformation respectively. The first inter-
esting observation was that the transfer and transformation threads overlapped very
well. The question is why is NOT total run time much better compared to GS? The
second observation was that the only times a transformation thread waited on the
transfer thread were the white breaks in the timelines and there were very few of
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them. So the lack of performance was due to the transformation threads waiting for
each other rather than waiting for transfer threads to finish.

With these observations in mind, we decided to do more extensive tests parametriz-
ing the number of parallel transformation threads so that we can create more than
one transformation thread per transfer thread.

Figure 11 presents the effect of changing the ratio of #transfer threads to #trans-
formation threads of PPGS algorithm on the total time. We set # job containers to
3 in Fig. 11a and use different instance types, the smallest being m5.xlarge having 4
vpus. The YARN scheduler allocates one container to the application master, there-
fore for true parallelism, we set the # containers to 3. Similarly, for Fig. 11b parallel-
ism is set to 7 for m5.2xlarge instance (8 vpus) and to 15 for m5.4xlarge instance (16)
in Fig. 11c. The first observation made is that as we increase the # of transformation
threads total time decreases but eventually becomes stable. The slope of the decrease
is higher for more powerful instance types (instances with more vcpus). For example,
in Fig. 11a as we increase the # of transformation threads for m5.4x large instance
the total time quickly flattens although it improves for PPGS compared to DAS and
GS. We looked into CPU utilization and saw that it was maxed out at 1/2 ratio. We
increase the ratio only once after this point to prove the flattening of the curve. As the
instance type changes, more vcpu time becomes available thus PPGS algorithm per-
forms better. Most of the time, the time flattening occurred due to maxed out CPU
utilization except for the case of reaching the network bandwidth limit. This hap-
pened only in two cases: first, when #containers = 7 and PPGS-1/3 and then second,
when # containers = 15 and PPGS-1/1.

Based on these findings, we decided to design our transfer/ transformation tool
to parametrize the #containers and #transformation threads to be set by the user

(a) #containers = 3 (b) #containers =7
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Fig. 11 Effect of ratio of #transfer threads / #transformation threads
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considering different instance types and their processing powers. In our future work,

we intend to automatically set optimal values for these parameters.

Comparison of data access performances

The goal of our work is similar to the works presented by Bueno et al. [2], Aji et al. [14]
and Zerbe et al. [13] which is to provide performance-efficient data access to large spatial
datasets. While Aji et al. present distributed data access via Hadoop Framework, their
system works with processed polygon data in WKT format. Therefore a fair compari-
son is not possible. However, Bueno et al. and Zerbe et al. provide performance-efficient
algorithms to access pixel data. So we implemented their data access algorithms and
compared it against the performance and scalability of data access by a simple MapRe-
duce Job to our transformed sequence file datasets that also contain raw pixel data.

Bueno et al. implement an MPI-based algorithm where each WSI file is divided into
equal size blocks and each process accesses the block directly from the file system. If
the block size is greater than the memory size of the process, then the process further
divides the block into memory-size pieces and retrieves them one at a time. We imple-
mented the same algorithm using MPL

Zerbe et al. follow a similar Client/Server strategy. Datasets are behind either a WSI
streaming server or a file server. They use JPPF framework to launch multiple jobs. Each
job retrieves a moderate-size block from the WSI into its memory and then divides it
into smaller tiles based on the analytics application’s needs. We implemented the same
strategy using YARN scheduler instead of JPPF.

We used an AWS EMR cluster that consists of multiple m5.xlarge instances. Then, we
created two file systems: a Network File System (NFS) using AWS EFS service and a par-
allel Lustre File System using AWS FSx Service. We mounted those file systems into the
instances of the EMR cluster and tested the data access implementations on the cluster.
For our work, we used HDEFS and S3 file systems while for Bueno et al. and Zerbe et al’s
work we used the NFS and Lustre File Systems. Their work uses a specific WSI image
access library such as Openslide, therefore it is only possible to test their approach on a
regular file system. The total read time and speedup results of a 50-WSI dataset are pre-
sented in Fig. 12.

We saw that the data access times of Bueno et al. and Zerbe et al. got worse on an NFS

file system when we increased the number of vcpus, therefore we did not present it here.
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Based on their Lustre file system performances, a small decrease in total read time is
observed when we increased the number of vcpus to 8 for both Zerbe et al. and Bueno
et al’s algorithms, and a further small decrease is observed when we increased the num-
ber of vcpus from 8 to 16 for Zerbe et al’s algorithm. On the other hand, accessing our
transformed symmetric dataset with a MapReduce Job scaled very well. The read per-
formance for 4 vcpus was worse compared to the related work, however as we increased
the number of vcpus we saw that total read time decreased dramatically while Bueno
et al. and Zerbe et al. results increased. Our method of access provides linear speed-up
for the S3 file system and a near-linear speed up for HDEFS file system.

We suspect the reason for the worse performances of Bueno et al. and Zerbe et al’s
algorithm is that multiple processes are trying to access the same file at the same time.
Even if the file system behind is a parallel file system such as Lustre, it is known that data
access does not scale well if you try to access the same file by multiple processes. So the
scalability results on their paper actually reflects the scalability of the specific analyt-
ics algorithm they implemented but not the data access times. On the other hand, with
our approach, the transformed symmetric data files are accessed in a distributed fashion

using data locality. Therefore, our approach scales well.

Accuracy and performance results of CBIR application

In this experiment, we tested the CBIR application on a 25-split transformed dataset.
A split stands for a block of symmetric data for which a separate mapper/reducer task
is created. A 100 x 100 pixel query image that contains a single gland and a 300 x 300
pixel query image that contains clusters of glandular structures were used (Figs. 13 and
14). The application takes two input parameters: Kbins, which stands for the number of
rectangular circles the ROIs are divided, and Olap, which stands for the overlap percent-
age between the sliding windows. Four different parameter combinations were used in
the tests for Kbins and Olap respectively: 5-0.25, 5-0.5, 10-0.25 and 10-0.5. Figure 13
presents the accuracy results of the top ten ROIs for the specific 100 x 100 pixel query
patch based on different parameter settings. In almost all of the cases, similar glandular
structures were found. These structures were more similar to the query patch for the top
5 results. It was interesting to see that Olap parameter was more effective on the results
than Kbins parameter. The results (Fig. 14) were better for the 300 x 300 query image
where a cluster of glandular structures was searched in the dataset. In all of the cases,
the exact query image was found as the top similar result. All the cases presented very

Query Patch (100x100) Kbins Olap Top ROIs
5 0.25
5 0.5
10 0.25
10 0.5

Fig. 13 Accuracy results of 100 x 100 query patch—single gland




Yildirim Journal of Big Data

(2021) 8:155

Query Patch Kbins | Olap | Top 5ROls
(300x300)

5 0.25

5 0.5

10 0.25

10 0.5

Fig. 14 Accuracy results of 300 x 300 query patch—clusters of glands

Seconds

Seconds

12000
10000
8000
6000
4000
2000

(a) 100x100 patch - Total execution Time

T T
Kbins=5,0lap=0.25 —+—
Kbins=5,0lap=0.5 —<— o
Kbins=10,0lap=0.25 —
Kbins=10,0lap=0.5 — & -

1 4 8
number of m5.8xlarge instances

(c) 300x300 patch - Total execution Time

T T T
Kbins=5,0lap=0.25 —+— |
Kbins=5,0lap=0.5 —<— |
Kbins=10,0lap=0.25 —*—
Kbins=10,0lap=0.5 — =

1 4 8
number of m5.4xlarge instances

Speed up

Speed up

Fig. 15 Performance results of CBIR Application on AWS S3 and EMR
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similar, clustered glandular structure images. Again Olap parameter was more effective

compared to Kbins.

Figure 15 presents the performance results of running the CBIR application on an
EMR cluster of m5.8xlarge and m5.4xlarge instances as we increase the number of nodes

parameter. The CBIR turned out to be a memory-intensive application. For the 100 x
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100 query patch the memory of an m5.8xlarge instance was sufficient to process a split
of the dataset without giving errors. For the 300 x 300 query patch, the memory of an
mb.4xlarge instance was sufficient. As we increased the number of instances for both
cases between the range [1-8], the total execution time decreased dramatically (Fig. 15a,
¢). Increasing Kbins from 5 to 10 also increased the execution time as well as increasing
Olap from 0.25 to 0.5. It took more time to search for the 100 x 100 query patch than
the 300 x 300 query patch. We also calculated the speed-up values by dividing the total
execution time with 1 instance to total execution time with n instances. Their corre-
sponding speed-up graphics (Fig. 15b, d) show a near-linear increase as we increase the
number of instances indicating that trend might go on for a larger number of instances.
These results prove that the CBIR application works well with symmetric binary datasets
in terms of accuracy and scalable execution time.

Accuracy and performance results of classification application

We tested the second application with a WSI dataset of 21 (10 tumor + 11 normal)
breast cancer images from the Camelyon Dataset. The transformed files consist of 61
symmetric splits. The initial batch size was set to 32 x #vcpus. The #vcpus were ranged
between 8-32 on c3 types of EMR instances. The #epochs were set to 20. Figure 16 shows
the comparison of training accuracy and loss to validation accuracy and loss, as well as
testing accuracy, sensitivity, and specificity.

Initially, we increased the total batch size in proportion to the number of vcpus but
observed that this approach only lengthened the time it took for the validation accuracy
and loss to converge with the training accuracy and loss. Another interesting observa-
tion was that if we keep the batch size fixed but increase the number of vcpus, the opti-
mal number of epochs remains the same (6 epochs).
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Fig. 16 Accuracy results of the classification application
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We also got 97-99% accuracy, sensitivity, and specificity on the testing dataset results
for different parallelism levels (Fig. 16). These results are much higher compared to the
original CancerNet results on Kaggle dataset (83% accuracy).

The performance results of the experiments are presented in Fig. 17. Per epoch time
decreased significantly as we increased the number of vpus (Fig. 17a). Increasing the
batch size as we increase the number of vcpus did not affect the per epoch time, how-
ever it caused the optimal number of epochs for the validation accuracy and loss to con-
verge into training accuracy and loss to increase. Therefore, we kept the batch size fixed
and did not show the results of differentiating batch sizes in this paper.

The conversion time of .seq files to png patches also decreased significantly as we
increased the number of vpcus (Fig. 17b).

All of the cases took 6 epochs for the validation accuracy to reach at least 95% accu-
racy. Therefore, we set this number as the optimal number of epochs and calculated the
optimal training time by summing the per epoch time of the first 6 epochs. Although
the time decrease slowed between 16 and 32, still there was a significant decrease as we
increased the vcpu number (Fig. 17¢).

The last measure presented is the speed up, which is calculated as dividing the optimal
training time of the base case (8vcpus) by the optimal training time of n vcpus (Fig. 17d).
The results showed a near-linear increase as we increased the number of vcpus.

Accuracy and performance results of Canny edge detection application

The third application was tested using the Natural Earth Dataset. We downloaded 4
different versions of the world map of which the total size is 2.8 GBs. After the dataset
was transformed it only occupied 937 MB if the tile size is 1024 x 1024 and 1014 MB
if the tile size is 4096 x 4096. The transformed datasets occupied less space than the
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Fig. 17 Performance results of the classification application
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original dataset due to the additional use of the Bzip compression algorithm during
the transformation process. The Canny Edge Detection algorithm was implemented
using Spark and Image] libraries. We selected a different distributed processing plat-
form (Hadoop MapReduce, Tensorflow, and Spark) for each case study application to
show that the transformed datasets can easily be used with different platforms.

The Canny Edge Detection algorithm calculated the edge magnitude, orientation,
and binary map of the source image tiles. We present the results of these output val-
ues in Fig. 18. We selected tiles that contained only ocean, land, ice, and a combina-
tion of them to see how accurate the edge detection algorithm was. For the ocean tile,
the edge magnitude results show a wavy behavior of similar strength, indicating the
absence of sharp edges. Therefore, only very few edge lines are presented in the binary
map. For the case of the land tile, clear magnitude differences are observed between
the areas of forests and deserts, hence the edges between them are also clear in the
binary map. There is a strong and clear separation of ice from the ocean and also dif-
ferent shades of ice in the ice tile edge magnitude results and we see this separation
in the binary map. And finally, when we have a combination of oceans, mountains/
deserts, and forests, the separation is more clear between the ocean and the forests
than the mountains/deserts and forests. In the final column, we draw the binary map
contours onto the source image tile in black.

To test the scalability of the application we used an EMR Spark Cluster of m3.xlarge
instances ranging the vcpu number between 4 and 32. Figure 19 presents total execu-
tion time and speed-up results for two different tile sizes: 1024 x 1024 and 4096 x
4096. For both tile sizes the total execution time decreases as we increase the number
of vcpus. However, 4096 x 4096 tile size performs better than 1024 x 1024 tile size.
The speed-up is calculated again by dividing the execution time of 4vcpus to the other

Contoured
Tile

Source Tile Edge Edge Edge
Magnitude Orientation

Image
Content

Ocean

Land

Ice

Combined

Fig. 18 Accuracy results of Canny edge detection algorithm
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Fig. 19 Performance results of Canny edge detection application

vepu sizes. A near-linear speed-up is observed for the larger tile size case while a log-
arithmic speed up is observed for the smaller tile size.

Conclusion and future work

In this study, we presented two novel, distributed transfer/ transformation algorithms
that used intelligent file distribution and pipelining as optimization techniques. The
algorithms scaled well in an AWS cloud setting and outperformed the algorithm from
our previous work, AWS ELB’s round-robin algorithm and commonly used transfer
algorithms in the cloud such as aws s3 cp and s3-dist-cp. The transformed datasets
were tested with a distributed CBIR application for prostate cancer image datasets,
which showed near linear speed up in terms of total execution time; a distributed deep
learning classification application of breast cancer image datasets, which also showed
near linear speed ups for optimal training time, and finally a distributed Canny Edge
Detection application on satellite images which showed near-linear speed-ups for
larger tile sizes. As future work, we intend to develop serialization methods for more
flexible reader libraries for our transformation formats to target a large range of scal-
able analytics applications. We also plan to improve our transfer algorithms by setting

the optimal parallelism levels automatically.

Abbreviations
WSI: Whole slide image; AWS: Amazon web services; CBIR: Content-based image retrieval; DAS: Dynamic asynchronous
scheduler; GS: Greedy scheduler; PPGS: Pipelined greedy scheduler; ROI: Region of interest.

Acknowledgements
Not applicable.

Authors’ contributions
The corresponding author is the sole owner and producer of all the research materials and methods. All authors read
and approved the final manuscript.

Authors’ information

Esma Yildirim graduated from Lousiana State University with a PhD in Computer Science focused on Data-intensive
Distributed Computing in 2010. She worked as a Scientific Programmer in University at Buffalo until 2012. She was a
Research Associate at Rutgers Cancer Institute of New Jersey and Rutgers Discovery Informatics Institute between the
years 2015-2017. She is currently an Assistant Professor of Computer Science at the Department of Mathematics and
Computer Science in Queensborough Community College of CUNY. Her research interests include biomedical informat-
ics, high-performance computing, high-speed networks, cloud computing and distributed systems.

Funding
This work was supported by PSC CUNY Grant # 62177-00 50.



Yildirim Journal of Big Data (2021) 8:155 Page 25 of 26

Availability of data and materials

The dataset used in the prostate carcinoma case study is available at the cancer genome atlas data portal (https://portal.
gdc.cancergov). The other dataset for breast cancer case study and the code for the algorithms are available from the
corresponding author on reasonable request. A newer version of the breast cancer dataset (without tumor mask images)
is available at Camelyon challenge website (https://camelyon17.grand-challenge.org). The Natural Earth Dataset can be
found on the website https://www.naturalearthdata.com.

Declarations

Competing interests
The author declares that she has no competing interests.

Received: 13 August 2021 Accepted: 23 November 2021
Published online: 07 December 2021

References

1. Yildirim E, Foran DJ. Parallel versus distributed data access for gigapixel-resolution histology images: challenges and
opportunities. IEEE J Biomed Health Inform. 2017,21(4):1049-57.

2. Bueno G, Gonzalez R, Déniz O, Garcia-Rojo M, Gonzalez-Garcia J, Fernandez-Carrobles M, et al. A parallel solution for
high resolution histological image analysis. Comput Methods Programs Biomed. 2012;108(1):388-401.

3. FarahaniN, Parwani AV, Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging
perspectives. Pathol Lab Med Int. 2015;7:23-33.

4. Openslide; 2021. Available from: https://openslide.org.

5. Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide: a vendor-neutral software foundation for digital
pathology. J Pathol Inf. 2013;4.

6. Moore J, Linkert M, Blackburn C, Carroll M, Ferguson RK, Flynn H, et al. OMERO and Bio-Formats 5: flexible access to

large bioimaging datasets at scale. In: Medical Imaging 2015: Image Processing. vol. 9413. International Society for

Optics and Photonics; 2015. p. 941307.

Borthakur D, et al. HDFS architecture guide. Hadoop Apache Project. 2008;53(1-13):2.

Amazon Simple Storage System; 2021. Available from: https://aws.amazon.com/s3/.

Braam P. The Lustre storage architecture. arXiv preprint arXiv:190301955. 2019.

Schmuck FB, Haskin RL. GPFS: a shared-disk file system for large computing clusters. In: FAST. vol. 2; 2002.

OpenCV library; 2021. Available from: https://opencv.org.

Teodoro G, Kurc T, Kong J, Cooper L, Saltz J. Comparative performance analysis of Intel (R) Xeon Phi (TM), GPU, and

CPU: a case study from microscopy image analysis. In: Parallel and Distributed Processing Symposium, 2014 IEEE

28th International. IEEE; 2014. p. 1063-1072.

13. Zerbe N, Hufnagl P, Schltins K. Distributed computing in image analysis using open source frameworks and applica-
tion to image sharpness assessment of histological whole slide images. In: Diagnostic pathology. vol. 6. BioMed
Central; 2011. p. S16.

14. Aji A,Wang F, Vo H, Lee R, Liu Q, Zhang X, et al. Hadoop-GlS: A high performance spatial data warehousing system
over MapReduce. In: Proceedings of the VLDB Endowment International Conference on Very Large Data Bases.
vol. 6. NIH Public Access; 2013.

15. Hadoop; 2021. Available from: https://hadoop.apache.org.

16. Chard R, Madduri R, Karonis NT, Chard K, Duffin KL, Ordoriez CE, et al. Scalable pCT image reconstruction delivered
as a cloud service. IEEE Trans Cloud Comput. 2015;6(1):182-95.

17. Parsonson L, Grimm S, Bajwa A, Bourn L, Bai L. A cloud computing medical image analysis and collaboration plat-
form. In: International Conference on Cloud Computing and Services Science. Springer; 2011. p. 207-224.

18. Kagadis GC, Kloukinas C, Moore K, Philbin J, Papadimitroulas P, Alexakos C, et al. Cloud computing in medical imag-
ing. Med Phys. 2013;40(7).

19. Madduri RK, Sulakhe D, Lacinski L, Liu B, Rodriguez A, Chard K, et al. Experiences building Globus Genomics: a next-
generation sequencing analysis service using Galaxy, Globus, and Amazon Web Services. Concurr Comput: Pract
Exp. 2014;26(13):2266-79.

20. Milletari F, Frei J, Aboulatta M, Vivar G, Ahmadi SA. Cloud deployment of high-resolution medical image analysis with
TOMAAT. IEEE J Biomed Health Inform. 2018;23(3):969-77.

21. Godinho TM, Viana-Ferreira C, Silva LAB, Costa C. A routing mechanism for cloud outsourcing of medical imaging
repositories. IEEE J Biomed Health Inform. 2014;20(1):367-75.

22. Harvey BS, Ji SY. Cloud-scale genomic signals processing for robust large-scale cancer genomic microarray data
analysis. IEEE J Biomed Health Inform. 2015;21(1):238-45.

23. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J, et al. Performance analysis of high performance
computing applications on the amazon web services cloud. In: 2010 IEEE second international conference on cloud
computing technology and science. IEEE; 2010. p. 159-168.

24. Bremer E, Aimeida J, Saltz J. Representing whole slide cancer image features with Hilbert curves. arXiv preprint arXiv:
200506469. 2020.

25. Qi X, Wang D, Rodero |, Diaz-Montes J, Gensure RH, Xing F, et al. Content-based histopathology image retrieval using
CometCloud. BMC Bioinformatics. 2014;15(1):287.

26. Spark; 2021. Available from: https://spark.apache.org.

27. Image Processing and Analysis in Java; 2021. Available from: https://imagej.nih.gov/ij/indexhtml.

N = O


https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://camelyon17.grand-challenge.org
https://www.naturalearthdata.com
https://openslide.org
https://aws.amazon.com/s3/
http://arxiv.org/abs/190301955
https://opencv.org
https://hadoop.apache.org
http://arxiv.org/abs/200506469
http://arxiv.org/abs/200506469
https://spark.apache.org
https://imagej.nih.gov/ij/index.html

Yildirim Journal of Big Data (2021) 8:155 Page 26 of 26

28. AWS Elastic Load Balancing; 2021. Available from: https://aws.amazon.com/ru/elasticloadbalancing/application-
load-balancer/.

29. Breast Cancer Classification with Keras and Deep Learning; 2021. Available from: https.//www.pyimagesearch.com/
2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/.

30. Breast Histopathology Images; 2021. Available from: https://www.kaggle.com/paultimothymooney/breast-histo
pathology-images.

31. Natural Earth Dataset; 2021. Available from: https://www.naturalearthdata.com.

32. Koschan A, Abidi M. Detection and classification of edges in color images. IEEE Signal Process Mag.
2005;22(1):64-73.

33. Burger W, Burge MJ. Digital image processing: an algorithmic introduction using Java. Berlin: Springer; 2016.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://aws.amazon.com/ru/elasticloadbalancing/application-load-balancer/
https://aws.amazon.com/ru/elasticloadbalancing/application-load-balancer/
https://www.pyimagesearch.com/2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/
https://www.pyimagesearch.com/2019/02/18/breast-cancer-classification-with-keras-and-deep-learning/
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.naturalearthdata.com

	Performance-efficient distributed transfer and transformation of big spatial histopathology datasets in the cloud
	Abstract 
	Introduction
	Methodology: system and algorithm design
	Utilization of native YARN applications on Hadoop ecosystem
	Distributed transfertransformation algorithms
	Dynamic asynchronous scheduler
	Greedy scheduler
	Pipelined greedy scheduler


	Methodology: case studies
	Case 1: distributed content-based image retrieval
	Case 2: distributed classification via deep neural networks
	Case 3: distributed Canny edge detection

	Experimental results
	Comparison of total transfer time
	Comparison of total transfertransformation time
	Effect of pipelining transfer and transformation tasks
	Comparison of data access performances
	Accuracy and performance results of CBIR application
	Accuracy and performance results of classification application
	Accuracy and performance results of Canny edge detection application

	Conclusion and future work
	Acknowledgements
	References




