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Introduction
Recently, with the improved availability of technology and the emergence of new e-ser-
vice payment solutions, such as e-commerce and mobile payments, credit card transac-
tions have become omnipresent. Such extensive adoption of cashless transactions lead 
fraudsters to commit frequent fraud attacks and constantly change their strategies to 
avoid being detected [1, 2].

In payment industry, credit card fraud detection aims to decide whether a transaction 
is fraudulent or not based on historical data [3]. The decision is extremely challenging 
because of the following raisons: 

1.	 Fraudsters continuously invent novel fraud patterns, especially those that they use to 
adapt to fraud detection techniques.
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2.	 Machine learning models that are never updated are inadequate as they do not take 
account of changes and trends in customer spending behaviors, for example during 
holiday periods and geographical regions.

In such situations, financial institutions should establish continuously an increasingly 
sophisticated fraud detection system (FDS) to mitigate the prevailing menace of fraud 
and detect it immediately, with an objective to prevent fraud before it occurs, pro-
tect consumers’ interests and reduce the heavy annual financial losses caused by fraud 
around the world [4–8].

In this paper, we propose a novel credit card fraud detection system based on Long 
Short Term Memory (LSTM) networks and attention mechanism. The attention mecha-
nism allows a sequence based neural network to automatically focus on the data items 
that are the most important to the classification task by a data-driven weighted aver-
age of local information contained in each term of the sequence which results in an 
improved detection performance. The main contributions of our proposed fraud detec-
tion method are: 

1.	 Optimizing the process of learning classifiers by using feature selection and dimen-
sion reduction algorithms such as PCA, t-SNE and UMAP.

2.	 Overcoming the issue of the imbalanced dataset and incrementing the learning rate 
by using the Synthetic Minority Oversampling Technique (SMOTE).

3.	 Constructing the context of consumer’s spending behavior by using the sequence 
learner LSTM recurrent neural networks, as a dynamic pattern recognition classifier 
to model long term dependencies within transaction sequences.

4.	 Applying the attention mechanism upon LSTM recurrent networks, that efficiently 
allows the classifier to learn where to pay selective attention in the input sequence for 
the global fraud decision, which deliver good performances.

5.	 Performing experiments on two different datasets from which we conclude that our 
method is competitive and alternative to existing LSTM works.

This work opens perspectives for dealing with sequential data in fraud detection area. In 
order to ensure reproducibility, the source code and results of the proposed model can 
be found at https://​github.​com/​bibti​ssam/​LSTM-​Atten​tion-​Fraud​Detec​tion.

The rest of the paper is organized as follows; “Related works” section presents the 
related works describing prior works in credit card fraud detection domain, “Back-
ground” section presents the structure of our proposed model, “Methods and materi-
als” section describes the datasets used in this study and discusses the results obtained. 
Finally, the paper is concluded in “Conclusion” section and suggested ideas for future 
research.

Related works
A wide range of machine learning approaches based on supervised learning, unsuper-
vised learning, anomaly detection and ensemble learning have been used in payment 
card fraud detection [9]. In particular, supervised classification techniques demon-
strated to be extremely effective for facing this challenge, where pre-classified datasets 

https://github.com/bibtissam/LSTM-Attention-FraudDetection
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containing labeled historical transactions are used for training a classifier that builds a 
detection model capable to predict whether a new transaction is fraudulent or not. Some 
of these algorithms are support vector machines [10, 11], hidden Markov models [11, 
12], logistic regression algorithms [10, 13], decision trees [14, 15], random forests [10, 
16–19], and k-nearest neighbors [20, 21].

Unsupervised classification methods are used to detect unusual behavior of a sys-
tem and to identify transactions that do not conform to the model as potential fraudu-
lent cases [22–24]. It can help to detect some new patterns of fraud that have not been 
detected before.

However, credit card fraud detection presents several challenges that attract the atten-
tion of artificial intelligence communities for several reasons. One of them is the fact 
that credit card fraud data sets are highly imbalanced since the number of genuine trans-
actions is much higher than the fraudulent ones. Thus, many of traditional classifiers fail 
to detect minority class objects for these skewed data sets [25, 26]. On the other hand, 
these traditional classifiers aim to identify transactions with a high probability of being 
fraud, based only on individual transaction information such as amount, time and trans-
action location [27–29] but ignore detailed sequential information that defines consum-
ers’ profile. Such models are inadequate for credit card fraud detection, since they do not 
consider the consumer spending behavior, which is useful to discover relevant fraud pat-
terns that evolves over time due to seasonality and new attack strategies [30, 31].

Recently, deep learning methods based on recurrent neural networks (RNN) and spe-
cially its variant Long Short Term Memory Networks (LSTM), have been used in fraud 
detection field given their reputation as one of the most accurate learning algorithms in 
sequence analysis work [32–36]. RNN is a dynamic machine learning approach capable 
of analyzing the dynamic temporal behaviors of various bank accounts by modeling the 
sequential dependency between consecutive transactions of credit card holders.

The attention mechanism has also been recently proposed [37] as a way to find con-
text-dependent representations. This method takes into account dependencies between 
items in a sequence despite of their distance. It has been used to define context in 
machine translation [37] and image captioning [38] with great success. The idea behind 
the attention mechanism is to take a weighted average of a set of vectors to construct a 
context vector that contains the most relevant information, which is then used as input 
in the next layer.

In this paper, we use LSTM based sequence models and attention models to discover 
temporal correlations between events that are possibly far away from each other in the 
input sequence which improve the effectiveness of the classification task and allow for 
an increase in the detection of fraudulent transactions when compared to traditional 
models.

Background
In this section, we will introduce the related literature that formed the basis of our work.

Dimensionality reduction algorithms

Feature selection and feature extraction are fundamental preprocessing steps in fraud 
detection systems [16, 39], to select the optimal subset of relevant features by removing 
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redundant, noisy and irrelevant features from the original dataset, and decrease the 
computational cost without a negative effect on the classification accuracy.

Feature selection

The basis of credit card fraud detection lies in the analysis of cardholder’s spending 
behavior. This spending profile is analyzed using optimal selection of variables that 
capture the unique behavior of a credit card and detect very dissimilar transactions 
within the purchases of a customer. Also, since the profile of both a legitimate and 
fraudulent transaction tends to be constantly changing, optimal selection of variables 
that greatly differentiates both profiles is needed to achieve efficient classification of 
credit card transaction [40–42]. Therefore, Swarm intelligence based feature selection 
approach [43] will be used to explore our datasets and study the influence of each fea-
ture in the prediction of the target class.

Feature extraction

In this research, we employ three algorithms to reduce the dataset dimensionality, 
namely Principal Component Analysis (PCA) [44], t-distributed stochastic neighbor 
embedding (t-SNE) [45, 46], and uniform manifold approximation and projection 
(UMAP) [47, 49]. These aforementioned algorithms have been seen as one of the best 
dimension reduction algorithms used for feature extraction in many applications such 
as bioinformatics, and visualization [47].

•	 Principal Component Analysis (PCA)

	 PCA is a popular method used in dimension reduction, aiming to transform the 
original set of n correlated variables to a new subset of m uncorrelated variables 
called principal components (PCs) that successively maximize variance. These 
new variables are linear combinations of the original variables and are derived in 
decreasing order of importance, such that the first principal component accounts 
for as much as possible of the variation in the original data.

	 Given a set of n correlated variables f1, f2,…, fn , the objective of PCA consists in 
replacing these n measured variables by m derived variables z1,z2,…,zm , which are 
uncorrelated and whose variances decrease from first to last, without minimizing 
any information loss. This transformation is done with respect to the following 
properties: 

a.	 z1 has maximum possible variance among all possible linear functions of f1, f2
,…, fn . The correspondent equation is given by: 

b.	 z2 has maximum possible variance among all possible linear functions of f1, f2
,…, fn , subject to z2 being uncorrelated with z1.

(1)z1 = α1f1 + α2f2 + · · · + αnfn.
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c.	 In general, zk has maximum possible variance among all possible linear func-
tions of f1, f2,…, fn , subject to zk being uncorrelated with z1,z2,…,zk−1 , for 
2 � k � n.

	 Although PCA is able to cover the maximum variance among features, but as a 
linear algorithm, it may performs poorly on the features with nonlinear relation-
ship. Therefore, in order to present high dimensional data on low dimensional 
and nonlinear basis, some nonlinear dimensional reduction algorithms such as 
t-SNE and UMAP are employed.

•	  t-distributed Stochastic Neighbor Embedding (t-SNE)
	 The t-distributed stochastic neighbor embedding (t-SNE) is a machine learning algo-

rithm that is well suited for reducing high nonlinear dimensional data into the two 
or three dimensional space. It tries to place a point from high dimensional space in 
a low dimensional one so as to preserve neighborhood identity; closer data points 
mean high similarity.

	 There are two main stages in t-SNE. First, it finds a probability distribution over 
pairs of data such that a pair of similar data points is given a high probability, while 
a pair of farther away points is given a low probability. Second, it defines a prob-
ability distribution in the lower dimension space that is similar to that in the original 
high dimensional space, and aims to minimize the Kullback–Leibler (KL) divergence 
between the two distributions [45].

	 Given a high dimensional input dataset x1,x2,…,xn in Rm , our goal is to find an opti-
mal low dimensional representation y1,y2,…,yn in Rk , such that k � m. The similarity 
of data point xj to data point xi is represented by the conditional probability pji . For 
the low dimensional counterparts yi and yj for the high dimensional data points xi 
and xj , it is computed a similar conditional probability denoted by qji.

	 Once pji and qji are calculated, the goal of the t-SNE algorithm is to minimize the 
mismatch between the high and low dimensional representations. The cost function 
(Eq. 2) that minimizes the Kullback–Leibler (KL) divergences over all points is given 
as:

where P and Q represent respectively the probability distributions for pji and qji.
	 Although the t-SNE algorithm is a good technique to visualize data in a low dimen-

sional space, it computes pairwise conditional probabilities for each pair of samples 
and involves hyperparameters that are not always simple to tune, which comes with a 
high computational cost.

•	 Uniform Manifold Approximation and Projection (UMAP)
	  Uniform Manifold Approximation and Projection (UMAP) is an emerging dimen-

sionality reduction technique that has been recently published by McInnes and 
Healy [49]. It is based on the theory of Riemannian geometry and algebraic topol-
ogy that uses local manifold approximations and patches together their local fuzzy 
simplicial set representations to construct a topological representation of the high 

(2)KL(P|Q) =
∑

i

∑

j

pjilog
pji

qji
,
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dimensional data, then a similar process can be used to search for a low dimen-
sional projection of the data that has the closest possible equivalent fuzzy topo-
logical structure of the original space.

	 Unlike t-SNE which utilizes probabilistic model, UMAP is a graph-based algo-
rithm. The first phase of UMAP is to construct a weighted k-neighbour graph 
representation of each of the original high-dimensional data point such that the 
edge-wise cross-entropy between the weighted graph and the original data is min-
imized. Then, the k-dimensional eigenvectors of the UMAP graph are used to rep-
resent each of the original data point.

	 UMAP considers the input data X = {x1, x2, . . . , xn} in Rm , with a metric (or dis-
similarity measure) d: X × X → R+ and look for an optimal low dimensional rep-
resentation 

{

y1, y2, . . . , yn
}

 in Rk , such that k < m . Given an input hyperparameter 
k, for each xi we compute the set {xi1, xi2, . . . , xik} of the k nearest neighbors of xi 
under the metric d. For each xi , we will define ρi and σi. Let:

where σi is defined such that:

One chooses ρi to ensure at least one data point is connected to xi with an edge 
weight of 1 which is equivalent to the resulting fuzzy simplicial set being locally con-
nected at xi.

	 The σi is set as a length scale parameter, defining a weighted directed graph 
Ḡ = (V ,E,ω) , where V is the set of vertices (in this case, the data X), E is the set of 
directed edges E = 

{

(xi, xij)|1 � j � k , 1 � i � n
}

 , and ω is the weight function for 
edges defined by setting:

	 UMAP tries to define an undirected weighted graph G from directed graph Ḡ via 
symmetrization. Let A be the adjacency matrix of the graph Ḡ . A symmetric matrix 
can be obtained by:

where T is the transpose and ⊗ denotes the Hadamard (or pointwise) product. 
Then, the undirected weighted Laplacian G (the UMAP graph) is defined by its 
adjacency matrix B. The goal is to find the optimal low-dimensional coordinates 
{

yi
}n

i=1
, yi ∈ R

k , that minimizes the edgewise cross entropy with the original data at 
each point. The evolution of the UMAP graph Laplacian G can be regarded as a dis-
crete approximation of the Laplace–Beltrami operator on a manifold defined by the 
data [48]. Implementation and further detail of UMAP can be found in [49].

(3)ρi = min
{

d
(

xi, xij
)

|1 ≤ j ≤ k , d
(

xi, xij
)

> 0
}

,

(4)
k

∑

j=1

exp

(

−max(0, d
(

xi, xij
)

− ρi)

σi

)

= log2(k).

(5)ω
(

xi, xij
)

= exp

(

−max(0, d
(

xi, xij
)

− ρi)

σi

)

.

(6)B = A+ AT − A⊗ AT
,
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	 Compared to t-SNE, UMAP is better able to preserve as much of the local and 
more of the global data structure, with superior runtime performance [49].

Long Short Term Memory networks

Long Short-Term Memory (LSTM) is a special type of artificial recurrent neural network 
(RNN) architecture used to model time series information in the field of deep learning 
(Fig. 1). In contrast to standard feedforward neural networks, LSTM has feedback con-
nections between hidden units that are associated with discrete time steps, which allow 
long term sequence dependencies to be learned and a transaction label to be predicted 
given the sequence of past transactions. LSTMs were developed to overcome the prob-
lem of vanishing and exploding gradient that can be observed during the training of tra-
ditional RNNs [50].

LSTM unit consists of a memory cell that stores information which is updated by three 
special gates: the input gate, the forget gate and the output gate. The cell remembers val-
ues over arbitrary time intervals and the three gates regulate the flow of information into 
and out of the cell. Figure 2 depicts the LSTM unit structure.

At time t, xt is the input data of the LSTM cell, ht−1 is the output of the LSTM cell at 
the previous moment, ct is the value of the memory cell, ht is the output of the LSTM 
cell.

The LSTM unit calculation method can be divided into the steps below: 

1.	 The first step according to Eq. (3) is to calculate the candidate’s memory cell value c̃t , 
Wc is the weight matrix, bc is the bias. 

(7)c̃ = tanh(Wc · [ht−1, xt ] + bc).

Fig. 1  An unrolled recurrent neural network

Fig. 2  LSTM unit structure
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2.	 Calculate the value of the input gate it , the input gate controls the update of the cur-
rent input data to the state value of the memory cell, σ is sigmoid function, Wi is the 
weight matrix, bi is the bias. The equation for the input gate is given by: 

3.	 Calculate the value of the forget gate ft , the forget gate controls the update of the 
historical data to the state value of the memory cell, Wf  is the weight matrix, bf  is the 
bias. The equation for the forget gate is given by: 

4.	 Calculate the value of the current moment memory cell ct , and ct−1 is the state value 
of the last LSTM unit. We use the following equation: 

 Here dot product is represented by “ ∗”.
	 The memory cell update depends on the state value of the last cell and the candidate 

cell and is controlled by the input gate and the forget gate.
5.	 Calculate the value of the output gate ot , the output gate controls the output of the 

memory cell’s state value, Wo is the weight matrix, bo is the bias. The equation for the 
output gate is given by: 

6.	 Finally, calculate the output of the LSTM unit according to the equation: 

 Benefit from three control gates and memory cell, LSTM can easily retain, read, 
reset and update information over long periods of time.

Attention mechanism

In modern deep learning research such as computer vision and language translation [51, 
52], attention mechanisms have become an effective way to achieve excellent results by 
selecting important information. This mechanism aims to focus only on the most relevant 
piece of information, rather than all of it, which is sufficient for further neural processing 
[53].

To illustrate the attention mechanism, let consider an RNN Encoder–Decoder architec-
ture: an encoder reads the input sequence of vectors x = (x1,x2,…,xn ) into a vector c. This 
approach is often explained in an RNN structure in the following form:

And:

where St is the hidden state, c is the output vector of the RNN which is generated by 
the hidden states. In attention model, the context vector ct is strongly related to the 

(8)it = σ(Wi · [ht−1, xt ] + bi).

(9)ft = σ(Wf · [ht−1, xt ] + bf ).

(10)ct = ft ∗ cf + it ∗ c̃t .

(11)ot = σ(Wo · [ht−1, xt ] + bo).

(12)ht = ot ∗ tanh(ct).

(13)St = f (xt , St−1, ct),

(14)c = q(S1, . . . , Sn),
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sequence of annotations ( h1,…,hn ) to which an encoder maps the input sequence. The 
information about the whole input sequence with a strong focus on the parts surround-
ing the t-th word of the input sequence is contained in the annotation ht . Details can be 
found in the following explanations. Figure 3 shows the attention mechanism in neural 
network. A weighted sum of those annotations ht forms the context vector ct:

where the weight αtj of each annotation ht is given by:

In which:

The function a(St−1 , hj ) is an alignment model that describes the matching ability 
between the inputs around position j and the outputs at position t. The RNN hidden 
state St−1 and the j-th annotation hj of the input sentence are used to calculate the score. 
The attention mechanism allows a neural network to focus on a subset of its inputs: 
it always chooses the most relevant inputs. The attention mechanism in Fig.  3 aims 
to select the most important inputs from the input sequences x1,x2,…,xn by using the 
weight αtj .

Methods and materials
As mentioned above, our proposed model uses first data preprocessing techniques 
through applying feature selection and dimensionality reduction over credit card fraud 
datasets, to reduce the number of input features before fed into the model. Then the 
sequence learner LSTM is employed as the base dynamic pattern recognition classifier 
to capture the sequential dependency between consecutive credit card transactions. 
Next, attention mechanism is introduced to give different focus to the information out-
putted from the hidden layers of LSTM, which allow our model to discover relevant 
fraud patterns and detect better very dissimilar transactions within the purchases of a 
consumer. The architecture of the proposed system is shown in Fig. 4.

(15)ct =

n
∑

j=1

αtjhj ,

(16)αtj =
exp(etj)

∑n
k=1 exp(etk)

.

(17)etj = a(St−1, hj).

Fig. 3  Attention mechanism
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The steps of our proposed model for credit card fraud detection are detailed below. 
We will describe the two datasets we use in our experiments, data preprocessing results 
and we will provide the detailed implementation and the evaluation metrics used in this 
work.

Datasets

Datasets provide a way to train and validate the efficacy of the proposed methods, hence 
playing an important role in motivating research. In this subsection, we describe two 
different datasets used in the experimentations of our proposed approach. A brief sum-
mary of the two datasets is presented in Table 1.

Dataset‑1

The first dataset downloaded from www.​kaggle.​com, consists of credit card transactions 
made by European cardholders occurring within two days in September 2013, where it 
has 492 frauds out of 284,807 transactions [54]. It consists of 31 features including the 
time when a transaction took place, the amount of transactions, and 28 other attrib-
utes labeled from V1 to V28 and the target label ‘Class’ which decides if a transaction is 
fraudulent or not by a binary value ‘1’ and ‘0’ respectively.

Fig. 4  The architecture of the proposed credit card fraud detection model

Table 1  The credit card datasets description

Name Instances Features Normal Fraudulent

Dataset-1 284.807 31 284.315 492

Dataset-2 594.643 10 587.443 7200

http://www.kaggle.com
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Dataset‑2

The second dataset consists of 594,643 transactions made during 180 simulated days, 
among which 7200 ( ≈ 1.2%) are considered fraudulents. This is a synthetic dataset 
created for financial fraud detection by using BankSim software, which is a simulation 
tool specifically designed to emulate fraud data [55]. BankSim uses a multi-agent-
based simulation methodology based on a sample of aggregated real transaction data 
that a bank in Spain offers. The original bank data is made up of thousands of transac-
tional data records from November 2012 to April 2013. BankSim uses multiple agents 
of three different categories to mimic this original bank data: traders, customers, and 
fraudsters. These agents communicate with each other over a sequence of simulated 
days, resulting in a purchase transaction log closely resembling the original bank data. 
All attributes are presented in Table 2.

Dataset processing

We can see that our two datasets are highly imbalanced since the number of negative 
(majority) instances outnumbers the amount of positive (minority) class instances. 
In fact, for example in Dataset-1, frauds are typically less than 0.171% of the over-
all transactions, as shown in Fig. 5. Thus, to enhance the classification performance 

Table 2  Attributes of Dataset-2

Name Description

Step The day the transaction took place from 1 to 180

Customer ID A number identifying the customer account involved in the transaction

Age category A categorical value putting the customer into one of 8 different age groups

Gender A categorical variable indicating the gender of the customer

Zip Code of account The zip code associated with the customer

Merchant ID A number identifying the merchant involved in the transaction

Zip Code of Merchant The zip code of the merchant

Category purchase A categorical variable indicating what type of good or service was purchased

Amount of purchase The total amount that the transaction cost

Fraud status A binary variable indicating if the transaction was fraudulent of not

Fig. 5  Plot of credit card dataset before SMOTE transformation
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of the minority fraud instances which is the class of great interest, we use the 
advanced oversampling technique called Synthetic Minority Oversampling Technique 
(SMOTE) [56, 57] to generate synthetic training instances from the minority class. 
Figure 6 presents the schematic diagram of the transformed Dataset-1 using SMOTE 
method.

Dimensionality reduction

Feature selection

As mentioned above, we use feature selection as a first step in the exploration of our 
datasets. The objective is to study the influence of each feature in the prediction of the 
target class and select the optimal subset of relevant features by removing redundant 
and noisy attributes. From the presented visual Swarm intelligence algorithm plots made 
for Dataset-1 in Fig. 7, we can see that the comparative analysis of credit card dataset 
demonstrates that features labeled Time, V5, V6, V7, V8, V9, V13, V15, V16, V18, V19, 
V20,V21, V22, V23, V24, V25, V26, V27, V28, amount do not contribute to the fraud 
prediction. Thus, we decide to consider them as irrelevant attributes and remove them 
from the original dataset. Table 3 presents the remain features.

Fig. 6  Plot of credit card dataset transformed by SMOTE

Fig. 7  Swarm intelligence algorithm plots

Table 3  The remain features after Swarm algorithm

V1 V2 V3 V4 V10

V11 V12 V14 V17
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Feature extraction

We applied the three dimensionality reduction algorithms PCA, t-SNE and UMAP on 
our credit card datasets to generate the robust and discriminative features for fraudu-
lent instances, which will aid in detecting effective fraudulent transactions. Figure 8 
shows the performance of each algorithm applied on Dataset-1. For each case, the 
dataset were reduced into the three dimensional space using default parameters, and 
the plots were colored according to the label of each data point in Dataset-1, namely 
the purple color is used to represent normal transactions and the orange color repre-
sents fraudulent transactions.

It can be seen that PCA does not present good discrimination, whereas UMAP and 
t-SNE show very good discrimination. However, Comparing t-SNE to UMAP, the 
latter is more able to preserve as much the local and the global data structure, with 
superior runtime performance. Based on this, we choose UMAP as a reduction algo-
rithm to extract the embedding features that will be used during training and testing 
phases.

Implementation and evaluation metrics

We employ Long Short Term Memory networks to model the sequential dependency 
between consecutive transactions of credit card holders. The hidden state architec-
ture of LSTM allows establishing connections between neural networks’ nodes across 
time steps.

Therefore, the model can retain information from past inputs, allowing it to identify 
temporal associations between events that may be dispersed in the input sequence. 
LSTM is an adequate model of succession patterns in sequential data points where 
the occurrence of one event may depend further back in time on the presence of sev-
eral other events. However, there are still much more aspects to improve: 

1.	 LSTM networks have to represent the entire input sequence x1,x2,…,xn as a single 
vector c, which can cause information loss since all information needs to be com-
pressed into c. Furthermore, it need to decode the passed information from this sin-
gle vector only, witch is a highly complex task. Thus, the performance of the LSTM 
networks degrade rapidly as the length of the input sequence increases.

Fig. 8  The performance of different dimensional reduction algorithms on credit card fraud dataset. Feature 
size is reduced to dimension 3 by a PCA, b t-SNE and c UMAP
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2.	 LSTM networks process the input sequence elements with the same manner, there is 
no way to give more importance to some of the input elements compared to others 
while processing the sequence.

To address the problem above, we propose to add the attention mechanism upon LSTM 
layers which enables the classifier to automatically extract global dependencies from the 
sequence of transactions and focus on the data items that are most relevant to the clas-
sification task.

Our deep learning model is composed of 6 layers namely: Two layered LSTM networks 
followed by dropout on each layer, an attention layer added before the LSTM layer as 
depicted in Fig. 9. The LSTM layer takes the output of the attention layer as the input with 
the activation function assumed to be tanh. At the end of the two LSTM layers, we add a 
dense layer to obtain two valued outputs which are the prediction classes (normal trans-
action and fraud transaction). Finally, BatchNormalization layer is applied after the dense 
layer. The output of the BatchNormalization layer is passed into a softmax classification 

Fig. 9  Long Short Term Memory network architecture with attention layer

Fig. 10  Long Short Term Memory network architecture without attention layer
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layer. For comparison purpose, we also give the LSTM network without the attention layer 
in Fig. 10.

This model is based on Keras deep learning framework which is an opensource neural 
network library written in Python. The detailed workflow of the proposed model can be 
summarized as in Algorithm 1 

Algorithm 1: Workflow of our proposed prediction model
Input: Historical credit card transactions collected up to time n :

x1,x2,...,xn

Output: Prediction of fraud based on sequential transactions of Credit Card
holder

1 Start
2 Divide dataset into training, validation, and testing sets.
3 Credit Card data is taken and reshaped into a three dimensional tensor (N,

L, F) where N is the number of training sequences, L is the sequence length
and F is the number of features of each sequence.

4 A network structure is built with 6 layers, where there is one input layer and
one attention layer followed by two LSTM networks in the next layers, a
dense layer in the subsequent layer to obtain two valued outputs which are
the prediction classes (normal and fraud), and finally a BatchNormalization
layer is applied after the dense layer.

5 Define learning parameters (memory size, learning rate, batch size and
epochs) and set tensor variables for weight and bias vectors.

6 Define cross-entropy loss function and add Adam optimization function to
minimize the cross-entropy loss function.

7 Train the constructed network on the Credit Card data.
8 Use the output of the last layer as prediction of the next time step.
9 while Optimal convergence is not reached do

10 Compute training error.
11 Compute validation error.
12 Update weights and biases using back propagation.

13 Obtain predictions by providing test data as input to the trained network.
14 Evaluate accuracy by comparing predictions made with actual data.
15 End

In credit card fraud domain, fraud detection systems try to reduce the false positive and 
false negative rate, knowing that the latter (FN) has severe costs on financial institutions as 
well as a decrease in customer satisfaction.

To assess the performance of our proposed fraud detection system with more accuracy, 
we use the confusion matrix as shown in Table 4. From this matrix, the following evaluation 

Table 4  Classification confusion matrix

Actual positive y = 1 Actual negative y = 0

Predicted positive c = 1 True positive (TP) False positive (FP)

Predicted negative c = 0 False negative (FN) True positive (TN)
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metrics are extracted, namely: Accuracy, Sensitivity (or Recall), Specificity and Precision. 
These metrics are calculated as:

True positives (TP) are cases classified as positive which are actually positive. True 
negative (TN) are cases classified rightly as negative. False positive (FP) are cases classi-
fied as positive but are negative cases. False negative (FN) are cases classified as negative 
but are truly positive. Specificity gives the accuracy on negative (legitimate) cases classi-
fication. Precision gives the accuracy in cases classified as fraud (positive) and sensitivity 
(Recall) gives the accuracy on positive (fraud) cases classification.

However, when evaluating fraud detection models, financial institutions have to face 
many challenges, such as false positive rate and false negative rate. False positives (FP) 
are cases classified by the Fraud Detection System (FDS) as fraudulent transactions but 
represent in reality normal behaviors. These cases, although their resulted errors during 
classification, do not cause significant damage to financial institutions. False negatives 
(FN), on the other side, are cases identified wrongly by the FDS as normal transactions 
but are truly fraudulent ones which has severe costs on financial institutions as well as a 
decrease in customer satisfaction. Therefore, we will be interested more to the sensitivity 
(Recall) metric that gives the accuracy on positive (fraud) cases classification, which is 
the most appropriate evaluation metric in this domain to check the effectiveness of our 
proposed model.

Results and discussion

Our study is based on the aforementioned processed credit card fraud datasets charac-
terized by the temporally ordered sequence of transactions which allow our proposed 
model to predict the label of a transaction after having seen several transactions that pre-
cede it. Each dataset is divided into three sets. The first 70% subset of data is the training 
set used for training the models, the second 15% subset of data is the validation set used 
for validating the classifiers to avoid overfitting and improve model performance and the 
last 15% test subset of data is used to test the network generalization. Same training set 
and testing set of the credit card data are chosen for comparison between our proposed 
model and the baseline LSTM model.

The accuracy and recall plots for both models applied for example over our dataset 
named Dataset-1 are presented in Fig. 11, from which we see that our model (LSTM-
attention) achieved the more superior accuracy and sensitivity (recall) rates. This 

(18)Accuracy =
TP + TN

TP + FP + TN + FN
,

(19)Sensitivity =
TP

TP + FN
,

(20)Specificity =
TN

FP + TN
,

(21)Precision =
TP

TP + FP
.
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significant improvement is because by using attention mechanism, more relevant pat-
terns can be extracted from sequence transactions which allow the sequence classifier 
to automatically focus on the data items that are the most important to the classification 
task by a data-driven weighted average of each transaction contained in the sequence 
which results in an improved detection performance.

Moreover, to highlight the classification performance of our proposed model, in terms 
of sensitivity, we present a visualization of the confusion matrix performed on each 
model applied for example over our dataset Dataset-1 (Fig. 12) from which we illustrate 
that our proposed model has a good capability to minimize the number of fraudulent 
transactions classified as normal and catch the rare fraudulent transactions, which is of 
great importance in real life for financial service providers.

As well, to assess the analysis of our experimental results, we compared our work with 
state-of-the-art fraud detection models listed in Table 5. The major reason for selecting 
these models is that they exhibit promising performances and they use the same dataset 
Dataset-1 described in this work, hence making the comparison more practical and reli-
able. Table 5 shows the performance values of each used model, in term of accuracy, pre-
cision and sensitivity (recall). The latter metric is of high importance in fraud detection 
domain, since financial institutions are interested more in detecting fraud instances that 
may occur, to protect consumers’ interests and reduce the heavy annual financial losses 
caused by fraud.

Fig. 11  Accuracy and Recall plots for compared models

Fig. 12  Confusion matrices of LSTM and our proposed model
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As we can see from these experimental results, our proposed model achieves better 
results than the compared classification GRU, LSTM, SVM, KNN and ANN methods, 
which demonstrate the effectiveness of our proposed model in this paper on credit 
card fraud detection task.

Conclusion
In this paper, we aimed to improve the prediction efficiency during the identification 
of fraudulent transactions, by combining the strength of different Machine Learn-
ing techniques, namely: The Swarm intelligence based approach to select the opti-
mal subset of relevant features, the Uniform Manifold Approximation and Projection 
(UMAP) method to reduce the dataset dimensionality, the Synthetic Minority Over-
sampling Technique (SMOTE) to overcome the problem of imbalanced data, the 
sequence learner LSTM networks to model long term dependencies within transac-
tion sequences and the attention mechanism to automatically focus on the data items 
that are the most relevant to the classification task. Thus, our proposed model is 
capable to catch useful patterns within consumer behavior which helps to distinguish 
effectively fraudulent transactions from the normal ones.

To validate our results, we performed our model on two different credit card data-
sets, and it shows its ability to deliver a high sensitivity performance during the detec-
tion of fraudulent instances that are of great interest in this domain. Furthermore, in 
terms of comparison with recent works, our model provides a very good performance.

As a future work, we plan to study a novel credit card fraud detection model that 
relies solely on attention and transformers architecture without using any recurrent 
networks to process sequences.
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