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" National Defence University Background: Opinion mining, or sentiment analysis, is a field in Natural Language
,(\)Afahl/;‘;‘;?‘a’ Kuala Lumpur, Processing (NLP). It extracts people’s thoughts, including assessments, attitudes, and
Full list of author information emotions toward individuals, topics, and events. The task is technically challenging but
;tai?e”ab'e atthe end of the incredibly useful. With the explosive growth of the digital platform in cyberspace, such

as blogs and social networks, individuals and organisations are increasingly utilising
public opinion for their decision-making. In recent years, significant research concern-
ing mining people’s sentiments based on text in cyberspace using opinion mining

has been explored. Researchers have applied numerous opinions mining techniques,
including machine learning and lexicon-based approach to analyse and classify peo-
ple's sentiments based on a text and discuss the existing gap. Thus, it creates a research
opportunity for other researchers to investigate and propose improved methods and
new domain applications to fill the gap.

Methods: In this paper, a structured literature review has been done by considering
122 articles to examine all relevant research accomplished in the field of opinion min-
ing application and the suggested Kansei approach to solve the challenges that occur
in mining sentiments based on text in cyberspace. Five different platforms database
were systematically searched between 2015 and 2021: ACM (Association for Comput-
ing Machinery), IEEE (Advancing Technology for Humanity), SCIENCE DIRECT, Springer-
Link, and SCOPUS.

Results: This study analyses various techniques of opinion mining as well as the
Kansei approach that will help to enhance technigues in mining people’s sentiment
and emotion in cyberspace. Most of the study addressed methods including machine
learning, lexicon-based approach, hybrid approach, and Kansei approach in mining
the sentiment and emotion based on text. The possible societal impacts of the current
opinion mining technigue, including machine learning and the Kansei approach, along
with major trends and challenges, are highlighted.

Conclusion: Various applications of opinion mining techniques in mining people’s
sentiment and emotion according to the objective of the research, used method,
dataset, summarized in this study. This study serves as a theoretical analysis of the
opinion mining method complemented by the Kansei approach in classifying people’s
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sentiments based on text in cyberspace. Kansei approach can measure people’s
impressions using artefacts based on senses including sight, feeling and cognition
reported precise results for the assessment of human emotion. Therefore, this research
suggests that the Kansei approach should be a complementary factor including in
the development of a dictionary focusing on emotion in the national security domain.
Also, this theoretical analysis will act as a reference to researchers regarding the Kansei
approach as one of the techniques to improve hybrid approaches in opinion mining.

Keywords: Opinion mining, Sentiment analysis, National security, Machine learning,
Lexicon-based approach, Kansei approach

Introduction

Nowadays, cyberspace is consistently loaded with several applications and digital media
where people with various backgrounds and expertise share their thoughts and opinions
on numerous topics/events. Usually, the information shared by people is textual form-
based [1]. Sharing can be made using any digital media application such as online news,
blogs, and social media. Therefore, countless blogs, social media platforms, forums,
news reports, e-commerce websites, and other online resources allow people to express
opinions. Such information can be utilised to understand public and consumer opin-
ions regarding product preferences, political movements, social events, marketing cam-
paigns, company strategies, and monitoring reputations. People are unaware that the
opinions they express have a negative impact on national security. A negative opinion
can cause chaos and disputes among a community, which creates opposing views for
people of other countries, thereby threatening a state’s national security [2].

To address this issue, communities of researchers and academicians have been rigor-
ously working on sentiment analysis for the last decade and a half. Sentiment analysis
(SA) is a computational assessment of the sentiments, opinions and emotions conveyed
in texts and aimed at a certain entity [3]. Sentiment analysis (also called review min-
ing, opinion mining, attitude analysis or appraisal extraction) is the task of detecting,
extracting and classifying opinions, sentiments and attitudes concerning different topics,
as expressed in textual input [4].

Opinion mining or sentiment analysis helps in achieving various goals such as observ-
ing public mood regarding political movements [5], customer satisfaction measurement
[6], movie sales prediction [7], etc. However, the existing opinion mining method alone,
which includes machine learning and lexicon-based approach, cannot effectively help
in analysing and classifying people’s sentiments and emotions in cyberspace according
to the national security domain because some opinion mining methods only focus on
existing domains such as business and education. This paper suggests that the Kansei
approach can be a complementary factor in mining and classifying people’s sentiment in
other domains, such as the national security domain, by analysing suitable references for
this approach.

The Kansei method can apply conventional techniques, such as consumer surveys and
expert interviews, to understand people’s reactions towards a certain entity or event
with the use of artefacts [8]. Kansei Engineering is one of the methods based on the Kan-
sei approach, which has been employed in diverse research for emotional design. Kansei
Engineering (KE) is capable of measuring people’s feelings and emotional states. These

emotional and sensory outcomes are then translated into perceptual design elements
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of the product or artefact [9]. Typically, Kansei Words has proven to be excellent in
describing affective needs and mapping relationships between Kansei words and design
elements to achieve customers’ emotional satisfaction on product specifications. Nowa-
days, the Kansei approach can be used in different research areas such as education and
information technology since the research method of KE had an influential effect on the
relationship between the response of emotions and the attributes of any entity. Research-
ers are using this method in the information technology domain for analysing design ele-
ments for online websites. Therefore, this research explores the possible utilisation of KE
in combination with other opinion mining methods to analyse emotions from the text.
This paper is structured as follows: Sect. “Introduction” provides a brief introduc-
tion on opinion mining and the Kansei approach and their functionality and applica-
tion in mining people’s sentiments in cyberspace. Section “Method’” presents the
method/research methodology employed in this paper with some explanation. Then,
Sect. “Result” stated the result of the reviewed article, and Sect. “Discussion” explained
and discussed the context of the result in depth. Section “Discussion” also discuss the
finding by highlighting the functionalities of sentiment analysis/opinion mining and the
Kansei approach as the new mechanism for mining people’s sentiment and emotions in
the national security domain. Also, it presents the challenges of applying machine learn-
ing, the lexicon-based approach and the Kansei method for opinion mining based on
text in cyberspace. Section “Future research directions of opinion mining for national
security” discusses future research utilising the hybrid approach of machine learning,
the lexicon-based approach and the Kansei approach for opinion mining in the national
security domain. Section “Limitation” gives out the limitation of our research. Sec-

tion “Conclusion” summarises the work, as well as the conclusion.

Method

To observe the related literature on opinion mining/sentiment analysis and the Kansei
approach in mining sentiments based on text in cyberspace, we conducted a system-
atic literature review of the relevant literature. The following research questions are our
focus area on this paper:

1. How can opinion mining techniques and the Kansei approach enhance the methods
of mining people’s sentiments and emotions in cyberspace?

2. What are the most relevant sectors that benefit from opinion mining which includes
the Kansei approach?

3. What are the techniques used for opinion mining in various domain applications?

4. What are the challenges and future scope of research for opinion mining techniques
that include the Kansei approach?

To answer the research questions above, we conducted the SLR by following the ref-
erence guidelines for performing systematic literature reviews in software engineering
published by Kitchenham and Charters in 2007. A search has been conducted on five
platforms: the ACM (Association for Computing Machinery), IEEE (Advancing Tech-
nology for Humanity), SCIENCE DIRECT, SpringerLink, and SCOPUS. Figure 1 pre-
sents the research methodology employed to find related articles.
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Step 1: Preliminary study of journal and
conference

Searching journals and conference for database:

ACM, IEE, SCEINCE DIRECT, SPRINGERLINK, SCOPUS

Using WoS search parameters

a. (“opinion mining” AND “sentiment

analysis” AND “polarity” AND (“emotion”
OR “kansei” OR “opinion mining” AND
“sentiment analysis” AND “polarity” AND
“emotion”)

Step 2: Selecting redundant document

Remove duplicated document

Step 3: Selecting document type

Remove document type: Magazine,
Book, Short Essay

Step 4: Selecting language type
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articles
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Reading full texts

Fig. 1 Research methodology
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Several keywords were selected to be used in this research, such as: “opinion min-
ing,” “sentiment analysis,” “polarity, “emotion,” “Kansei,” and “opinion mining” The

Web of Science operators such as ‘OR” and ‘AND had been used in combination with
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the selected keyword for searching the particular publication. Based on the search
platform, this research runs the searching by the keywords, title, or abstract.

Then, the result from the search was filtered through the inclusion or exclusion crite-
ria. The research must follow the inclusion criteria, such as the publication year of the
papers must be between 2015 and 2021, and the publication must write in English. The
publication must be the focus on the opinion mining techniques based on text in cyber-
space. Variety type of discipline was placed on the paper such as computer science, busi-
ness, psychology, and medicine. Publication in the type of books, posters, and literature
review was disregarded.

As the selection result, an initial set total of 1556 research documents was identified.
The identified document was reduced to 1475 documents from the preliminary keyword
search on the selected platforms. Then, the duplicated document was removed and gave
out remaining a total of 1324 documents. The remaining 1324 documents have been
checked and read based on the inclusion or exclusion criteria. After that process, a total
of 1428 was excluded. The final of 122 relevant papers was included in this research,
which is based on the evaluation on reading the full text of the papers. The subsequent
section of the literature review involved the analysis of the remaining 122 articles.

Result

In this paper, we study numerous subjects with 122 papers in total. We outline the
descriptive statistics from the reviewed article, such as subject-wise analysis, year-wise
analysis, and country-wise analysis. The chart in Fig. 2 shows the subject-wise classifi-
cation; it reveals that Computer Science and Engineering are the major areas in which
related research has been published. Social Sciences, Biomedical Science (Medicine),
Health, Psychology, Business, Management, and Accounting and Decision Sciences
have also observed an increase in the number of research publications on opinion
mining/sentiment analysis and the Kansei approach for mining people’s sentiments in
cyberspace.

Based on the year-wise analysis, the significant research in opinion mining for ana-
lysing sentiments in cyberspace began from 2015 onwards. We can observe a substan-
tial growth in the number of publications from 2015 to 2018. In 2020, an exponential
increase can be seen with more papers published than in 2018, indicating a growing
trend in this research area, as shown in Fig. 3. If we take a closer look at the research,
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Fig. 2 Subject-wise Analysis
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Fig. 4 Country-wise analysis

many studies also concentrate on mining sentiments in cyberspace. It indicates that
opinion mining is also being explored at a considerably faster rate across multiple indus-
tries, partially due to its growing use in various applications.

Figure 4 illustrates the country-wise analysis; it presents the current trend regarding
the location where India has the maximum amount of research published for opinion
mining or sentiment analysis. However, United Stated (US) is also going forward and
increasingly making contributions to the research. It shows that research on opinion
mining has the potential to move further in enhancing the detection of people’s opin-
ions in various domains. Asian nations and European nations such as Malaysia, Vietnam,
South Korea, the United Kingdom (UK), and Italy also significantly contribute to this

research area.

Discussion
Opinion mining overview
Sentiment analysis, also known as opinion mining, has been used to extract and inter-

pret public sentiments and opinions for over a half-century by research communities,
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academics, government, and service industries. The role of opinion mining is both tech-
nically demanding and extremely realistic [10].

According to Liu [11], opinion mining/sentiment analysis is known as the computa-
tional study of people’s views, appraisals, attitudes and emotions toward individuals,
people, problems, events, subjects, and their attributes. It is also the study of people’s
opinions based on the sentiments, attitudes, or emotions expressed in a product [12].

‘A thought, opinion, or concept based on a feeling about a situation’ is the definition
of the term “sentiment” according to the Cambridge dictionary [13]. Opinion mining
involves the process of drawing opinions and categorising them according to their polar-
ity, whether they are positive or negative or other emotions. They can be employed for
different levels such as document-level sentiment analysis, sentence-level sentiment
analysis, and feature or aspect-level sentiment analysis.

Opinion mining has been a research interest since the early twenty-first century. In
2003, Dave et al. [14] discussed opinion mining and proposed a model for document
polarity classification (either recommended or not recommended) based on feedback
analysis towards certain entities. From that research onwards, other researchers became
interested in applying opinion mining in their text mining studies. It then became new
extensive research in the following years. In 2004, Hu and Liu [15] had investigated
the mining approach to summarise product reviews by identifying opinion sentences
in each review and deciding whether each opinion sentence is positive or negative. In
2008, Abbasi et al. conducted research on sentiment analysis techniques and their appli-
cations [16, 17]. In 2009, Tang et al. [18] discussed document sentiment classification
and opinion extraction and experimented with classifying web review opinions for con-
sumer product analysis. In 2010, Chen and Zimbra [19] assessed the opinions of various
business constituents regarding the company by employing an analysis framework that
applied automatic topic and sentiment extraction methods to various online discussions.
Based on the review of selected articles, this research found that between 2016 until
today, opinion mining-related research is still an interesting subject area for researchers.

Classification in opinion mining

There are various classification techniques that exist for sentiment or opinion mining. In
classification, content polarity has been identified as a suitable approach to analyse peo-
ple’s opinions interpreted in text. Usually, three classes are used for classification: posi-
tive, negative and neutral. According to the literature, most researchers have classified
their sentiments as positive, negative and neutral. Singh et al. [20] and Akila et al. [21]
had concluded in their findings that positive, negative and neutral opinions toward their
entities are adequate. The classification algorithms used for sentiment analysis depend
on the method employed, such as the supervised or unsupervised method.

Techniques in performing opinion mining

To conduct opinion mining, researchers have recently applied various methods in
the classification of opinions based on textual data. The supervised and unsuper-
vised methods have been used as the classification algorithms. In the basic process
of opinion mining, there are two well-known approaches. The unsupervised lexicon-
based approach is one approach in which the process is guided by rules and heuristics
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derived from linguistic knowledge. Another approach is the supervised machine
learning approach, where algorithms retrieve inherent information from existing
labelled data in order to classify newer, unlabelled data [22].

Followed by the research question on “What are the techniques used for opin-
ion mining in various domain applications” Based on the papers reviewed, all had
shown the use of either the machine learning techniques, lexicon-based approach,
or a mixture of both methods when executing sentiment analysis. The results reveal
that opinion mining or sentiment analysis has been conducted in 64 papers using
machine learning techniques, while 23 of the reviewed papers applied the lexicon-
based approach and 30 papers presented a hybrid approach by combining both meth-
ods. Figure 5 displays a chart that contains the number of review papers according
to the type of opinion mining technique. The following chart displays the number of
review papers according to the type of opinion mining technique. Other techniques
were also discussed in these papers, such as the Kansei approach. Five related papers
have employed the Kansei approach for mining people’s opinions and emotions.

Machine learning

The machine learning method is divided into three approaches: supervised learn-
ing, unsupervised learning and semi-supervised learning. Supervised learning uses
labelled data that facilitate algorithms to learn and predict the sentiment of the text.
Usually, to classify the opinion or sentiment of the text, textual data are not labelled,
so the focus is on finding the pattern and gaining insight from that data. Based on
the reviewed papers, most researchers had used machine learning techniques to ana-
lyse people’s opinions in the business domain. They extract people’s opinions from
reviews left on e-commerce platforms. Businesses or products such as skin care,
mobile phones, movie reviews, banking and train services have applied machine
learning techniques for mining people’s opinions regarding their products and goods.
Other than that, machine learning techniques are also used in the health and educa-
tion domains. For the health domain, the machine learning method has been used
to mine people’s opinions on health-related issues such as COVID-19 and medicine
reviews. In the education sector, researchers have been more focused on the e-learn-
ing environment to analyse student reviews regarding e-learning. Government-related
domains, such as politics and the economy, also apply machine learning techniques.
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Fig. 5 Opinion mining techniques chart
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Under supervised learning, machine learning methods include the Naive Bayes Clas-
sifier, Support Vector Machine, Decision Tree and Maximum Entropy. Based on the
review articles, most methods employed by the researcher have been Naive Bayes Clas-
sifier and Support Vector Machine. In the transportation domain, Mogaji and Erkan [23]
identified the textual data on Twitter that will fall into which sentiments category (posi-
tive, negative, or neutral) according to consumer experiences of United Kingdom (UK)
train transportation services by using the Naive Bayes algorithm. Thus, the limitation
highlighted by that research was that the automated process was prone to error. It needs
the involvement of humans to watch out for that process and stated that human emotion
does not fit into just three categories of positive, negative, or natural sentiment. It was
different on Naive Bayes Classifier implemented by Kaur and Kumar [24] to analyse pub-
lic opinions on a crisis based on the social media platform. That research had enhanced
the method by adding other features that is unigram, it helps in detecting sentiment that
can provide useful information to the government in managing crisis situations, but
researcher had to state on doing the approach comparison research by comparing this
method with other approaches such as Support Vector Machine (SVM) in finding the
appropriate sentiment classifier performance on natural disaster domain.

In 2017, Sabuyj et al. [25] used SVM to mine opinions based on data from the web that
resulted in satisfactory results when SVM was applied as a polarity classifier. Based on
the accuracy comparison value, they found out that the SVM outperformed the Naive
Bayes. The SVM also was employed by Zhang et al. [26] to explore the negative senti-
ment tweets on Twitter. Even though that research contributes to identifying the nega-
tive features of the text on Twitter, it was observed that a more detailed classification of
emotions such as positive was able to be identified by this sentiment analysis method.
Ameur et al. [27] used the SVM classifier to determine the polarity of the "positive or
negative" classification for comments on Facebook.

Researchers also use or combine more than one machine learning technique. Based
on the reviewed article, the Naive Bayes algorithm and Support Vector Machine
method was most used together to extract opinions and sentiments from textual data
from various datasets and social media. More than one method became the most used
method in machine learning since the outcome of predicted data is accurate. According
to research by Dhahi and Waleed [28] that employs Naive Bayes and SVM as machine
learning classifiers to extract sentiment from tweet datasets, they found that Naive Bayes
shows acceptable results. Still, it shows a different result from the research performed in
[29], where SVM performed slightly better than NB by adding other features called as
stemmed unigram that made the precision value of the SVM method higher than NB.
Even though these are the two methods frequently used in mining opinions, other meth-
ods such as the maximum entropy and decision tree also have been employed to deter-
mine the positive and negative opinions based on a textual dataset but because of the
lack of result accuracy. In 2019, Elhadad et al. [30] proposed an efficient approach in
handling Tweets, in Arabic and English languages, with different processing techniques,
such as Decision trees and Naive Bayes. It was identified that the Decision Tree gets the
least value on accuracy, and precision acts as a performance measure on those methods.

The supervised learning technique had limitations because machine learning
applies the method of training and testing. As a result, researchers need to conduct



Razali et al. Journal of Big Data (2021) 8:150 Page 10 of 46

the time-consuming training phase to get the result. Moreover, a training dataset and
testing dataset are usually prepared by employing existing datasets due to require-
ments in the machine learning method that needs labelled data to train classifiers.
It is necessary for datasets used in the experiment to be labelled with an opinion
flag. For example, Twitter and movie review datasets are embedded with positive
and negative reviews that resulted in the datasets made available with polarity labels
(positive, negative, and neutral). Since the classification of sentiments within sen-
tences usually uses machine learning algorithms, thus the input dataset is desired to
be labelled.

Random forest, a semi-supervised learning technique, is another method that
researchers have implemented in previous studies. In 2018, Khanvilkar and Vora [31]
proposed the use of the random forest as the classification for sentiments on prod-
uct reviews. The researchers have stated that the random forest machine learning
algorithm will help improve sentiment analysis for product recommendations using
multiclass classification. In 2020, Suganya and Vijayarani [32] used the deep learning
method in opinion mining. They found that the time taken of execution of random
forest was more than the CNN, one of the deep learning methods. Deep learning is
a subfield of machine learning that employs deep neural networks. Recently, deep
learning algorithms have been widely used in opinion mining. This section provides
an overview of papers that have applied deep learning for opinion mining. Deep
learning is one of the methods of semi-supervised learning. Imran et al. [33] used
the deep learning method in the health domain. The deep long short-term mem-
ory (LSTM) was employed to detect the polarity and emotion on COVID-19 related
tweets. That article successfully observed and detected the correlation between
sentiments and emotions of people from within neighbouring countries amidst
coronavirus (COVID-19) outbreak from their tweets but had some limitations on
understanding the tweet context.

Other researchers have also used deep learning methods (such as CNN and
LSTM) for analysing the emotional reactions to events of mass violence as well as
to enhance the capability and accuracy of the opinion mining method based on a
textual dataset by considered properties of users and events, generalized conclu-
sions using several events [34]. The researcher observed that the CNN model was
an appropriate method with meaningful and representative features for prediction.
The deep learning method proved to be capable of classifying opinions into posi-
tive, negative, and other emotions. However, these supervised algorithms requiring
a large dataset to predict the accurate result make this method time-consuming [35].

Datasets from social media platforms such as Twitter, Facebook and Tumblr are
the textual datasets used by researchers. The text mostly consists of user com-
ments, reviews or related research topic words on businesses, products, or events.
Researchers have also used existing datasets in cyberspace websites such as IMDB
and Amazon review datasets. Several researchers have also applied other dataset
platforms such as text in the news, articles and emails. The following Figs. 6, 7 and 8
presents the distribution of articles according to application, technique and dataset
platforms. The machine learning techniques used in opinion mining from the text
are summarized in the Tables 1, 2, 3, 4, 5, 6 below.
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Research in Each Sector that Applied Machine
Learning Techniques for Opinion Mining
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Fig. 6 Chart on the application of machine learning techniques for Opinion mining

Table 1 summarizes the Naive Bayes/Bayesian techniques used in opinion mining
based on text.

Table 2 summarizes the Support Vector Machine (SVM) techniques used in opinion
mining based on text.

Table 3 summarizes the Random Forest (RF) techniques used in opinion mining based
on text.

Table 4 summarizes the Decision Tree (DT) techniques used in opinion mining based
on text.

Table 5 summarizes the Deep learning techniques used in opinion mining based on
text.

Table 6 summarizes the Deep learning techniques used in opinion mining based on
text.

Lexicon-based approach

Another method for opinion mining or sentiment analysis would be the lexicon-based
approach. The lexicon-based approach employs a dictionary that incorporates the polar-
ity of the word inside it. If a word is found in a text, it is compared to a word in the
dictionary, and the sentiment score is applied. The lexicon-based approach is used to
determine sentiment, which is then computed by the overall polarity included in a text.
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Research that Applied Different Types of Machine
Learning Techniques for Opinion Mining
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Fig. 7 Chart of machine learning techniques for Opinion mining

The lexicon-based approach can be classified under the unsupervised method. This
method involves counting the positive and negative words related to the data. This
method must also implement a lexicon, known as dictionaries. The dictionaries can be

Dataset Platform used for Opinion Mining Based on Machine Learning Techniques
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Fig. 8 Dataset platforms used for opinion mining based on machine learning techniques
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Table 2 Summary of Support Vector Machine (SVM) techniques used in opinion mining from text

ML method

Reference Objectives

Materials

Output

SVYM

SVM

SYM

SVYM

SVM

SVM

SVM

SVM +RF

SVM + ANN+RF

SVM + CRF 4+ Multino-
mial NB

SVM+NB+RF

SVM + Multinomial
NB+ DNN

[25] Design opinion clas-
sifier for classifying
opinions from Bangla

text data

To extract multi-class
emotions from Malay-
alam text using the
proposed approach

To determine the
expressed sentiment
towards a specified
aspect category in a
given sentence

To propose and
analyse new emotion
identification method
based on online medi-
cal knowledge-sharing
community

To address the chal-
lenge of analysing the
features of negative
sentiment tweets

To rank colleges based
on a single feature,
multiple features and
no feature

To determine the
polarity of Facebook
comments “positive or
negative”

Determines polarity of
reviews given by users
and provide recom-
mendation list

[7] To evaluate the
thoughts of users
in the IMDB movie
reviews on tweets
obtained from different
outlets

To present an ensem-
ble framework of text
classification which
reviews products

Mining consumer
reviews with a machine
learning approach by
converting reviews into
vector representations
for classification

[56] To compare multiple
state-of-the-art models
capable of classifying
game reviews as posi-

tive, negative or neutral

Twitter text, English,
Bangla

Malayalam text

Yelp restaurant reviews
corpus

Medical service com-
ments

Twitter (TREC Micro-
blog Track 2013)

Twitter (colleges)

Facebook dataset
(Tunisian political
pages)

Twitter stream

IMDB dataset, Review
Movie

Twitter and product
review

Amazon review dataset

Games reviews

Positive and negative

Emotions (joy, sadness,
anger, fear, surprise or
normal)

Negative, positive and
neutral

Positive and negative

Negative

Positive, negative or

neutral sentiment

Positive and negative

Positive and negative

Positive and negative

Positive and negative

Positive or negative

Positive, neutral and
negative
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Table 2 (continued)

(2021) 8:150

ML method

Reference

Objectives

Materials

Output

NB +ME 4 SGD +SVM

KNN + SVM 4+ RF

SVM + Multinomial
NB+ LR+ RF

NB + SYM + DBN

(47]

(63]

(52]

(44]

To classify human sen-
timent-based movie
reviews using various
supervised machine
learning algorithms
To examine the
accuracy of different
methods

To classify sentiments
into positive, negative
or neutral polarity
using a new similarity
measure

To develop a clinical
decision support sys-
tem for the personal-
ised therapy process
To classify a Malay sen-
timent by proposing a
classification model to

Internet Movie Data-
base (IMDB)

Stanford Twitter
dataset

Drug review dataset

Online blogs and
forums of Malaysian
website

Positive, negative and
neutral

Positive, negative or
neutral polarity

Positive, negative or
neutral

Positive and negative

Page 17 of 46

improve classification
performances

Social Media data for Twitter text reviews
decision making to
purchase and recom-

mend products online

Fuzzy rule+SYM+ME  [64] Positive and negative

created manually or automatically from existing dictionaries. The difference between
this method from machine learning is that it does not depend on or require any training
data since it only employs the dictionary.

Through this research, 23 articles that use the lexicon-based approach for opinion
mining or sentiment analysis were reviewed and implemented this approach to con-
duct emotion analysis to determine the sentiments and opinions of the textual dataset.
Based on the reviewed articles, most research utilises the lexicon-based approach to
extract opinions on business, products and e-commerce domains. Half of the reviewed
articles had used a lexicon-based approach for analysing sentiments and emotion data
on products and services such as cameras, mobile phones, laptops, tablets, TVs, video
surveillance devices and movie reviews. Several types of research have also focused on
education and health domains. Researchers employ this approach to analyse people’s
opinions on a certain topic related to government issues such as political issues, elec-
tion-related matters as well as environmental and energy resources.

For the lexicon-based approach, two techniques have been used by researchers:
the dictionary-based approach and the corpus-based approach. The first technique,
the dictionary-based approach, is employed to pinpoint the opinion words and their
polarities.

Usually, to determine sentiments or opinions of the word, the dictionary-based
approach is used where synonyms, antonyms and hierarchies in existing lexicons with
sentiment information are found. In the existing lexicon, there are three numerical
sentiment scores used: Obj(s), Pos(s) and Neg(s), which signify the Objective, Posi-
tive and Negative synset. This method is utilised to tag the polarity value with the
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Table 3 Summary of random forest (RF) techniques used in opinion mining from text

ML method Reference Obijectives Materials Output
RF [65] Conducting hashtags #reading  Positive and nega-
sentiment analysis  and #read public  tive
of captions on content on Insta-
public librarieson  gram
Instagram
To understand
readers and help
libraries deliver
better services
RF [66] To perform senti-  Twitter data Positive and nega-
ment analysis of (Indian Elections)  tive
real-time 2019
election twitter
data
SVM + Multinomial NB+ LR+ RF [52] To develop a Drug review Positive, negative or
clinical decision dataset neutral
support system for
the personalised
therapy process
Bernoulli NB+ SVM Linear [57] To presenta com-  Twitter (educa- Emotions positive or
SCV+RF+NNs+LR parison among tional opinions negative, engage-
several sentiment  in an Intelligent ment, excited, bore-
analysis classifiers  Learning Environ-  dom and frustration
in the learning ment)
environment
ANN + RF + SVM [67] To presents emo-  Email text Neutral, happy, sad,
tion recognition in angry, positively
email texts surprised and nega-
tively surprised
SVM+ ANN + RF 7] To evaluate the IMDB dataset, Positive and nega-
thoughts of users ~ Review Movie tive
in the IMDB movie
reviews on tweets
obtained from dif-
ferent outlets
KNN + SVM 4 RF 4+ CNN [32] To extract content  product review Positive, negative or
from an e-com- comments (online  neutral
merce website and  shopping web-
analyse it using sites) (Amazon,
opinion or senti- Flipcart and
ment analysis clas-  Snapdeal)
sification model
LR4+k-NN+SVYM+DT+RF+Ada  [58] To analyse the Amazon reviews, Positive and nega-
Boost 4 Gaussian NB reviews posted Yelp reviews, IMDB  tive
by people atfour  reviews, Indian
different product  Airlines reviews
websites
SVM+NB+RF [20] To provide senti- Tweets Positive, negative

ment mining in
extracted senti-
ment from Twitter
Social App for
analysis of the cur-
rent trending topic
in India and its
impact on different
sectors of the
Indian economy

and neutral

Page 18 of 46
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Table 3 (continued)

Page 19 of 46

ML method

Reference Obijectives

Materials

Output

SVM+NB+LR+RF

[50] Mining consumer
reviews with a
machine learn-

ing approach

by converting
reviews into vector
representations for
classification

Amazon review
dataset

Positive or negative

Table 4 Summary of decision tree (DT) techniques used in opinion mining from text

ML method Reference Obijectives Materials Output
NB+4DT [45] Find the polarity Hindi sentences Positive, neutral and
of any sentence and reviews negative
by analysing the
opinion of that
particular sentence
k-NN + Gaussian NB + Mul- [68] Provide a method ~ Amazon (hotel Positive or negative
tinomial NB 4+ Bernoulli to overcome the reviews obtained
NB + SYM + RBF 4+ DT problem of lower  from TripAdvisor
accuracy in cross-  reviews)
domain sentiment
classification
CNN + NB -+ BFTree, [49] Introduce and IMDB movie portal, Positive negative
OneR+ LDA +SYM examine the pro-  Amazon product  and neutral
posed technique reviews
with Convolution
Neural Network
used for text clas-
sification
NB+LR+DT [48] To perform tweets — Twitter dataset Positive, negative or
classification with  (Kaggle and Twitter neutral
the help of Apache  Sentiment Corpus)
Spark framework
LR+ k-NN+SVM+DT+RF+Ada  [58] To analyse the Amazon reviews,  Positive and nega-
Boost+ Gaussian NB reviews posted Yelp reviews, IMDB  tive
by people atfour  reviews, Indian
different product  Airlines reviews
websites
NB+DT [30] To apply an Tweets Dataset Positive, negative
efficient process- (ASTD) and Res- and neutral
ing approach in taurant Reviews
handling Tweets, Dataset (RES)
in both Arabic and  Stanford Twitter
English languages  dataset, Twitter US
Airline Sentiment
dataset and the
Uber Ride Reviews
dataset
DT 4 Multinomial NB+ SVYM [55] To investigate Customer reviews  Positive and nega-

three approaches
for emotion
classification of
opinions in the
Thai language

of cosmetics Thai

tive
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sentiment dictionary, also known as the sentiment lexicon. Fernandez-Gavilanes et al.
[35] had employed the dictionary-based approach to detect opinions on online text
such as tweets and reviews. The researcher stated the advantages of this method that
can be applied to subject domains other than the domain it was designed for and fix
some generic lexicon issues on not context-based by employing a context-based algo-
rithm that helps create a dictionary/lexicon based on a particular context.

Abd et al. [80] further aimed to recognise the emotional segmentation of a movie
reviewer based on the entertainment domain by using this approach to extract sen-
timents from a given text and classify them. Lexicon based approach helps them
achieve a significant result by identifying the contextual polarity for a large subset
of sentiment. It was suggested to apply this dictionary idea with machine learning
to enhance the accuracy of the result. Also, the researcher had implemented existing
dictionaries such as Wordnet and SentiWordNet.

The most used lexicon for the lexicon-based approach, according to the papers
reviewed is SentiWordNet. SentiWordNet is the dictionary mostly employed for opin-
ion mining. SentiWordNet is a lexical resource derived from WordNet which assigns
numerical values to each synset, representing the scores of positivity, negativity or objec-
tivities [81]. Each score has a value between 0 and 1, and the sum of positivity, negativity,
or objectivity scores is 1. For example, Khan et al. [82] used the SentiWordNet to create
their sentiment dictionary capable of enhancing the polarity classification in sentiment
analysis based on movie review dataset and increasing the capability of SentiWordNet.

Even though SentiWordNet is the most frequently used because of the improvement
of its usability in opinion mining. Other lexicons, such as MPQA, Wordnet, Vader, and
Pattern lexicon was less selected by researchers because of their lack of capabilities in
opinion classification. However, it is still able to be applied by researchers for opinion
mining. For instance, Wordnet was used as an association list for the opinion classifier
of user comments in online media platforms. It was observed that the dictionary enables
the classification of irrelevant comments with a high score of precision value but less
accuracy in finding relevant and positive comments [83]. Recently, Dey et al. [84] used
the Vader lexicon, another type of dictionary, compared with other classification meth-
ods such as n-gram based SO-CAL approach and Senti-N-Gram lexicon based on those
methods in determining the polarity of opinions in a movie review. The results show, the
Vader lexicon got less score on accuracy between those two methods.

Other researchers also used an existing dictionary, called the NRC emotion lexicon, for
classifying the opinion or polarity according to emotions. The NRC emotion lexicon is a list
of words and their corresponding emotions. Eight emotions (fear, sadness, disgust, anger,
trust, surprise, anticipation, and joy) and two sentiments (positive and negative) are included
in this NRC emotion lexicon. In 2019, Swain and Seeja [85] employed this lexicon to develop
a web-based application that may predict polarity and emotion based on data from Twitter.
That lexicon helps classify people’s opinions such as emotions (joy, sadness, disgust, anticipa-
tion, trust, fear, surprise, anger, positive and negative) and helps government analyse peoples’
perception with sentiment analysis. However, the web application was only an experiment
on the related Tweet on demonetization in India, not in other domains or issues.

As previously mentioned, the other method in the lexicon-based approach is the cor-
pus-based approach. It works when a new sentiment word is recognised based on its
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mutual relationship. It exploits co-occurrence patterns of words found in unstructured
textual documents. In the corpus-based approach, new sentiment words are recognised
based on their relationship with other words. This approach can use an existing dic-
tionary or generate a new lexicon based on the research domain to clarify the opinion
or sentiment. Deng et al. [86] had developed a corpus according to the vital research
topic regarding social media to be used to extract people’s opinions. The observation of
result use for this approach is helpful in domain-specific sentiment classification that is
implemented in existing sentiment lexicons. Still, the effectiveness of that method was
dependent on the heuristic limitation, which is the frequently co-occurring words are
likely to have similar sentiment orientation. The corpus-based approach can be used
to analyse the diversity of online opinions that have a potential impact in commercial,
industrial and academic environments. However, the extraction and processing of opin-
ions are complex and difficult tasks.

The lexicon-based approach is dependent on lexical resources, and the overall success
of the technique is highly dependent on the quality of the lexical resources. It is based on
the polarity of a line of text, which may be determined by the polarity of the words that
constitute that text. This approach is not meant to address all aspects of language, par-
ticularly slang, irony, and negation, because of the complex nature of natural language.
Using sentimental language is insufficient. Some issues do exist, such as the fact that
some words have varying meanings depending on the application, that some phrases
including emotion words might not express any opinion or emotion. From there, this
technique has a low recall and a low accuracy. However, the lexicon-based approach has
its own advantages, including the following: it can simply count positive and negative
words, it is adaptable to many languages and speeds up analysis, and it is fast in terms of
processing because it does not require training for its data. The following table displays a
summary of review papers on the lexicon-based approach used in opinion mining.

We found that the most applied dataset platform for the lexicon-based approach is the
Twitter dataset. Next would be the movie review dataset. Researchers also frequently
use other datasets from websites such as online shopping sites. Facebook platforms and
blogs have been somewhat utilised depending on the specific research domain. The fol-
lowing Figs. 9, 10 and 11 presents the distribution of articles according to their applica-
tion, technique and dataset platforms. Tables 7 and 8 below show the detail of articles
that employ the Dictionary based approach and Corpus-based approach.

Hybrid approach

Researchers have implemented the hybrid approach in performing opinion mining. The
hybrid approach has been implemented to cover up the incapability’s of machine learn-
ing and lexicon-based approach by combining two or more methods to achieve better
accuracy in extracting and classifying people’s opinions. Based on the reviewed research
papers, most researchers use the hybrid approach for opinion mining of products and
businesses such as cameras, hairdryers, aircraft, IKEA products and the stock market. It
has been further employed in the education and health sectors. Also, we found that the
most used machine learning techniques in the hybrid approach are the Naive Bayes Clas-
sifier and Support Vector Machine. Other methods such as the Fuzzy rule-based sys-
tem, random forest, and deep learning have also been combined with the lexicon-based
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Dataset Platform for Opinion Mining Based on the Lexicon-Based Approach

Number of Document

Dataset Platform

® Social network ® Amazon ™ Movie Review = Blog/website ® TripAdvisor

Fig. 11 Chart of dataset platforms used in lexicon-based approach for opinion mining

approach. The most used lexicon/dictionary in the hybrid approach is SentiWordnet,
where 16 papers had implemented this lexicon. Other lexicons such as Wordnet, Pat-
tern lexicon, VADER, and NRC Emotion lexicon were also used in this hybrid approach.
Mahajan and Rana [103] had applied eight emotions from the NRC emotion lexicon to
quantify public emotion. Several types of research have also used existing sentiment
lexicon packages (such as “sentiment r”) and existing dictionaries (such as English senti-
ment dictionary and Dutch sentiment dictionary). Also, many articles used their own
lexicon and combined it with the machine learning method.

Based on research in the business/tourism domain by Chen et al. [104], the hybrid
approach was implemented to construct a tourism sentiment model to achieve text
sentiment classification that accurately understood tourist emotions and benefits
management and business operations domain. The first method was using the dic-
tionary-based method, which is one of the lexicon-based approaches, to calculate the
sentiment value of a single-sentence text. For the second method, the Naive Bayes
machine learning algorithm was used to construct the classifier. Researchers observe
that only using a dictionary method has an unacceptable effect on corpus classifica-
tion. When the NB classifier is used to classify the corpus, the effect will be fixed
and improved. Keyvanpour et al. [105] had implemented the hybrid approach based
on lexicon and machine learning to recognize people’s opinions on social networks.
The polarity of opinions toward a target word was determined using a method based
on the lexicon approach. The textual features of words, sentences, and opinions were
analysed and classified using the deep learning method (Neural-fuzzy network). The
result from that method had been compared with other supervised methods and
found that this method’s speed is slightly slower than other methods because the
meta-heuristic algorithm calculates the cost of each member of the population repeat-
edly using a cost function until determining optimum values for the parameters.

Different from the research by Hamad et al. [106] used more than one machine
learning technique in their hybrid approach for the research that was based on
product reviews in the social network. The flow of the approach is identical with
the lexicon-based approach is usually the first phase employed lexicon dictionary to
determine the sentiment polarity of the sentence, but the machine learning method
is used to find and classify the accurate label of polarity and emotion of sentences
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Table 7 Summary of the lexicon-based approach (dictionary based approach) used for opinion

mining

Reference Objectives

Lexicon type

Materials

Output

[35] To predict whether an
online text expresses
positive, negative or
neutral sentiments
without the need for

supervision

To improve the

SWN performance

by building a new
lexical resource named
SentiMI

To present a web-
based system known
"TweeSent" that can
estimate the polarity
and emotion of tweets
based on their input
data from Twitter

To classify movie
reviews into positives,
negatives and neutral
polarity

To improve SentiWord-
Net performance and
propose a complete
sentiment analysis

and classification
framework according
to SentiWordNet based
vocabulary

[89] To investigate Alaskans’
perceptions and
opinions on various
energy sources and, in
particular, clean energy

sources

To recognise the emo-
tional segmentation
of a movie reviewer by
extracting the senti-
ments from a given
text and classifying
them

To automatically ana-
lyse student feedbacks
(known as OMFeed-
back)

To extract and classify
sentiments and emo-
tions from 141,208
headlines of global
English news sources
regarding the coronavi-
rus disease (COVID-19)

To identify the public
opinion of Filipino
Twitter users concern-
ing COVID-19 in three
different timelines

[92]

Dictionary-based
approach

SentiMI based classifi-
cation, SentiWordNet

NRC emotion lexicon

The lexicon that has
been published by Hu
and Liu (2004)

SentiWordNet based
classification

Subjectivity lexicon
of English adjectives
called ADJLex

Dictionary-based
methods

Vader Sentiment Inten-
sity Analyser database
of English sentiment
words (Vader Lexicon)

NRC emotion lexicon,
R package “sentiment”

Lexicon-based
Approach

R package “sentiment
dictionary”

The Cornell Movie
Review dataset, The
Obama-McCain
Debate dataset, the
SemEval-2015 dataset

Movie review dataset

Tweets from Twitter

Twitter data

Large movie review
dataset, Cornell movie
review dataset, multi-
domain sentiment
datasets

Twitter data (Alaskans’
review) on energy
consumption

Text movie review
(IMDB)

Feedback

English Headlines
news sources

Twitter textual (COVID-
19)

Positive, negative or
neutral

Positive, negative and
objective

Joy, happiness, sadness,
anger, trust, surprise,
anticipation, fear, posi-
tive and negative

Positives, negatives and
neutral

Positive, negative or
neutral

Positive, neutral and
negative

Positive and negative

Positive, negative and
neutral

Positive, negative and
neutral

Positive, negative, joy,
sadness, fear, antici-
pation, anger, trust,
surprise, disgust
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Table 7 (continued)

Reference Objectives Lexicon type Materials Output
[93] To classify user reviews  Vader and Pattern Reviews on SKYTRAX Positive, negative and
and use co-occurrence  lexicons neutral

analysis to identify
passengers'concerns
on different aspects of
service in the aviation

industry

[94] To study people’s reac- R package“sentiment  Tweets regarding the ~ Negative or positive
tions and emotions dictionary” Trump Republican
regarding Trump's primary debate
primary debates

[95] Toillustrate and Word-Emotion Asso-  Text files of American  Negative and Positive
analyse the emotional  ciation Lexicon Presidency Project
sentiment of the cam- website

paign speeches of the
two main candidates

of 2016 US presidential
elections

[96] To estimate the reputa- Replab 2013 collec- Twitter data in English  Positive, negative or
tion polarity of tweets  tion and Spanish neutral

[83] To categorise YouTube ~ Wordnet Keenformatics Relevant, irrelevant,
comments based on positive and negative

content relevance

[97] To correlate the distinct  TextBlob lexicon Twitter Positive and negative
twitter comments of
statesmen of distinct
countries for having
concrete knowledge
on the application
of drugs to patients
attacked by COVID-19

was different. This research employs the ZeroR, NB, K-NN and Linear SVM as the
machine learning method. This approach was compared with some approaches to
measure the performance of K-NN, NB and SVM classifiers. It was observed that the
K-NN, NB, SVM, and ZeroR have a reasonable accuracy rate. However, the K-NN has
outperformed the NB, SVM, and ZeroR based on the achieved accuracy rates and
trained model time. The K-NN has achieved the highest accuracy rates of 96.58% and
99.94% for the iPad and iPhone emotion data sets. Despite the result, the researcher
highlights the challenge for this approach, such as control of implicit attributes of
products, building a summary of opinions based on attributes of products, and deal-
ing with negation opinion expressions. The following Tables 9 and 10 presents a sum-
mary of review papers on the hybrid approach used in opinion mining.

The combination of the lexicon-based approach with machine learning is favour-
able to mine people’s opinions and emotions based on textual datasets according
to specific research domains. Datasets from social media platforms such as Twitter
and Facebook were seen as the most popular datasets used by researchers based on
the reviewed papers. The IMDB movie review dataset comes next, followed by travel
review datasets which have become well-known datasets to apply the hybrid approach.
The following Figs. 12, 13 and 14 presents the distribution chart of articles according
to application, technique and dataset platforms. The chart in Fig. 14 shows that NB is
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the most employed machine learning technique and SentiWordNet is one of the popular
lexicon types used by the researcher. NB application in opinion predictions for various
domains is due to its simplicity and fast processing time. The simple structure of this
method makes it easy to implement and results in a high level of effectiveness. Mean-
while, SentiWordNet easy implementation in searching the opinions contributed to the
frequent usage of the dictionary by the researchers. In addition, most of the researchers
either use only one or more than one of the machine learning methods. For example,
several researchers only employed NB or SVM and used a dictionary-based approach
as the lexicon-based and the SentiWordNet and NRC emotion lexicon as the lexicon
dictionary. Other than that, researchers combine more than one method of machine
learning such as Naive Bayes, Support Vector Machine, Decision Tree (J48) and the dic-
tionary-based approach as their hybrid approach.

Kansei approach

Recently, in the opinion mining-related domain, the Kansei approach was a new method
implemented by the researcher. The Kansei approach has been used to study emotions
toward certain entities based on textual data, such as product reviews. After reviewing
papers that utilised the Kansei approach, we found that most research had focused on
using emotions as the mechanism for measuring people’s expressions toward certain
entities. It makes the Kansei approach one of the possible opinion mining approaches
that can help in enhancing and improving techniques to mine people’s opinions. Among
the existing Kansei approaches frequently used are Kansei Engineering (Type 1) and
Kansei evaluation model techniques.

This research has used the Kansei approach to study visual content and investigate the
evoked emotions in extremist YouTube videos among younger viewers [133].The method
help in finding the specific emotion regarding content on the online social platform,
but it does not involve finding any score of emotion that can help enhance the accuracy
of the emotion classification. Different from this, researchers use the Kansei approach
to construct the Kansei evaluation model for analysing product design from product
reviews on the web by applying NLP methods based on the business/product domain
[134]. From those methods, it can calculate and recognize the related scores evaluated
by subjective experiments. The method is useful for products design that is highly had
relation to people feeling. However, this method only focused on finding the product
design-based people’s opinions according to reviews on online platforms.

Opinion mining using Kansei has not been fully explored yet, but recently, several
articles have used the combination of the Kansei methodology with the text mining
technique. Based on business/services domain application, Hsiao et al. [135] had used
Kansei Engineering and text mining to analyse opinions regarding hotel services from
people’s comments online review. Kansei Engineering, which is one of the methods in
the Kansei approach, also uses emotions as the mechanism for evaluating people’s per-
ceptions toward certain entities to mine people’s opinions based on text datasets. The
hybrid approach between Kansei Engineering and text mining was effective in extracting
and analysing the relationship between the consumer’s emotion and service character-
istics that can help to improve the development of services and product for the hotel
domain. However, this method had not involved any degree of values on the extracted
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emotion, and there had the participation of polarity classification. Recently, we can see
the development of new research that integrated the Kansei approach and machine
learning in mining people’s opinions. Research by Li et al. [136] was different because it
combined Kansei Engineering and machine learning techniques such as Support Vector
Machine (SVM) to analyse reviews of online stores from online shopping web pages and
had involvement of degree words polarity classification. It was found that the integrated
method helped in solving the opinion mining gap that only focused on the polarity
classification of the positivity and negativity of the review texts and effectively assisted
designers and manufacturers in recognised customers’ emotions to products design
through inputting the review texts to facilitate the process of product design. Research
of Hsiao et al. and Li et al. have become relevant foundations for the implication of
the Kansei approach on another domain. For instance, the combination of the Kansei
approach and machine learning technique for opinion mining in the national security
domain is a matter that can be further explored. Table 11 presents the list of reviewed
articles regarding the Kansei approach.

Drawbacks of opinion mining

Opinions and emotions from textual datasets, such as sentences from reviews, text in
online news and blogs and whatever people post on social media, can be extracted using
opinion mining techniques. However, the results extracted from opinion mining are in
the form of sentiments or opinions, which are either positive, negative or neutral. Spe-
cific emotions of opinions, such as anger, sadness, etc., in the domain of national secu-
rity, have not been fully explored in the opinion mining realm. Several researchers have
been extracting emotions based on text. However, challenges exist when extracting emo-
tions from text since more than one technique is needed, and this can require significant
time. It must also involve a certain library that functions to look up the right emotion
of the word. Some issues also exist when it comes to finding the best technique and
method in classifying and extracting people’s opinions and emotions. Each opinion min-
ing technique has its own difficulties and deficiencies. Opinion mining techniques that
use machine learning and the lexicon-based approach do not assign identified emotions
to specific domains. It would be helpful to mine people’s opinions within text according
to specific domains.

Based on all research discussed in this study, Kansei Engineering has proven to be a
potential method for evaluating the emotions of a certain entity. Overall, there is a gap to
be addressed: combining Kansei Engineering with the opinion mining hybrid approach
(the combination of machine learning techniques and lexicon-based approach) to
extract and mine existing emotions and opinions within text in cyberspace according to
specific domains, such as national security. Moreover, Kansei Engineering involves sev-
eral steps to assess emotions towards a specimen. In preparing the assessment, there is a
need a human involvement to collect a set of evaluation words suitable for evaluating the
specimens in interest, arrange the evaluation word space, and choose suitable evaluation
words to be used for the assessment. The collection of words from this approach can
be utilised to develop a dictionary that can act as a lexicon in mining people’s opinions.
It is similar to the existed lexicon such as the NRC emotion lexicon that had the same
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Research in Each Sector that Applied the Hybrid
Approach for Opinion Mining
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Fig. 12 Chart of applications that used the hybrid approach for opinion mining

method in constructing their dictionary. The creation of the list of a word in the NRC
emotion lexicon was based on human involvement in finding the word and evaluating

the related emotion.

Challenges for utilising machine learning, lexicon-based and Kansei approach in opinion
mining

Researchers have been using opinion mining in business and product development sec-
tors because it can help in mining people’s opinions regarding products. From these
results, the product capability can be enhanced. Opinion mining is also used in govern-
ment and health, and its application is still expanding. However, challenges exist in opin-
ion mining applications such as the need for a dictionary that can be used in a different
domain to produce a polarity score for a dataset. For example, Fischer and Steiger [72]
have stated that regarding the health sector, limitations do exist on the use of dictionar-
ies when conducting their research. Their problem was finding a specific dictionary for
classifying medical literature. Other than that, when extracting emotions based on text,
completing such a task is challenging due to the limitation of domain-specific emotion
words. It depends on the existing library for scoring the opinions and emotions of words.
Asghar et al. [138] realised that to extract the emotion based on the sentence, and there
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Dataset platform used for Opinion Mining Based on
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Research that Applied Different Types of Methods Used in the Hybrid Approach for Opinion Mining
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is a limitation on the ability to incorporate domain-specific words and automatic scor-
ing of such words without performing a lookup operation in the existing library, such as

SWN.
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There is also a problem with the method used for mining people’s opinions and emo-
tions. Although the Kansei approach has proven to be a method capable of determin-
ing people’s emotions regarding certain entities or artefacts, there have been several
challenges that require further enhancements for this technique. Most researchers
had adopted manual ways to combat this issue, such as making a questionnaire. Find-
ing the right emotion by using this method requires significant time. For example, it has
been stated that traditional SD questionnaires are widely used in the Kansei approach.
This method is reliable but cumbersome because some research can take several years
to complete, and hundreds of respondents must be involved [139]. This is challeng-
ing because Kansei is still a new approach and has limitations such as the lack of a sys-
tematic method for assigning scores to entities for emotion evaluation experiments in
research. In 2018, Yamada et al. [134] implemented a text mining technique to perform
Kansei evaluation for a product design. They found that the method is useful, and it is
in automatic form. However, they had stated that some problems must be fixed such as
the necessity to provide an appropriate score to entities used in the subjective evaluation
experiment.

Future research directions of opinion mining for national security

Future works should be based on the theoretical findings of the opinion mining method
and the systematic literature review accomplished in this research. In our analysis, the
results show that opinion mining had been utilised in several popular domains such as
business, stock market and entertainment. In the articles surveyed in this SLR, most
of the research has reported successful experiments using various techniques to mine
people’s opinions based on text in cyberspace. Domain-specific emotion words are the
limitation when extracting emotions based on text because of the high dependency on
the existing library to determine opinions and emotions of words. Kansei approach has
the potential to address the gap. These findings encouraged us to explore elevated tech-

niques for opinion mining-related work in the domain of national security.

National security overview

The end of World War II raised the term “national security” in American politics and
held the attention of many throughout those years. The early development of national
security had focused more on the military. Nowadays, the present concept covers a
broad range of non-military aspects. To fit and adapt to the trending or current occur-
rences around the world, the concept of national security will continue to develop.
National security is a category in political science [140]. It is a dynamic situation where
the state and the society can be protected from threats of armed aggression, political
dictatorship, and economic coercion. Two main concepts can define national security: to
ensure the nation’s security and to secure the citizens [141].

When a country confronts direct and indirect threats, the government must mobilise
its national security system [142]. National security refers to a country’s ability to be
free from internally or externally threats to its core values. For example, social threats
may include hostility from neighbouring nations, invasion of a terrorist group as well
as global economic trends that have an impact on the country’s well-being. In distinct
cases, dangers or threats may be considered a natural disaster or an outbreak of viral
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Table 11 Summary of papers reviewed using the Kansei approach for mining people’s opinions

Reference Aim Method Material Sector
[134] To construct a Kansei Kansei Evaluation Web review texts, Product design
evaluation model from  model Japan

product reviews on the

web for product design

by applying NLP meth-

ods to impressions

[133] To study visual content  Kansei Engineering YouTube videos Extremist "Dark Side"

and investigate the

evoked emotions in

extremist YouTube

videos among younger

viewers
[135] To develop guidelines  Kansei Engineering TripAdvisor review Online hotel service
for hotel services to and Text mining

help managers meet
consumer needs

[136] To extract and meas- Kansei Engineering Online store reviews E-commerce
ure users'affective and machine learning  on the online store,
responses toward the web pages of
products from online online shopping
customer reviews
[137] To analyse the associa-  Kansei Engineering Google, Bing, Yahoo Hotel services (business)
tions between service  and Text mining (CLBS keyword)

design elements (prop-
erty space) of CBLS
and customers'Kansei
perceptions

disease. Threats may affect the harmony and sovereignty of the country. Economic, polit-
ical and social issues are of high interest and often debated in many nations since the ele-
ments of national security can be influenced by these issues. Military and non-military
are the basic national security elements. Military security is the ability of a nation to
secure the nation or intercept military violence from the outside. The non-military ele-
ment is related to political security, food security, economic security, human security,
energy and natural resources security, environmental security, border security, cyberse-
curity and health security [143]. Thus, an association between national security elements
with citizens’ emotions must be studied so that efforts to maintain and strengthen these
elements can be implemented [144].

Hybrid approach of machine learning, lexicon-based and Kansei approaches for opinion
mining in national security domain

Opinion mining is an emerging field of data mining that can be utilised to extract infor-
mation, such as people’s opinions and emotions, from a vast volume of reviews and text
on social platforms regarding any product or topic. Based on the reviewed articles, sev-
eral methods have been used for opinion mining, such as the machine learning tech-
nique, the lexicon-based approach, the hybrid approach and the Kansei approach.

There are many drawbacks and difficulties that have been stated in various research
regarding opinion mining techniques, such as lack of specific emotions in opinion mining
research and the efficiency of machine learning techniques and lexicon-based approaches.
Therefore, this research suggested to employs the Kansei approach that can be combined
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with machine learning technique and lexicon-based approach as a hybrid approach. How-
ever, the liability of the Kansei approach is the use of emotions and the evaluation pro-
cess in determining the right and specific result of people’s emotions towards an artefact.
Even though this method was not annotated with the polarity score, it can be solved by
combining the Kansei approach with the machine learning technique and lexicon-based
approach for the dictionary establishment for the national security domain. The machine
learning technique and lexicon-based approach will help to calculate the text polarity
score and enhance the accuracy of the opinion result. Therefore, this research presents a
new domain: using the hybrid approach for opinion mining in national security.

Based on the review of the selected papers in the previous chapter, machine learn-
ing, lexicon-based approach and the Kansei approach demonstrated their capability of
extracting people’s emotions in opinion mining. However, lack of domain-specific emo-
tion words is the limitation faced when extracting emotions based on text due to high
dependency on the existing library for scoring the opinions and emotions of words. The
existing libraries that included emotions are NRC Word-Emotion Association Lexi-
con (known as NRC Emotion lexicon or EmoLex) and NRC Emotion Intensity Lexicon
(called as Affect Intensity Lexicon). NRC Word-Emotion Association Lexicon is the
emotion lexicon constructed for the English language, and it can classify text into eight
categories of emotions and sentiment such as anger, anticipation, disgust, fear, joy, sad-
ness, surprise and trust, positive and negative that different from the NRC Emotion
Intensity Lexicon. The lexicon is not able to classify text into positive or negative senti-
ment because it contains the list of English words and their associations with only eight
basic emotions (anger, anticipation, disgust, fear, joy, sadness, surprise, trust).

Thus, the Kansei approach can be utilised to complement this gap for the develop-
ment of a dictionary that incorporates domain-specific words in a specific domain such
as national security in opinion mining. For future research, this study suggests adopting
a hybrid approach by combining the machine learning method and the lexicon-based
approach with the Kansei approach to mine people’s opinions and emotions for national
security. The emotions can be used as the parameter to relate with the national security
risk using various scenarios such as anger and fear toward certain bad political issues
that can bring unwanted risks such as riot, coup, terrorism, and civil war.

Machine learning and lexicon-based approach can classify and predict people’s opin-
ions, while the Kansei approach can be used as a method to clarify people’s emotions in
the national security domain. This hybrid approach will enable researchers, businesses
and governments to apply the method to observe sentiments and emotions simultane-
ously for national security observation purposes. The expected output from this combi-
nation would be the evaluation of people’s sentiments and emotions with the inclusion
of the score value of polarity according to the national security element.

Benefits of performing opinion mining in national security

Various activities in cyberspace pose a risk to national security, such as cyber rumours, fake
news websites and hate speech [145]. These types of threats in cyberspace can be signifi-
cant risks to national security [146]. Individuals involved in such activities can indirectly
become conspirators since every cyberspace user has a distinct persona, opinion, religion
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and emotion. They can willingly or unwillingly believe these false rumours and continue to
endorse and share them with others. These types of human emotions and behaviours can
affect cyberspace. Thus, emotion is deemed a crucial mechanism to detect threats towards
national security. Since cyberspace has an emotionally rich nuance and space where peo-
ple can express their emotions, sentiments and opinions, the connection between emo-
tion and hate speech in cyberspace is undeniable [147]. Related research on emotion in the
national security field had found that fear and anger affect politics, which is one element of
national security [148]. The relation between emotion and national security elements can
be seen in how humans react towards issues related to environmental security. A study did
find that ‘hope’ is a reaction that people have towards climate change [149].

The implementation of opinion mining in the national security domain is crucially benefi-
cial. The reason is that most information in the online system is displayed in textual form.
A substantial amount of textual data can be generated since it is usual for an individual or
persona in cyberspace to express emotions through words or text [150]. By utilising opinion
mining in detecting threats in cyberspace, the state of national security can be strengthened.

Limitation

This research intends to incorporate all published literature, such as articles, press arti-
cles, and research papers, referring to the implementation and application of opinion
mining techniques in cyberspace, including the utilisation of the Kansei approach. It
uses a systematic literature search methodology to collect valuable information from a
collection of available literature. It reveals current developments of opinion mining and
the Kansei approach in mining people’s sentiment, paving the road forward for further
research. The scope of this work is restricted to the technique of opinion mining and
the Kansei approach in mining people’s sentiments based on text to implement in the
national security domain. Since 2003, research in this field has been growing and contin-
ues at a steady pace of development.

Conclusion

Opinion mining has been a helpful mechanism in finding people’s sentiments and emo-
tions based on text in cyberspace. Based on our research findings, in most of the reviewed
papers in this research, various domains do exist that usually employ opinion min-
ing, such as business/products, transportation, health, government, entertainment, and
education. It shows the involvement of opinion mining capabilities in various domains.
However, there are several drawbacks from the implication of opinion mining techniques
that have been discussed in this research. Thus, this study can help as a reference for
future research on finding and determining the suitable method for future new research
domains such as national security that was suggested. Although mining people’s opinions
and emotions for national security is relatively new research, it should be explored and
investigated by researchers to enhance the literature within the national security field.
This will further secure and strengthen a state’s national security from unwanted threats.
This research suggests that the combination of the machine learning method, lexicon-
based approach and the Kansei approach can be a possible mechanism for evaluating
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people’s emotions within the text. This includes the text’s opinion polarity and possible
emotions flag that can influence people’s acceptance of information in cyberspace.
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