
Big knowledge‑based semantic correlation
for detecting slow and low‑level advanced
persistent threats
Amir Mohammadzade Lajevardi1*  and Morteza Amini2 

Introduction
Since the term “Advanced Persistent Threat” was coined by United States Air Force
(USAF) [1–3] in 2006, various general definitions [3–14] are proposed to describe the
advanced persistent threat (APT) attacks which are often far from real APT scenarios
such as Stuxnet, Flame, Project Sauron, Shamoon, and WannaCry [15]. According to
our survey on the behavior and anatomy of nearly 70 real APTs, which are reported by
Kaspersky Targeted Cyberattacks Logbook [15], these attacks uses low and slow pat-
terns that make them difficult to be detected. Low APTs use trusted agents by some

Abstract 

Targeted cyber attacks, which today are known as Advanced Persistent Threats (APTs),
use low and slow patterns to bypass intrusion detection and alert correlation systems.
Since most of the attack detection approaches use a short time-window, the slow
APTs abuse this weakness to escape from the detection systems. In these situations,
the intruders increase the time of attacks and move as slowly as possible by some
tricks such as using sleeper and wake up functions and make detection difficult for such
detection systems. In addition, low APTs use trusted subjects or agents to conceal any
footprint and abnormalities in the victim system by some tricks such as code injection
and stealing digital certificates. In this paper, a new solution is proposed for detecting
both low and slow APTs. The proposed approach uses low-level interception, knowl-
edge-based system, system ontology, and semantic correlation to detect low-level
attacks. Since using semantic-based correlation is not applicable for detecting slow
attacks due to its significant processing overhead, we propose a scalable knowledge-
based system that uses three different concepts and approaches to reduce the time
complexity including (1) flexible sliding window called Vermiform window to analyze
and correlate system events instead of using fixed-size time-window, (2) effective
inference using a scalable inference engine called SANSA, and (3) data reduction by
ontology-based data abstraction. We can detect the slow APTs whose attack duration
is about several months. Evaluation of the proposed approach on a dataset containing
many APT scenarios shows 84.21% of sensitivity and 82.16% of specificity.

Keywords:  Advanced persistent threat, Big semantic correlation, Ontology, Intrusion
detection

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148
https://doi.org/10.1186/s40537-021-00532-9

*Correspondence:
lajevardi@ce.sharif.edu
1 Department of Computer
Engineering, Sharif University
of Technology, Tehran, Iran
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-1399-6260
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00532-9&domain=pdf

Page 2 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

tricks such as code injection to do any malicious activities through a trusted process,
and conceal any footprint and abnormalities. To detect such malicious activities it is
necessary to use fine-grained event interception in the endpoint systems. Since fine-
grained interception leads to huge numbers of events, detection approaches use short
time-window to correlate the events. Slow APTs use some tricks to increase the time
of attacks and escape from short time-window of intrusion detection and alert corre-
lation systems. Hence, security information and event management approaches which
collect and correlate the logs and alerts generated by different tools (e.g., antivirus,
firewall, UTM, network intrusion detection system, network device, and operating
system) are vulnerable against the APT attacks for the following reasons:

•	 Due to the processing limitation, the generated and correlated logs are mostly
coarse-grained. The coarse-grained logs lead to data loss and lack of precise corre-
lation between the low-level operating system events with the network events and
rebuilding the attack vectors.

•	 Due to the processing limitation, the available solutions use short-time windows
for correlating the alerts, and hence they are vulnerable to detect slow attacks and
long-term attack vectors.

As a result, the purpose of this paper is to solve these problems in practice by propos-
ing a big Knowledge-based semantic correlation engine for detecting slow and low-level
APTs, which are the most sophisticated APTs. To this aim, we enhance our previous
solution proposed in [16] to detect slow APTs, other than low-level and hybrid APTs.
Therefore, the contributions of our proposed approach in this paper are as follows:

•	 Since, detecting low-level APT attacks needs processing large event logs, and detect-
ing slow APTs makes the processing problem much harder, one of our contributions
is to propose an approach to detect both low-level and slow APT attacks.

•	 Using a long sliding window for detecting the slow APTs. We propose a Vermi-
form sliding window to analyze and correlate system events instead of using a
fixed-size time-window.

•	 Using Scalable Semantic Analytics Stack (SANSA) [17] as a big inference engine
based on Spark for scalable semantic correlation.

•	 Although SANSA is a good inference engine for processing huge number of
events, its processing power is limited. We use event abstraction concept to
reduce the number of events, to speed up the inference time, and to detect the
very slow APTs (whose attack duration is several years instead of several months).
By abstracting the old events, we consider them as a history in the detection pro-
cess instead of being disposed by the movement of the timing window.

The rest of the paper is organized as follows. “Preliminaries” section describes the
necessary preliminaries which are used in the paper. The characteristics of APTs,
related works, and the formal definition of the problem are described in “Background
and problem statement” section. The proposed approach is discussed in “Proposed

Page 3 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

approach” section. Evaluation and result analysis are reported in “Evaluation” section.
Finally, the paper is concluded in “Conclusion” section.

Preliminaries
In this section, we define the basic terms and concepts that are used in other sections
of this paper. The most basic terms of this section are retrieved from our previous work
[16], which proposes an approach to detect hybrid and low-level APTs. The summary of
the defined symbols in this paper is presented in “List of the symbols used in the paper”
section.

Since the proposed approach in this paper employs description logic [18], and Ontol-
ogy web language- description logic (OWL-DL), we have defined the syntax and seman-
tics of part of description logic for the readers who are not familiar with these concepts
in “Syntax and semantics of description logic” section.

Definition 1  An event occurs when a subject acts on an object in a specific time or
period [16].

More formally, event ei ∈ EventI is defined by a quadruple as follows:

where si is a subject such as a user or a process, oi is an object such as a socket or file,
ai is an action such as reading (R) or writing (W), and ti is the timestamp of the event
occurrence.

Since in this paper event is considered as a concept in system ontology and the lan-
guages provided for ontology specification allow only using unary and binary predicates,
we should specify the properties of an event ei with four binary relations as follows [16].

In the rest of the paper, for the sake of simplicity, we define the event and its properties
as a quadruple.

According to the ontology specified in the section “Semantic correlation”, concept Sub-
ject includes four subject types Thread, Process, User, and Host as follows:

Also, function time : EventI −→ N specifies the timestamp of an event, and is defined
as follows:

Similarly functions subject, object, and action specify the subject, the object, and the
action of an event respectively as follows:

(1)

∀ei ∈ EventI , ei = �si, oi, ai, ti�,

si ∈ SubjectI ,

oi ∈ ObjectI ,

ai ∈ ActionI ,

ti ∈ N,

ei = �si, oi, ai, ti� ⇐⇒ �ei, si�, �ei, oi�, �ei, ai�, �ei, ti�.

(2)Subject = Host ⊔User ⊔ Process ⊔ Thread.

(3)∀ ei ∈ EventI , ei = �si, oi, ai, ti� → time(ei) = ti.

Page 4 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Definition 2  Frame f : Event × N → N specifies the number of events in a specific
event set which have a specific timestamp.

In other words, f (Ei, ti) = ni means, the number of events in Ei where
ei ∈ Ei ∧ time(ei) = ti is equal to ni.

For example, if Ei = {�s1, o1, a1, t1�, �s2, o2, a2, t2�, �s3, o3, a3, t1�} then f (Ei, t1) = 2 and
f (Ei, t2) = 1.

Definition 3  Two events ei and ej are related to each other and denoted by ei ∼ ej if
there are specific relations between their properties and ti ≤ tj [16]. This relation can be
modeled by a directed acyclic graph, which is shown in Fig. 1.

To detect malicious activities, it is necessary to define the system security policy. The
security policy is defined as follows.

Definition 4  (Security policy [16]) Security policy (SP) is defined as
SP ⊆ SubjectI × ObjectI × ActionI , which determines the set of all unauthorized
events in the system. Any policy rule pi = �si, oi, ai� in SP shows that subject si is not
authorized to do action ai on object oi at any time.

Definition 5  (Explicit violation [16]) The occurrence of an event set ES ( ES ⊆ EventI )
in a system causes the explicit violation of security with regard to security policy SP, if
and only if,

Definition 6  (Implicit violation [16]) The occurrence of an event set ES ( ES ⊆ EventI )
in a system causes the implicit violation of security with regard to security policy SP, if
and only if,

where function I : P(EventI) −→ P(EventI) specifies the set of all events that are
occurred implicitly following the execution of another event set. As an example, for

(4)
∀ ei ∈ EventI , ei = �si, oi, ai, ti�

→ subject(ei) = si, object(ei) = oi, action(ei) = ai.

(5)
∃ei, pj , ei ∈ ES ∧ pj ∈ SP ∧ subject(ei) = subject(pj)∧

object(ei) = object(pj) ∧ action(ei) = action(pj).

(6)

∃ei, pj , ei ∈ I(ES) ∧ pj ∈ SP ∧ subject(ei) = subject(pj)

∧ object(ei) = object(pj) ∧ action(ei) = action(pj)∧

� ∃ek , ek ∈ ES ∧ subject(ek) = subject(ei)∧

object(ek) = object(ei) ∧ action(ek) = action(ei),

Fig. 1  Event relation ei∼ej

Page 5 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

two untrusted subjects s1 , s2 , if ES := {�s1, o1, r, t1�, �s1, o2,W , t2�, �s2, o2, r, t3�} and
SP := {�s2, o1, r�} then the violated policy is I(ES) := {�s2, o1, r, t3�} . The schematic
description of this example is shown in Figure 2. As shown in this figure, the occurrence
of a sequence of events (ES) cause to object o1 be read by subject s2 indirectly. In other
words, event set ES cause event ek = �s2, o1, r, t3� occur implicitly. The process of indi-
rect access detection is discussed in the proposed approach in “Expanding: Knowledge-
based Inference” section.

Definition 7  (Attack vector) An attack vector νi is a set of events ( νi ⊆ EventI ) that has
the following three characteristics:

•	 Malicious: An attack vector νi is malicious if it violates the security policies implic-
itly or explicitly.

•	 Minimal: An attack vector νi is minimal if the exclusion of any event ei from νi
reduces the maliciousness of νi [16]. Suppose that function ζ : EventI → N shows
the value of maliciousness of an event set, then Ei ⊆ EventI is more malicious
than Ej ⊆ EventI , if and only if, ζ(Ei) > ζ(Ej) [16]. In other words the minimality
means:

•	 Connected: An attack vector νi is connected, if the relations between all the events
of νi construct a connected directed acyclic graph. In other words:

Set ν is defined as the set of all attack vectors.

(7)∀ei ∈ νi, ζ(νi − {ei}) < ζ(νi).

(8)
(νi,∼) is Partial Order∧ � ∃ν1, ν2, ν1 ⊆ νi∧

ν2 ⊆ νi ∧ νi = [ν1 ∪ ν2] ∧ [ν1 ∩ ν2] = ∅ ∧

� ∃e1, e2, e1 ∈ ν1 ∧ e2 ∈ ν2 ∧ (e1 ∼ e2 ∨ e2 ∼ e1).

Fig. 2  Schematic description for an implicit violation of security policy example [16]

Page 6 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Background and problem statement
As discussed in the introduction, there are various definitions to describe the APTs.
In this section, the characteristics of the APTs and the problem to be solved in this
paper are defined.

APT characteristics

According to our survey on the behavior and anatomy of nearly 70 real APTs, which are
reported by Kaspersky Targeted Cyberattacks Logbook [15], the APTs can be defined by
the following characteristics:

Special-purpose: Since the intruders have sensitive information about the victim’s
infrastructure, the behaviors of APT attacks are somewhat intelligent. This characteristic
means that an APT that is malicious in one infrastructure might be completely benign
in another. For example, Stuxnet [19] is an instance of a special-purpose APT, which is
malicious after satisfying certain conditions in the victim’s infrastructure (e.g., detecting
special patterns in centrifuge falls of victim’s industrial infrastructure), but it is nearly
benign in the system of a normal user.

Slow: Since existing security mechanisms use short time-windows (about a few min-
utes), some APTs (e.g., ProjectSauron APT [20]) abuse this weakness to bypass the
detection methods. In this case, the intruders take advantage of some tricks such as
using wake-up and sleep functions to distribute their attack vectors in several time-win-
dows (about several months). Note that, in real conditions, the attack duration cannot
last very long (e.g., several years); because the software migration in the victim’s infra-
structure can cause the attack to fail.

Low-level: In low-level APTs, the explicit violation of security policy is not prob-
able and the attacker usually violates the security policy implicitly by some methods,
including:

•	 Using trusted events and agents to perform malicious activities: this method takes
the advantages of some techniques such as malicious code injection into trusted
applications (e.g., Gauss APT [15]), or using stolen digital certificates (e.g., Stuxnet
APT [15]), or using genuine recognized removable media to bypass the data loss pre-
vention (DLP) system (e.g., Project Sauron APT [20]), and human errors to infiltrate
the victim’s system.

•	 Performing the malicious actions gradually: some APTs (e.g., Carbanak APT [15]),
especially the malware that use data exfiltration, steal the sensitive data gradually to
hide from intrusion and anomaly detection systems. For example, to exfiltrate 1 GB
of data from the victim’s system, the malware breaks the data into several tiny parts
(e.g., less than 1 MB) and exfiltrates them slowly in several days.

Multi-step: In multi-step APTs (e.g., Flame APT [15]), the attack vector is divided into
several steps, and activation of each step depends on the success of the previous steps.
In these cases, the main challenge is detecting the relations of the steps and constructing
the primary attack vector.

Distribution: In such threats, the intruders distribute the malware attack vectors in
several sub-vectors and sub-vectors are executed by different subjects (e.g., different

Page 7 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

processes, and in some cases by different hosts). In such cases, communications between
malware subjects are established through inter-process communication (IPC). Also,
these malwares try to obfuscate the dependencies between the sub-vectors using fake
and unrelated events within actual events. The main challenge is to identify the actual
events semantically, remove the fake events, and summarize the behavior.

Hybrid: Since most intrusion detection and alert correlation systems do not corre-
late operating system events with network events, the intruders use a combination of
both event types to bypass the detection mechanisms. For example, some APTs (e.g.,
Stuxnet, Hacking Team RCS, and ProjectSauron APTs [15]), for lateral movement in
air-gapped networks, use removable media to spread the malwares from the Internet to
local networks.

It is important to note that most APTs have only some of the six mentioned charac-
teristics (especially low and slow features) and a few sophisticated APTs (e.g., Project
Sauron APT [20]) have all of the six characteristics.

Related works

In recent years, several methods have been proposed to detect APT attacks (e.g., see
[12–14, 21–38]) that suffer from lack of detecting low APTs, lack of evaluation against
the well-known APTs such as Stuxnet and Flame, lack of detecting the hybrid APTs, and
mostly lack of using dependable theoretical foundations. Nevertheless, recently a few
good works have been done as follows.

Brogi et al. [39] proposed an APT detector called TerminAPTor, which tracks the
information flows between the operating system processes. This approach intercepts
events of a network system for two months and collects 3.2 billion events and 7.4 attacks
per day. The main drawbacks of this approach are the lack of evaluation by some well-
known APTs and the existence of high false positive alerts.

Ghafir et al. [40] proposed a machine learning-based system called MLAPT, which can
detect APTs in real-time in three phases. In the first phase, the system analyzes the net-
work traffic and generates some alerts based on some malicious patterns. In the next
phase, the generated alerts of the first phase are correlated, and in the third phase, a
machine-learning-based prediction is used for APT prediction. Again this approach has
not been evaluated against the well-known APTs and it cannot detect the hybrid APTs.

In [16], a general approach is proposed to detect multi-step, hybrid, and low-level
APTs. This approach is based on a knowledge-based system, i.e., the ontology of the
operating system and network entities, low-level interception, and inference over the
security policies and event relationships. The correlation between the operating system
and network events in this approach is done based on the semantic relations of the enti-
ties, which are defined in the system ontology. In this approach, malicious behaviors
and implicit violation of security policies are detected by deduction based on the exist-
ing knowledge of the occurred events and various relations between the entities of the
machines and network. The main drawback of this approach is its weakness in detect-
ing slow APTs. Since this approach is based on event correlation (instead of alert cor-
relation) and uses ontology and inference engine, suffers from high processing overhead.

Page 8 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

However, we believe this approach is the best available solution for detecting low-level
and hybrid APTs.

Mohamed et al. [38] proposed an approach based on adversarial tactics techniques and
a common knowledge matrix for detecting advanced persistent attacks. This approach
focuses on detecting APT attacks in their first steps of malicious activities and they man-
aged to reduce the detection time of the attack from several months to several minutes.

Problem statement

As discussed in the introduction, attack vectors of APTs have several characteris-
tics such as special purpose, low-level, hybrid, multi-step, slow, or distributed. Since
all these characteristics are not necessarily held in one APT, we just focus on the two
most important characteristics, which make detection more difficult; low-level and slow
APTs. Therefore, the problem is finding an approach ϕ : P(EventI) → P(ν) to detect
attack vectors such as νi from a set of intercepted events such as ES ⊆ E , in which the
following conditions are held:

1	 νi is low-level: Since APTs try to hide their malicious activities, explicit violation of
security policy is not common in such attacks. For this reason, APTs violate the secu-
rity policy implicitly and at least one violation of security policy occurs by attack vec-
tor νi . In other words [16]:

2	 νi is slow: As mentioned in “Introduction” section, APT attacks infiltrate/exfiltrate
data to/from the target system slowly in order to hide their malicious behavior.
Our research shows that each APT attack lasts from several days [10, 41] to sev-
eral months [4, 10]. However, the attack duration cannot last very long (e.g., several
years); because the software migration or upgrade in the victim’s infrastructure can
cause the attack to fail.

3	 Complexity of ϕ should be acceptable: Since, detecting low-level APT attacks require
processing large event logs and detecting slow APTs makes the processing problem
much harder, proposing an approach to detect both low-level and slow APT attacks
in an acceptable time is another main challenge.

Proposed approach
As we mentioned in previous sections, since the most sophisticated APT attacks are low-
level and slow, and these two characteristics make detection difficult for intrusion detec-
tion and alert correlation systems, the purpose of this paper is to detect this type of APT
attack. In our approach, we enhance our previous solution proposed in [16] to detect
slow APT attacks other than the low-level ones. Our approach takes the advantages
of event correlation (instead of alert correlation) and using the ontology of operating

(9)

∃ei, pj , ei ∈ I(νi) ∧ pj ∈ SP ∧ object(ei) = object(pj)

∧ subject(ei) = subject(pj) ∧ action(ei) = action(pj)

∧ � ∃ek , ek ∈ νi ∧ subject(ek) = subject(ei)∧

object(ek) = object(ei) ∧ action(ek) = action(ei)).

Page 9 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

system and network entities, which are specified in this section (“Semantic correlation”
section). Since the number of events and event relations significantly increases during
the time, using semantic correlation leads to massive processing overhead for detecting
slow attacks. The other purpose of this paper is to solve this problem.

The architecture of the proposed approach and the process of detecting malicious
attack vectors like νi are shown in Figs. 3 and 4, respectively. In our approach, on the
client side, the operating system and network events are deeply intercepted, nor-
malized, and sent to the server side. Afterward, in step 3, on the server side, we can
detect the low-level attacks by using ABox, TBox, RBox, and an inference engine.
Since the number of intercepted events is very big in slow APTs, we cannot use Pro-
tégé-OWL [42] as used in [16] for processing and inference. To overcome this prob-
lem, we use a scalable inference engine called SANSA [17], which can analyze a big
size of ABox and TBox using Spark. Although SANSA is a good inference engine for
processing big-size events, its processing power is limited. Therefore, in step 3, we
use Event Abstraction concept to reduce the number of events, speed up the infer-
ence time, and detect very slow APTs (whose attack duration is more than one year).

Fig. 3  Architecture of the proposed approach

TBox

Step 1
Event

Interception
Event

Normalization

Step 2

Policy CheckingAlert

Step 4

Step 3

Event Processing

Expanding
(Event Correlation)

Shrinking
(Event Abstraction)

KB

Fig. 4  The detection process based on the proposed approach

Page 10 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

In the Event Abstraction process, the old events are considered as an abstracted his-
tory instead of being completely disposed of. Finally, in step 4, we can detect the
violation of security policy based on the inferred data in the previous steps and the
high-level user-defined security policies.

The components and concepts that are used in the proposed architecture are
explained in the rest of this section. Since our approach uses semantic correlation to
detect low-level APTs, at first we explain the semantic correlation concepts and its
limitation.

Semantic correlation

The main concepts of semantic correlation for detecting APT attacks which are retrieved
from [16] are as follows:

1	 Knowledge Base or KB: In semantic correlation for detecting APT attacks, we employ
a knowledge base consisting of the following three boxes:

•	 TBox: This box defines the system ontology and the relations between the system
entities. For example, the ontology of Windows operating system is shown in Fig. 5.
As shown in this figure, class Object consists of three subclasses KernelObj, Use-
rObj, and GDIObj. For another example, subject Thread is a part of subject Process.

Fig. 5  Upper-level ontology of Windows operating system objects [16]

Page 11 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

•	 ABox: This box consists of four sub-boxes as follows:
	 Instances or Individual Storage: All instances of the system ontology are stored

in Individual Storage. For example, all intercepted events, subject instances, and
object instances are stored in this box. In other words, Process pi and Object oj are
samples of instances, which are stored in Individual Storage.

	 Memory/Manipulation Storage (MStore): This sub-box uses two functions:
Memory or me and Manipulation or ma. Function me : SubjectI −→ P(ObjectI)
determines the objects that are read explicitly or implicitly by a specific subject.
Function ma : SubjectI −→ P(ObjectI) determines the objects that are written
explicitly or implicitly or deleted by a specific subject. For example oi ∈ me(si)
means subject si has read object oi , or oj ∈ ma(si) means object oj has been written
by subject si . These two functions are defined for detecting the violation of confi-
dentiality and integrity, respectively.

	 Security Policy (PStore): The security policy, which is defined in "Preliminaries",
is stored in PStore. It is necessary to note that by using the ontology, we can define
high-level and more abstract security policies and then infer the low-level security
policies. The general format of security policy is shown in Algorithm 1.

Algorithm 1: General format of high-level security policy [16]

	 For example, in Fig. 2, the main security policy is o1 /∈ me(s2) , which means subject s2 should not

Fig. 6  Data exfiltration from local network to the public network [16]

Page 12 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

read object o1 . For another example, consider Fig. 6, if no data would be extracted from local network to the
Internet, then the security policy can be defined as LNO(oi) ∧ PNS(sj) −→ oi /∈ me(sj) , where:

	 LNO ⊑ Object and PNS ⊑ Subject

	 In this scenario, data can be exfiltrated using different approaches (e.g., through network buffer
or USB drive or CD-ROM). Since we use system ontology, it is not necessary to define several security policies,
because all data transmission devices (e.g., network buffer or USB drive or CD-ROM) are a type of PNO objects. For
more details about security policy, readers are referred to [16].

	 Event Relations: Two events can be related to each other by the relations between their subjects,
objects, or actions. For example, relation ei ∼ ej , which is defined for two events ei and ej , is stored in this
sub-box. This sub-box contains the events that are related to each other based on some relation rules. The
relation rules are described in the rest of this section in RBox subsection.

•	 RBox: This box consists of two sub-boxes as follows:
	 Relation Rules: As mentioned before, two events can be related to each other

based on their subjects, objects, or actions. All types of relations rules are
described in Table 1. For example, as shown in this table, relation ei

wr
∼ ej means

ai = W or Write and aj = R or Read.
	 According to this table, we can define approximately 500 relation rules for event

correlation (precisely (3+ 1)× 4 × (6× 6) rules which some are meaning-
less). For example, relation rule ei

tewrip
∼ ej is equal to three event relations ei

te
∼ ej ,

ei
wr
∼ ej , and ei

ip
∼ ej.

	 Indirect Access Rules: Some event relations result in indirect change to the value
of me and ma of subjects (e.g., as shown in Fig. 2). The related rules, which are
used to detect indirect changes to the value of me and ma, are defined as Indi-
rect Access Rules. These rules, which can be used for detecting low-level APTs, are
defined in “Expanding: knowledge‑based inference” section.

2	 Inference Engine: Inference engine is a component of semantic correlation that uses
the information and rules in the knowledge base to infer the event relations and cal-
culates the me and ma for each subject. The low performance of inference engines is

Table 1  All types of event relations [16]

Relation
type

Event
relation

Meaning

Object 1 ei
te
∼ ej

(ti < tj) ∧ (oi = oj)

2 ei
ti
∼ ej ti < tj) ∧

(

(oi �= oj) ∧ (oi
partOf
−−−→ oj)

)

3 ei
pi
∼ ej (ti < tj) ∧

(

(oi �= oj) ∧ (oj
partOf
−−−→ oi)

)

Subject 4 ei
it
∼ ej

(ti < tj) ∧ (si = sj) ∧ Thread(si)

5 ei
ip
∼ ej (ti < tj) ∧ Thread(si) ∧ Thread(sj) ∧ ∃sk , (Process(sk) ∧ si

partOf
−−−→ sk ∧ sj

partOf
−−−→ sk)

6 ei
ih
∼ ej (ti < tj) ∧ Thread(si) ∧ Thread(sj) ∧ ∃sk , sm , (Process(sk) ∧ Process(sm) ∧ si

partOf
−−−→ sk∧

sj
partOf
−−−→ sm ∧ sk �= sm) ∧ ∃st , (Host(st) ∧ sk

partOf
−−−→ st ∧ sm

partOf
−−−→ st)

7 ei
bh
∼ ej (ti < tj) ∧ Thread(si) ∧ Thread(sj) ∧ ∃sk , sm , (Process(sk) ∧ Process(sm) ∧ si

partOf
−−−→ sk∧

sj
partOf
−−−→ sm ∧ sk �= sm) ∧ ∃st , sp , (Host(st) ∧ Host(sp)∧

sk
partOf
−−−→ st ∧ sm

partOf
−−−→ sp ∧ st �= sp)

Action 8 ei
XY
∼ ej

(ti < tj) ∧ (ai = X) ∧ (ai = Y)

Page 13 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

a considerable limitation in this approach. In the approach proposed in [16], Protégé-
OWL [42] is used as an inference engine to perform reasoning based on Descrip-
tion Logic. The processing power of Protégé-OWL is limited to a knowledge base
with several million frames. Hence Protégé-OWL is not a proper inference engine to
detect slow APTs.

3	 Policy Checker: In the final step, according to the me and ma functions and the secu-
rity policy, which is stored in PStore and defined based on the system ontology, the
system detects the violations of the security policy. More details of Policy Checker is
explained in “Step 3: big event set processing” section.

For a better understanding, the steps of semantic correlation for detecting the viola-
tion of security policy in the case of Fig. 2 are shown in Table 2. As shown in this table,
there is a user-defined security policy for the system. Security policy o1 /∈ me(s2) means
subject s2 is not permitted to read object o1 . According to this table, the intercepted
events are e1 = �s1, o1,R, t1�, e2 = �s1, o2,W , t2�, e3 = �s2, o2,R, t3� . In the next step,
sets me and ma can explicitly be calculated through the intercepted events as follows:
me(s1) = {o1},ma(s1) = {o2},me(s2) = {o2},ma(s2) = ∅ . Afterwards, according to the
relation rule time(ei) < time(ej) ∧ object(ei) = object(ej) ∧ action(ei) = W ∧ action(ej)

= R =⇒ ei
tewr
∼ ej two events e2 and e3 are correlated. In the next step, since e2 and e3 are

correlated to each other, one indirect access rule is fired and set me for subject s2 should
be updated implicitly. Hence, me(s2) = {o2} ∪ {o1} and this means the security policy is
violated implicitly and a low-level attack is occurred.

Table 2  Steps of policy violation detection for file removal example according to Figure 2 [16]

Step Component Sample (based on Fig. 2).

Step 1 Event Interception e1 = �s1, o1, R, t1�, e2 = �s1, o2,W , t2�, e3 = �s2, o2, R, t3�

Step 2 Event Normalization Using OWL-DL to define the events and initiate the me and ma.

Memory/Manipulation
Storage (MStore)

me(s1) = {o1} , ma(s1) = {o2} , me(s2) = {o2} , ma(s2) = ∅

Step 3 Individual Storage Event(e1), Subject(q1),Object(o1), ...

System Ontology (TBox) ⊑, partOf , parentOf  , .

Relation Rules (RBox) (time(ei) < time(ej) ∧ object(ei) = object(ej) ∧ action(ei) = W
∧action(ej) = R) =⇒ ei

tewr
∼ ej

Inference Engine e2
tewr
∼ e3

Step 4 ABox and MStore e2
tewr
∼ e3,me(s1) = {o1},ma(s1) = {o2},me(s2) = {o2},ma(s2) = ∅

System Ontology (TBox) ⊑, partOf , parentOf  , .

Indirect Access Rules
(RBox)

∀ei , ej , (Event(ei) ∧ Event(ej) ∧ ei
tewr
∼ ej ⇒ me(subject(ej)) =

me(subject(ej)) ∪me(subject(ei)))

Inference Engine me(s2) = me(s2) ∪me(s1)

Step 5 Memory/Manipulation
Storage (MStore)

me(s1) = {o1}, ma(s1) = {o2},me(s2) = {o2} ∪ {o1}

Security Policy Store
(PStore)

o1 /∈ me(s2)

Policy Checker Alert

Page 14 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Limitation of semantic correlation
Semantic correlation is an approach proposed in [16] for detecting multi-step,

hybrid, and low APTs. This approach uses description logic, and OWL for correlating
the events based on their relations and inferring the violation of security policies to
detect the APTs.

The main challenge in using the semantic correlation is the size of the knowledge
base that affects the reasoning time. To the best of our knowledge, semantic correla-
tion is a good idea to detect low-level and slow APTs, if we overcome the processing
overhead. In the semantic correlation, the reasoning time depends on the size of the
knowledge base including the following components:

•	 RBox: Big size of RBox can strongly increase the reasoning time. Since in the field
of APT detection, the number of rules in RBox is limited (in maximum 500 rules as
discussed in Relation rules subsection), RBox does not have a great impact on the
reasoning time.

•	 TBox: Since we use TBox for storing the ontology of the Windows operating system
and the size of the Windows ontology is not very large, TBox does not make a chal-
lenge for reasoning time.

•	 ABox: Any instances of OWL classes and relations (e.g., events, subjects, objects,
actions, and relations) are stored in ABox. Since the number of collected events (and
consequently the number of event relations) grows rapidly during the time, the size
of ABox increases significantly by event interception and event correlation as well.
This problem is more evident for slow APTs. In this paper, we propose an approach
for overcoming this problem.

In the rest of this section, we explain four detection steps, which are shown in Figs. 3
and 4.

Step 1: event interception

Since APT attacks are low-level and violate the security policy implicitly, we should
intercept all system events deeply. Hence, in our approach, we intercept both network
and operating system events in different layers. The required layers of event interception
for detecting low-level APTs are shown in Fig. 7. As shown in this figure, we intercept
both network and operating system events in different ways. For intercepting network
events, we use switch port mirroring (port spanning) to intercept MAC Address, source
IP, destination IP, source port, destination port, and timestamp of each flow. For inter-
cepting operating system events, we intercept system calls in user mode, kernel mode,
and hypervisor of the virtual machine. Intercepting in user mode is done by code injec-
tion and kernel mode is done by hooking system service dispatch (SSDT) and Shadow
SSDT tables, IRP hooking, and call back functions. The event interception in the virtual
machine layer is done by intel virtualization technology. Afterward, each intercepted
system call is normalized to the quadruple format, which consists subject, object, action,
and timestamp of the event. The first attribute is one of the host_id , user_id , process_id ,
or thread_id . The second one is the handle of the object, which has a unique identifier.
The third attribute is the action of the event, and finally, the fourth one is the timestamp

Page 15 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

of the system call. Since in the proposed approach we track the information flow, we use
network events just for determining which host is connected to another host (by isCon-
nected relation) on a specific port at a specific timestamp. Also, since we intercept oper-
ating system events at the host level, we determine which specific process is bound to a
specific port for receiving/sending data from/to another host. That way, we can specify
the information flow between two processes in two different hosts. For example, con-
sider if Process p1 in host h1 sends a packet to process p2 in host h2 , then we can track
the information flow through the following events:

1	 ei = �p1,PortA,W , t1�

2	 isConnected(h1, h2,PortA,PortB, t2)

3	 ej = �p2,PortB,R, t3�

Fig. 7  Event interception layers in the proposed approach [16]

Page 16 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Step 2: event normalization

After the interception of events, we should use a uniform format for describing and
storing the event logs. Intrusion detection message exchange format (IDMEF) [43] is a
standard format for storing and representing event logs in intrusion detection and alert
correlation systems; however, since we use semantic correlation, we should store event
logs in a standard format which is understandable by the inference engine. Hence we
employ OWL-DL [44] for describing and storing event logs.

Another role of Event Normalization is to specifying the explicit read or written
objects by the subjects and initiating two sets me and ma. In other words, we use two
rules in the Event Normalization step for initiating two sets me and ma as follows [16]:

For example, in implicit file read example, according to Table 2, three intercepted events
e1 = �s1, o1,R, t1�, e2 = �s1, o2,W , t2�, e3 = �s2, o2,R, t3� lead to initiating sets me and
ma for each subject as me(s1) = {o1} , ma(s1) = {o2} , me(s2) = {o2} , and ma(s2) = ∅.

Step 3: big event set processing

After the events are intercepted and normalized, it is time to process the event logs, and
detect attack vectors like νi on the server side. As mentioned in “Semantic correlation”
section, since detecting slow APT attacks depends on analyzing a big number of events,
the described approach in [16] is not applicable and adopting a scalable knowledge-
based system is essential. To solve this problem, in this paper, we propose a scalable
knowledge-based system which is described in "Big event knowledge‑based processing"
section.

Step 4: policy checking

In our approach, the event correlation and policy checking are performed every eight
hours. In these situations, after the correlation of the events, if the values of me or ma
change, the policy checker is fired and checks the violation of security policy. As dis-
cussed in “Preliminaries” section, the security policies are defined in set SP and any
action performed by the subjects affects the ma and me sets. Therefore, following the
approach is proposed in [16], the violation of security policy can be detected as follows:

•	 Confidentially violation: A subject si that reads an object oi ( oi ∈ me(si) ) violates the
confidentiality, if and only if the security policy does not permit explicitly or implic-
itly reading object oi by subject si . In other words:

•	 Integrity violation: A subject si that writes an object oi ( oi ∈ ma(si) ) violates the
integrity, if and only if the security policy does not permit explicitly or implicitly
writing object oi by subject si . In other words:

1) Event(ei) ∧ (action(ei) = R) −→ me(subject(ei)) := me(subject(ei)) ∪ {object(ei)}

2) Event(ei) ∧ (action(ei) = W) −→ ma(subject(ei)) := ma(subject(ei)) ∪ {object(ei)}.

Subject(si) ∧ Object(oi) ∧ oi ∈ me(si)∧

�si, oi,R� ∈ SP ⇒ confidentialityViolation = True

Page 17 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

It is necessary to note that the proposed approach has no solution to detect the APT
attacks that violate the availability of the system directly such as power save denial of
service (PS-DoS) [45] attack.

When we detect a violation of security policy, the following steps can help to detect
the origins of infection:

•	 Determining the events that cause to violate the security policy as the malicious
events.

•	 Tracing back the attack vectors that contain the malicious events.
•	 Determining the first events of attack vectors.
•	 The subjects of these events are the origins of APT attacks.

Big event knowledge‑based processing
As we described in previous sections, to overcome the complexity of slow APTs
detection, we propose a scalable knowledge-based system which uses the three fol-
lowing techniques:

1	 A flexible sliding window called Vermiform window,
2	 A scalable inference engine called SANSA,
3	 A data summarization process based on the system ontology called Event Abstrac-

tion.

Details of these techniques are described in the following sections.

Vermiform window

Since in our approach we deal with the big size of events, it is necessary to use a slid-
ing window to prevent data explosion. In similar circumstances, it is prevalent to use
a fixed-length (or fixed-size) sliding window. However since the fixed-length sliding
window is not supple and flexible, it is not suitable for our approach. Hence, in our
approach, we use a variable-length sliding window, which we called Vermiform win-
dow. This window is just like a worm with a variable length in movement. The move-
ment steps of this sliding window are shown in Fig. 8. As shown in this figure, the
Vermiform window has two steps in movement: Expanding and Shrinking. We map
the expanding and shrinking of the Vermiform window to the context of event cor-
relation as follows:

•	 Expanding: In expanding step, the new intercepted events are appended to the
window immediately and the events of the window are correlated to each other
every eight hours and then the inference engine checks the violation of security

Subject(si) ∧ Object(oi) ∧ oi ∈ ma(si)∧

�si, oi,W � ∈ SP ⇒ integrityViolation = True.

Page 18 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

policy. The process of event correlation in expanding movement is discussed in
“Expanding: knowledge‑based inference” section.

•	 Shrinking: In some situations, the number of events in the Vermiform window
becomes very high and we cannot append any new event to the window. In this
state, the prevalent approach is eliminating some of the old events to provide a free
space for the new events. Since eliminating the old events reduces the accuracy of
the detection approach, we create a history or an abstraction from the old events,
instead of eliminating them. The process of event abstraction is discussed in “Shrink-
ing: event abstraction” section. Therefore, the main purpose of shrinking is to reduce
the number of events in the sliding window.

Expanding: knowledge‑based inference

Since using semantic-based correlation based on Protégé-OWL [42] (as an inference
engine) is not applicable for detecting slow attacks and leads to huge processing over-
head, we should use a scalable platform for processing OWL files and reasoning. In
our proposed approach, we use SANSA [17] as an inference engine. The architecture
of SANSA is shown in Fig. 9. As shown in this figure, SANSA is a scalable inference
engine, which takes the advantages of big data processing frameworks such as Spark

Fig. 8  The movement of the Vermiform window

Page 19 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

and Flink for querying, inferring, and large-scale RDF (Resource Description Frame-
work) data analysis.

Based on our experience, by using SANSA, we can simply analyze more than one
billion frames in an acceptable time. A drawback of SANSA is that this engine does
not support semantic web rule language (SWRL), which is used in our proposed
approach. For solving this problem, we use Jena [46] rule language, which is imple-
mented by SANSA, and redefined RBox rules (Relation rules and Indirect Access
Rules) using Jena [46] rule language.

In the expanding process, the events are appended to Vermiform window every
time a new event is generated and intercepted, and the inference engine corre-
lates the events and calculates the implicit actions that cause to change the values
of me and ma sets for each subject based on ABox, TBox, and RBox. After that, the
Policy Checker investigates the violation of security policy based on the high-level
user-defined security policies, and the values of me and ma sets of subjects. Policy
checking is described in "Step 3: big event set processing" section.

The process of calculating the implicit actions is done by using Indirect Access Rules,
which is placed in RBox of the Knowledge Base. As mentioned in [16], Indirect Access
Rules consists of two types of rules which are defined as follows.

•	 Transition rules: These rules specify the circumstances (by the occurrence of a set
of events) where some objects are read or written implicitly. In [16], thirteen rules
of this type, which implicitly change the values of me and ma sets, are defined.
These rules are shown in Table 3.

Fig. 9  Architecture of SANSA inference engine [17]

Page 20 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

•	 Untrusted subjects rules: These rules specify the circumstances where the nature
of a trusted subject change to an untrusted one. In [16] five rules of this type are
defined. These rules are shown in Table 4.

Since we used a sliding window, it is necessary to specify its length in expanding
step. The minimum and maximum length of the sliding window in the expanding step
depends on the minimum duration of the prevalent APT attacks, and the maximum
processing power of the inference engine respectively. Therefore, our sliding window
restrictions in expanding are time and size dependent. These restrictions are shown
in Fig. 10 and are described in the following.

Table 3  Patterns of transition rules [16]

Rule

1 Subject(si) ∧ Subject(sj) ∧ (si
partOf
−−−→ sj) =⇒ me(sj) = me(sj) ∪me(si)

2 Subject(si) ∧ Subject(sj) ∧ (si
partOf
−−−→ sj) =⇒ ma(sj) = ma(sj) ∪ma(si)

3 Process(si) ∧ Process(sj) ∧ (si
parentOf
−−−−→ sj) =⇒ me(sj) = me(sj) ∪me(si)

4 Process(si) ∧ Process(sj) ∧ (si
parentOf
−−−−→ sj) =⇒ ma(sj) = ma(sj) ∪ma(si)

5 Event(ei)∧Object(oj)∧ (oj
partOf
−−−→ object(ei))∧ (action(ei) = R) =⇒ me(subject(ei)) := me(subject(ei))∪{oj}

6 Event(ei)∧Object(oj)∧(oj
partOf
−−−→ object(ei))∧(action(ei) = W) =⇒ ma(subject(ei)) := ma(subject(ei))∪{oj}

7 Event(ei)∧Object(oj)∧(oj
partOf
−−−→ object(ei))∧(action(ei) = D) =⇒ ma(subject(ei)) := ma(subject(ei))∪{oj}

8 Event(ei) ∧ Event(ej) ∧ action(ei) = W ∧ action(ej) = R ∧ object(ei) = object(ej) ∧ UT (subject(ei))
⇒ me(subject(ej)) = me(subject(ej)) ∪me(subject(ei))

9 Event(ei)∧Event(ej)∧action(ei) = W∧action(ej) = R∧object(ei)
partOf
−−−→ object(ej)∧UT (subject(ei)) ⇒

me(subject(ej)) = me(subject(ej)) ∪me(subject(ei))

10 Event(ei)∧Event(ej)∧UT (subject(ei))∧(action(ei) = W)∧(object(ei) = subject(ej))∧(action(ej) = W)

⇒ ma(subject(ei)) := ma(subject(ei)) ∪ {object(ej)}

11 Event(ei)∧Event(ej)∧UT (subject(ei))∧(action(ei) = W)∧(object(ei) = subject(ej))∧(action(ej) = D)

⇒ ma(subject(ei)) := ma(subject(ei)) ∪ {object(ej)}

12 Event(ei)∧Event(ej)∧UT (subject(ei))∧(action(ei) = C)∧(object(ei) = subject(ej))∧(action(ej) = W)

⇒ ma(subject(ei)) := ma(subject(ei)) ∪ {object(ej)}

13 Event(ei)∧Event(ej)∧UT (subject(ei))∧ (action(ei) = C)∧ (object(ei) = subject(ej))∧ (action(ej) = D)

⇒ ma(subject(ei)) := ma(subject(ei)) ∪ {object(ej)}

Table 4  Patterns of untrusted subjects rules [16]

Rule Description

1 Subject(si) ∧ Subject(sj) ∧ (si
partOf
−−−→ sj) ∧ UT (si) =⇒ UT (sj)

Untrusted subpart

2 Event(ei) ∧ Event(ej) ∧ ei
tewr
∼ ej ∧ UT (subject(ei)) ⇒ UT (object(ej)

Untrusted input

3 Event(ei) ∧ Event(ej) ∧ ei
tiwr
∼ ej ∧ UT (subject(ei)) ⇒ UT (subject(ej)

Untrusted input

4 Event(ei) ∧ Event(ej) ∧ ei
piwr
∼ ej ∧ UT (subject(ei)) ⇒ UT (subject(ej)

Untrusted input

5 Event(ei) ∧ UT (subject(ei)) ∧ (action(ei) = W) ∧ Subject(object(ei)) ⇒ UT (object(ei) Injection

Page 21 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

•	 Tmin or minimum time of the Vermiform window in expanding: Since regular APT
attacks duration is about several months (maximum one year), we should at least
analyze and correlate the events intercepted in this interval. In other words:

•	 Smax or maximum size of the Vermiform window in expanding: As mentioned
before, the maximum length of the window is when the window is fully expanded.
This maximum length depends on the processing power of the inference engine.
Since the processing power of our inference engine is limited (approximately one
billion frames), the maximum number of frames, which can be in the Vermiform
window, is approximately one billion. In other words:

•	 Smin or minimum size of the Vermiform window in expanding: To succeed in discov-
ering the APT attacks, the inference engine must ensure that:

(10)Tmin = tr − th ≃ 12Months.

(11)Smax = smax − s0 ≃ 1 billion frames.

Fig. 10  Minimum and maximum length of the sliding window in expanding step

Page 22 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Smin is the number of generated frames from timestamp th to tr . Since this value is
time dependent, and differs from one event set to another, and depends on the size of
the victim’s computer network, the exact value of Smin is calculated for each event set
such as ES as follows:

 where f is the frame function (which is defined in "Preliminaries") and ES is the set of
all collected events in the expanding step of the Vermiform window.

•	 Tmax or maximum time of the Vermiform window in expanding: To succeed in dis-
covering the APT attacks, the inference engine must ensure that:

Tmax is the maximum time of the sliding window in expanding. Since this value dif-
fers from one event set to another and depends on the size of the victim’s computer
network, the exact value of Tmax is calculated for each event set such as ES as below:

 where ES is the set of all collected events in the expanding step of the Vermiform
window.

The process of appending the new events to the sliding window is paused when the max-
imum length of Vermiform window becomes equal to Smax or approximately one billion
frames. In this situation, we should start the shrinking process, which is explained in the
next section.

Shrinking: event abstraction

As mentioned before, the number of collected events grows rapidly over time, and the
correlation of all collected events is impossible in practice. In this situation, the simplest
solution is to eliminate the old events. Since eliminating the old events leads to a reduc-
tion in the accuracy rate of the detection, we create a history from the old events (by
abstracting the events) instead of eliminating them. The process of event abstraction
occurs in the shrinking step.

Before describing our event abstraction approach, it is necessary to specify the length
of the sliding window in the shrinking step, which has a direct impact on the event
abstraction approach.

Since the events of the previous expanding step should be considered as a history (fol-
lowing the shrinking step) in the current expanding step, the length of the Vermiform
window for the history (containing the abstracted events) depends on the free size and
time of the sliding window in the current expanding step. These two parameters are
shown by Th and Sh in Fig. 10. Since the history length of the Vermiform window differs
from one event set to another and depends on the size of the victim’s computer network,
the exact value of Sh and Th are calculated for each event set like ES as follows.

(12)Smax ≥ Smin.

(13)Smin(ES) =

t=tr
∑

t=th

f (ES, t),

(14)Tmax ≥ Tmin.

(15)Tmax = Max{time(ek) |ek ∈ ES} −Min{time(ek) |ek ∈ ES},

Page 23 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

where ES is the set of all collected events in the current expanding step of the Vermiform
window.

After determining the maximum length of the sliding window for abstracted events
obtained by the previous shrinking step (i.e., Th and Sh ), it is time to summarize all the
events collected in the expending step to a set of abstract events with a maximum length
of Th and Sh.

According to these limitations, abstraction function � : P(E) → P(E) is defined
which maps a set of events such as WE to a set of abstract events such as AE (i.e.,
�(WE) = AE ) and the following conditions are held:

•	 There is no capacity to store more events than those appearing in WE in the cur-
rent expanding step of the Vermiform window. In other words:

 where ES is the set of all collected events in the current expanding step of the Vermi-
form window.

•	 The size of AE as history in Vermiform window is much less than the maximum
size of the current expanding step. In other words:

Function � considers two main facts for event abstraction as follows:

1	 History size ( Sh ): It is obvious that if the size of the Vermiform window in shrinking
step becomes less, function � should perform more abstraction compared to when
the size of the Vermiform window in shrinking ( Sh ) is big.

2	 Events timestamps: Since in the process of event correlation, the last events of the
sliding window are more valuable than the old events, the function � should use less
abstraction for the recent events and more abstraction for the old ones.

According to these two facts, we define several abstraction levels, which are used by
function � , to apply different types of event abstraction based on the size of Sh and
events’ timestamps. The function � employs the system ontology for abstracting the
system entities such as objects, subjects, and actions. Using ontology we can replace
the lower level (more concrete) entities with the upper-level (more abstract) entities.
Function � performs the abstraction based on the following entities:

•	 Abstraction based on actions: To increase the expression power and accuracy,
all the system actions were defined by six basic actions (Read, Write, Execute,

(16)0 � Th(ES) = th − t0 � Tmax(ES)− Tmin

(17)� Sh(ES) = sh − s0 � Smax − Smin(ES),

(18)Sh(ES) <

t=∞
∑

t=0

f (WE, t),

(19)Sh(ES) �

t=∞
∑

t=0

f (AE, t).

Page 24 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Delete, Access, and Create). However, some of these actions (i.e., Create, Delete,
and Access) can be replaced by some other actions (i.e., Read and Write). To this
aim, we define a set of abstraction rules, which is shown in Table 5. According to
these rules, actions Create and Delete are replaced by action Write, action Access
is replaced by action Read, and action Execute is eliminated for event correlation;
because it does not affect event correlation.

•	 Abstraction based on subjects: Considering the ontology of the Windows operat-
ing system (which is shown in Fig. 5), we can replace the lower level subjects with
the upper-level ones. For example, a Thread can be abstracted as a Process, or a
Process can be abstracted as a User or a Host. Hence we define four abstraction
rules based on the subjects’ relations (which are shown in Table 6). For example,
rule R1S means each event, which is generated by a thread such as si , is supposed
to be generated by its related process such as sj.

•	 Abstraction based on objects: Similar to the subjects, we can replace the lower level
objects by the upper-level ones. For example, a Socket can be abstracted as a File or a
Device, and a Device can be abstracted as a KernelObj. Hence, we define an abstrac-
tion rule based on objects’ relations (which is shown in Table 7) to abstract the events

Table 5  Abstraction rules of actions

Abstraction
rule

Abstraction
step

Abstraction condition Abstraction operation

R1A 1.1 ∀ei = �si , oi , ai , ti�, Event(ei) ∧ action(ei) = C ei = �si , oi ,W , ti�

1.2 ∀ei = �si , oi , ai , ti�, Event(ei) ∧ action(ei) = D ei = �si , oi ,W , ti�

1.3 ∀ei = �si , oi , ai , ti�, Event(ei) ∧ action(ei) = A ei = �si , oi , R, ti�

1.4 ∀ei = �si , oi , ai , ti�, Event(ei) ∧ Process(si)

∧ Process(oi) ∧ action(ei) = E
Delete ei and add si

parentOf
−−−−→ oi

Table 6  Abstraction rules of subjects

Abstraction
rule

Abstraction condition Abstraction operation

R1S ∀ei = �si , oi , ai , ti�, Event(ei) ∧ Thread(si) ∧ ∃sj , Process(sj) ∧ si
partOf
−−−→ sj

ei = �sj , oi , ai , ti�

R2S ∀ei = �si , oi , ai , ti�, Event(ei) ∧ Process(si) ∧ ∃sj , Process(sj) ∧ si
parentOf
−−−−→ sj

ei = �sj , oi , ai , ti�

R3S ∀ei = �si , oi , ai , ti�, Event(ei) ∧ Process(si) ∧ ∃sj ,User(sj) ∧ si
partOf
−−−→ sj

ei = �sj , oi , ai , ti�

R4S ∀ei = �si , oi , ai , ti�, Event(ei) ∧ Process(si) ∧ ∃sj ,Host(sj) ∧ si
partOf
−−−→ sj

ei = �sj , oi , ai , ti�

Table 7  Abstraction rules of objects

Abstraction
rule

Abstraction
step

Abstraction condition Abstraction operation

R1O 1.1 ∀ei = �si , oi , R, ti�, Event(ei) ∧ Object(oi)

∧ ∃oj ,Object(oj) ∧ oi
partOf
−−−→ oj

ei = �si , partOf (oj), R, ti�

1.2 ∀ei = �si , oi ,W , ti�, Event(ei) ∧ Object(oi)

∧ ∃oj ,Object(oj) ∧ oi
partOf
−−−→ oj

ei = �si , partOf (oj),W , ti�

Page 25 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

or remove the redundant information. Rule R1O says if subject si wants to read object
oi and this subject had read object oj before that and oi is a part of oj , then this event
can be abstracted by another event such as ei = �si, oj ,R, ti� with less details.

By using these six rules, many events are abstracted and replaced by other events. The
necessity of these six rules is to reduce the details of each event and increase the abstrac-
tion of each event without considering the event relations.

According to Tables 5, 6 and 7, we can combine these rules and define different
abstraction levels (e.g., abstraction level R1S ∧ R1O ∧ R1A ). However, some of them are
meaningless or have negative effects on both accuracy of the detection approach and
the rate of events reduction. We examined all different abstraction levels by a dataset
(which is introduced and discussed in “Evaluation” section) and sift all possible abstrac-
tion levels to seven main abstraction levels, which are shown in Table 8. As shown in this
table, seven abstraction levels are constructed based on six basic abstraction rules. Also,
the first abstraction level ( L0 ) does not use any abstraction rules and does not have any
advantage to reduce the number of events or increasing the accuracy. It is necessary to
mention that before applying a new abstraction level, all the redundant events resulting
from the previous abstraction level have to be eliminated.

In Table 8, column Average Event Reduction Rate specifies the percentage of the events
that are reduced by a specific abstraction level using our dataset. Also, column Average
impact on detecting very slow attacks specifies the average impact of a specific abstrac-
tion level on the accuracy of the proposed approach for detecting the attacks that their
duration is more than Tmax (very slow attacks). Symbols ‘+’ and ‘-’ show the increment or
decrease of the accuracy of the detection approach. Column Average impact on detect-
ing slow attacks specifies the impact of a specific abstraction level on the accuracy of the
detection approach for the attacks that their duration is less than Tmax (slow attacks).

As mentioned before, since in the process of event correlation, the last events of the
sliding window are more important than the old events, approach � use less abstraction
for the recent events and more abstraction for the old events. Therefore, we divide the
sliding windows into seven different partitions as shown in Fig. 11. In the partitioning
process, the number of events in the seven partitions should be approximately the same.
More formally the following condition should be held:

Table 8  Event abstraction levels

Abstraction
level

Abstraction rules Average event
reduction rate

Average impact on
detecting very slow
attacks

Average impact
on detecting slow
attacks

L0 No abstraction 0 % 0 % 0 %

L1 R1A 12 % +2.8 % 0 %

L2 L1 ∧ R1S 7 % +0.12 % 0 %

L3 L2 ∧ R1O 11 % +1.5 % −0.9 %

L4 L3 ∧ R2S 18 % +3.24 % 0 %

L5 L4 ∧ R3S 47 % −1.11 % −6.8 %

L6 L5 ∧ R4S 51 % −4.3 % −12.12

Page 26 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

As shown in Fig. 11, the process of event abstraction maximally consists of 49 steps.
In other words, the process of the event abstraction is started from step S1 and is contin-
ued until the size of the abstracted events become less or equal to Sh , and in the worth
case this process is finished in step S49 . For example, if the event abstraction process is
finished in 19th step ( S19 ), this means the events which their timestamp is t0 to t1 are
abstracted based on abstraction level L4 , the events which their timestamp is t1 to t2 are
abstracted based on abstraction level L3 , the events which their timestamp is t2 to t3 are
abstracted based on abstraction level L2 , the events which their timestamp is t3 to t4 are
abstracted based on abstraction level L2 , the events which their timestamp is t4 to t5 are
abstracted based on abstraction level L1 , and the events which their timestamp is t5 to
tmax are abstracted based on abstraction level L0.

The mentioned event abstraction process reduces the number of objects, subjects,
events, event relations, and consequently reduces the processing overhead. Although
this abstraction approach reduces the detection accuracy in some situations, it is still a
better solution for detecting slow and very slow attacks, in comparison with the other
solutions, which eliminate the old events. For a better understanding, we consider the
implicit file removal example, which is shown in Fig. 12 and described in Table 9. As

(20)

t=t1
∑

t=t0

f (WE, t) ≃

t=t2
∑

t=t1

f (WE, t) ≃

t=t3
∑

t=t2

f (WE, t) ≃

t=t4
∑

t=t3

f (WE, t) ≃

t=t5
∑

t=t4

f (WE, t) ≃

t=t6
∑

t=t5

f (WE, t) ≃

t=tmax
∑

t=t6

f (WE, t).

Fig. 11  Using less abstraction for the recent events and more abstraction for the old events

Page 27 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

Fig. 12  Implicit file removal through code injection into process p2 by process p1 [16]

Table 9  Implicit file removal through code injection into process p2 by process p1 [16]

System calls Description

1 VirtualAllocEx e1 = �s1, o1, a1, t1�, a1 = C , Thread(s1), s1
partOf
−−−→ p1, Memory(o1), o1

partOf
−−−→ p2

2 WriteProcessMemory e2 = �s1, o1, a2, t2�, a2 = W , t2 = t1 + ǫ

3 CreateRemoteThread e3 = �s1, o2, a3, t3�, a3 = C , Thread(o2), o2
partOf
−−−→ p2, o1

partOf
−−−→ o2, t3 = t2 + ǫ

4 SetThreadContext e4 = �s1, o3, a4, t4�, a4 = W , Context(o3), o3
partOf
−−−→ o2, t4 = t3 + ǫ ,

5 ResumeThread e5 = �s1, o2, a5, t5�, a5 = E , t5 = t4 + ǫ

6 DeleteFile e6 = �o2, o4, a6, t6�, a6 = D, File(o4), t6 = t5 + ǫ

Table 10  An example of events abstraction process

L0 L1(R1A) L2(L1 ∧ R1S) L3(L2 ∧ R1O) End of abstraction

1 e1 = �s1, o1, C , t1� e1 = �s1, o1,W , t1� (Redundant) – –

2 e2 = �s1, o1,W , t2� e2 = �s1, o1,W , t2� e2 = �p1 , o1,W , t2� e2 = �p1, p2 ,W , t2� (Redundant)

3 e3 = �s1, o2, C , t3� e3 = �s1, o2,W , t3� e3 = �p1 , o2,W , t3� e3 = �p1, p2 ,W , t3� (Redundant)

4 e4 = �s1, o3,W , t4� e4 = �s1, o3,W , t4� e4 = �p1 , o3,W , t4� e4 = �p1, p2 ,W , t4� e4 = �p1, p2,W , t4�

5 e5 = �s1, o2, E , t5� (Deleted) – – –

6 e6 = �o2, o4,D, t6� e6 = �o2, o4,W , t6� e6 = �p2 , o4,W , t6� e6 = �p2, o4 ,W , t6� e6 = �p2, o4,W , t6�

Page 28 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

shown in the figure and table, an implicit file removal through code injection into pro-
cess p2 by process p1 has occurred. The process of events abstraction for this exam-
ple is shown in Table 10. As shown in this table, we use four levels of abstraction for
this example and abstraction levels L4 to L6 have no impact on reducing the number of
events. Therefore, the seven events of this example can be abstracted into two events i.e.,
e4 = �p1, p2,W , t4� and e6 = �p2, o4,W , t6�.

Other restrictions

If the rate of the event generation in a computer network is low and the size of the
abstracted events is small, then the maximum time of the window can be increased.
In such a situation, we can append more new events to the window and consider more
events than the ones exist in the 12 months. These extra events are determined by Sr and
Tr parameters which are determined using the following equations. Since Sr and Tr are
dependent to Sh(ES) and Th(ES) respectively and as mentioned before these two values
are depended on specific event set ES, hence Sr and Tr are depended on ES. It is obvious
that the mentioned situation appears when the Sr or Tr are greater than zero by the fol-
lowing equations.

Evaluation
In this section, we describe the dataset that is used for evaluating the proposed approach
and the experimental results obtained from the evaluation.

Dataset

In recent years, several different dataset are proposed (e.g., Darpa98 [47], Darpa99 [48],
Darpa2000 [49], KddCup [50], ISCX2012 [51], Defcon2015 [52], LBNL2016 [53], CIC-
IDS2017 [54], IDS2018 [55], DDoS2019 [56], Darknet2020 [57]) for evaluating the intru-
sion detection and alert correlation systems (e.g., see [58]). Unfortunately, these available
datasets have some drawbacks as follows, which make them inappropriate to be used for
evaluating APT detection approaches.

•	 These datasets contain regular and simple attacks whereas APT attacks have many
complex behaviors.

•	 These datasets do not contain any hybrid, low-level, and slow attacks, which are
prevalent in APT attacks.

•	 These datasets do not contain any host-based event logs and mostly contain net-
work-based logs and attacks, which are sufficient for APT detection.

•	 Attacks duration in these datasets are maximally limited to several weeks, which is
not proper for evaluating the slow attacks.

(21)Sr(ES) = Smax − Smin(ES)− Sh(ES)

(22)Tr(ES) = Tmax(ES)− Tmin − Th(ES).

Page 29 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

•	 The volume of these datasets is limited to several gigabytes, which is not proper for
evaluating the scalability of detection approaches.

Due to the mentioned problems, we generated a new evaluation dataset, which has the
following characteristics and is useful for evaluating our approach. This dataset is avail-
able online at [59].

•	 The architecture of the test bed that is used for creating this dataset is shown in
Fig. 13.

	 As shown in this figure, the test network contains four sub-networks. The first sub-
net is the Internet, which is the invasive way to the organization network. The sec-
ond subnet is a CafeNet, which is connected to the Internet. The third one is Corpo-
rate network, which contains local services of an organization and is connected to
CafeNet, and the fourth subnet is Critical network, which is an air-gapped network
and isolated from the other networks.

•	 This dataset contains nine APT scenarios, which are shown in Table 11. These sce-
narios are the abstracted scenarios of some well-known APT samples, which are
reported in [15]. Some APT scenarios of this table were implemented based on
the available source codes, reversed codes, and published vulnerabilities of these

Fig. 13  The architecture of our test network

Page 30 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

malwares on the Internet. Then, all APTs were run in the testbed. Some were run
concurrently, and some, with overlapping scenarios, were run asynchronously.

•	 The behaviors of malwares are intercepted in the operating system in two differ-
ent ways. The kernel events are intercepted by implementing a Windows driver for
hooking and a mini-filter driver for using call-back functions. The user events are
intercepted by Easy hook library [60] through the code injection. The interception
in hypervisor level is implemented by customizing a version of Ether [61] on Xen
hypervisor. Also, the network events are collected by switch port mirroring.

•	 The volume of the dataset is approximately 2 Terabytes.
•	 The dataset contains low-level, and slow attacks.
•	 The dataset contains both the network and host event logs.
•	 The total number of intercepted events in the test network is about 1.646 billion

events.
•	 We use seven hosts (one of which belonged to the attacker) for the simulation and

supposed one user per host.
•	 Different attacks with different duration times were considered. We deployed one

short attack with one-day duration, two almost slow attacks with one-month dura-

Table 11  APT scenarios in generated dataset

Attack type

Adapted
from

Multi-step Low-level Slow Propagation
channels

Purpose
of
function

Attack
duration

Special
feature

1 Project
Sauron
APT [20]

� � � Internet and
USB device

Sabotage 7 months Bypass
air-gapped
network

2 Flame APT
[62]

� � � (very
slow)

Internet Data theft 11 months Low-level
data exfil-
tration

3 Shamoon
[63] and
StoneDrill
[64] APT

� � � Internet and
LAN spread-
ing

Data wip-
ing

5 month Code injec-
tion

4 WannaCry
APT [65]

� � – Internet Ransom-
ware

1 day Exploits

5 Cloud Atlas
[66] and
Red Octo-
ber[67]
APT

� � �(very
slow)

Internet and
USB device

Data theft 15 months Exploits,
social engi-
neering

6 Cloud
Atlas [66]
and Red
October
[67] APT

� � – Internet and
USB device

Data theft 1 month Exploits,
social engi-
neering

7 Poseidon
APT [68]

� � – Internet Remote
control

1 month Backdoor
and code
injection

8 Dark hotel
[69]

� � � (very
slow)

Internet Surveil-
lance

14 months Stolen
digital cer-
tificates

9 Dark hotel
[69]

� � � Internet Surveil-
lance

9 months Stolen
digital cer-
tificates

Page 31 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

tion, four slow attacks with five, seven, and eleven months duration, and two very
slow attacks with fourteen and fifteen months duration.

•	 The simulated network contained 110 benign processes and 9 attack vectors. Each
attack vector contained several sub-processes. Our dataset contains the operating
system and network event logs for all processes.

•	 The normal behaviors were generated by the real users in CafeNet and Corporate
networks. Since the actions in Critical networks do not have many dependencies on
the users, the normal behaviors of such networks were simulated by some softwares,
which were running without interacting with users.

Experimental results

After deploying the reconstructed attacks in our test network and creating the dataset,
we evaluated our proposed approach using the generated dataset. To this aim:

•	 We used the ontology that was proposed in [16] and implemented by WinDbg tool
[70] and Microsoft MSDN library [71].

•	 We use OWL-DL language [44] for specification of the system ontology and Jena lan-
guage [72] for specification of user-defined inference rules. We employed SANSA for
loading and saving OWL files, querying, and reasoning based on Description Logic.

•	 The processing time of the proposed approach for detecting hybrid and low-level
APTs in the test networks was 6.1 hours.

The experimental results of evaluating our proposed approach are shown in Table 12.
As shown in this table, there are 110 benign processes and 9 malicious or attack vectors
performed by different processes. Based on the evaluation results, the accuracy rate is
89.07%. However, since the events which are generated by APT attacks are very rare, the
two classes of events (i.e., APT and Benign) are imbalanced, and using accuracy and pre-
cision as the evaluation criteria is not reliable. Hence in these cases using other criteria
such as sensitivity and specificity are more valuable and informative.

Specificity or true negative rate, determines the ability of our approach to detect
benign samples. In other words, specificity measures the rate of the detected benign
samples that are truly benign. Sensitivity or true positive rate or recall determines the
ability of our approach in detecting the APT samples. In other words, sensitivity meas-
ures the rate of the detected malicious samples that are truly APTs.

Table 12  Results of evaluation

Actual class\Predicted class APT Benign Total Recognition(%)

APT 8(TP) 1 (FN) 9(P) 88.88 (Sensitivity= TPP)

Benign 12(FP) 98(TN) 110(N) 89.09 (Specificity= TNN)

Total 20 99 119 89.07(Accuracy= TP+TN
P+N)

Other metrics(%) 40.00 (Preci-
sion= TP

TP+FP)
88.88
(Recall=
TP

TP+FN)

55.17 (F-Measure) 10.92 (Error-rate= FP+FN
P+N)

Page 32 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Fig. 14  The coordinate of our approach in ROC space

Table 13  Results of evaluation per each APT sample of Table 11

APT sample Number of
APT events
(P)

Number of
other events
(N)

TPR (%) TNR (%) Accuracy (%) Precision (%) Detection
result

1 9.1 million 1.637 billion 86.29 90.14 90.08 4.59 APT

2 13.7 million 1.6322 billion 83.17 87.58 87.50 5.24 APT

3 6.3 million 1.6397 billion 94.9 89.94 89.91 3.47 APT

4 73 thousand 1.64527 bil-
lion

95.06 97.48 97.39 0.16 APT

5 26 million 1.62 billion 98.32 77.97 78.28 6.67 APT

6 1.6 million 1.6444 billion 81.02 95.1 94.85 1.50 APT

7 2.1 million 1.6439 billion 91.73 90.38 90.33 1.19 APT

8 27.7 million 1.6183 billion 60.33 89.87 89.35 8.70 Benign

9 10.1 million 1.6359 billion 94.13 97.80 97.17 16.96 APT

Table 14  Results of comparing two APT detection approaches

Method Accuracy Sensitivity Specificity Precision

Lajevardi & Amini [16] 77.31 44.44 80.00 15.38

Our proposed approach 89.07 88.88 89.09 40.00

Page 33 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

According to the values that are shown in Table 12, we can draw the receiver operating
characteristic (ROC) curve for our approach. As shown in Fig. 14, the coordinate of our
approach in the ROC curve is (0.8888, 0.1091). This point in the ROC curve means any
other solution for detecting APT attacks, which are evaluated based on our proposed
dataset, should try to increase the sensitivity while the specificity is fixed or become
more. In other words, any new solution should try to be placed near point (0,1) in the
ROC space.

Also, the experimental results of our approach per each APT scenario, which was
described in Table 11, are shown in Table 13. As shown in this table, since our dataset is
unbalanced and the number of malicious events versus the benign ones is very small, the
values of accuracy and precision are unrealistic and useless.

To evaluate more accurately, we reevaluate and compared the proposed approach in
[16] with the proposed approach in this paper using our new generated dataset, which
contains slow attacks. As shown in Table 14, since the approach proposed in [16] can
just detect low and hybrid attacks and cannot detect the slow ones, the sensitivity of the
prior approach [16] is too low (44.44 %) in comparison with the sensitivity of our pro-
posed approach (88.88 %) using this new dataset.

Discussion

APT detection is a new challenge in the field of computer security and the problem of
detecting low and slow APTs is a very new challenge in the field of malware analysis,
hence the number of publications about detecting APT attacks is rare. Since we cannot
find any other approaches focusing on low-level and slow APTs and to the best of our
knowledge, our proposed approach is the first solution for detecting this type of APTs,
we cannot use quantitative comparison between our approach and the other correlation
approaches. However, since the related works use alert correlation methods for detecting
APT attacks, we do a qualitative comparison (shown in Table 15) between our approach
and the other correlation approaches. As shown in this table, the main drawback of all
previous works, even our previous work [16], is the lack of detecting slow attacks. Our
approach can detect multi-step, hybrid, low-level, and slow attacks.

As mentioned before, the average batch processing time in our proposed approach to
detect the slow attacks was about 6.1 hours. This time depends on several parameters as
follows, and can be improved by the following considerations.

•	 Correlation algorithms: Since the solution for detecting low-level APTs is based on
reasoning, the processing time depends on the reasoning algorithm. We use OWL-
DL (like a solution in [93]) for reasoning by SANSA. In this situation, the complexity
class of reasoning is ExpTime-Complete. Since SANSA inference engine uses OWL-
Horst [94] forward chaining inference for reasoning and we do not use all features of
basic description logic (Attributive Language with Complements), we can use OWL-
Horst instead of OWL-DL to reduce the reasoning time. In this situation the com-
plexity class of reasoning is Nondeterministic Polynomial Complete (NP-Complete)
and in a nontrivial case, it is Polynomial [94].

•	 SANSA framework: To detect slow APTs, we encounter with analyzing a big number
of frames (about several billion frames). Since we use SANSA as an inference engine,

Page 34 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

the processing time is highly dependent on the processing power of SANSA. Our
experience shows SANSA can analyze several million frames in some seconds.

•	 Processing infrastructure: Since SANSA uses Spark technology to process the big
size of data, the infrastructure that is used by Spark has a key role in the processing
time. We deployed our approach on a cluster with 8 computing nodes and 80 cores,
1 Terabyte of RAM, and an NFS (Network File System) server node with 10 Terabyte
capacity. The operating system was Rocks cluster 7.

Table 15  A subjective comparison between the proposed approach and other correlation methods

a Hybrid correlation means correlating operating system events with network events

Method Attack detection method Attack type

Correlation type Alert
causal
analysis

Hybrid
correlationa

Multi-step
attack
detection

Low-level
attack
detection

Slow
attack
detection

Debar and Wespi
[73]

Alert Correlation – – – – –

Valeur et al. [74] Alert Correlation – – � – –

Wang and Chiou
[75]

Alert Correlation � – – – –

Valdes and Skinner
[76]

Alert Correlation – – � – –

Julisch 2001 [77] Alert Correlation � – – – –

Julisch 2003 [78] Alert Correlation � – – – –

Al-Mamory and
Zhang [79]

Alert Correlation � – � – –

Peng et al. [80] Alert Correlation � – – – –

Qin and Lee [81] Alert Correlation � – � – –

Goldman et al. [82] Alert Correlation � – � – –

Viinikka et al. [83] Alert Correlation – – – – –

Treinen and Thuri-
mella [84]

Alert Correlation � – � – –

Ourston et al. [41] Alert Correlation – – � – –

Ren et al. [85] Alert Correlation � – � – –

Zhitang et al. [86] Alert Correlation – – � – –

Ma et al. [87] Alert Correlation – – � – –

Zhitang et al. [88] Alert Correlation – – � – –

Farhadi et al. [89] Alert Correlation � – � – –

Manganiello et al.
[90]

Alert Correlation � – � – –

Soleimani and
Ghorbani [91]

Alert Correlation – – � – –

Ramaki et al. [92] Alert Correlation � – � – –

Ghafir et al. [40] Alert Correlation – – � – –

Lajevardi and
Amini [16]

Event Correlation � � � � –

Mohamed and
Belaton [38]

Alert Correlation � – � – –

Our proposed
approach

Event Correlation � � � � �

Page 35 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

Conclusion
Targeted cyberattacks, which are known as APTs, have some characteristics such
as low-level, slow, multi-step, distributed, and hybrid. Since the most complex APT
attacks are low-level and slow, in this paper, we focus on this type of APT attack. Our
approach uses a scalable knowledge-based system, and semantic correlation following
the enhanced version of the approach we proposed in [16] for detecting the low-level
as well as slow APTs. In our approach, we use a sliding window called Vermiform
window. This window has two steps or phases in its movement: expanding and shrink-
ing. In expanding, we use a scalable inference engine called SANSA for correlating a
big size of events based on big data frameworks such as Spark. In some situation that
the APT attack duration last a very long time or the number of intercepted events is
very much, we use the shrinking process. In shrinking, the events are abstracted and
reduced and in fact, we create an abstract history from the old events. This solution is
different from the regular approaches which eliminate the old events completely.

To evaluate the proposed approach, we use a dataset that contains seven implemented
low-level and slow APT attacks. The proposed approach shows 88.88% of sensitivity and
89.09% of specificity.

To the best of our knowledge, our approach is the first solution for detecting slow
APTs which whose duration is about several months. However, there are still many
opportunities for innovations in the domain of APT attacks. We believe that the fol-
lowing works could continue and complete our research on detecting APT attacks with
more accuracy:

•	 One of the main challenges in the field of APTs is attack prediction. Our approach
in this paper cannot predict the APT attacks before the malware fulfills its mali-
cious activity. Using machine learning algorithms, we can predict malicious activities
before an APT completes its malicious activities.

•	 The proposed approach has no solution to detect the APT attacks that violate the
availability of the system and propose an approach for solving this weakness can be
considered as future work.

•	 The proposed approach has no solution to verify the generated alerts. Alert verifica-
tion can help us to reduce the number of false alerts.

•	 Another future work is to improve and release our dataset to be used by other APT
detection approaches to have a better and precise evaluation result.

•	 Proposing a stream-based approach for detecting the APT attacks that are not slow
is another research topic, which could be considered in the future.

It is worthwhile to note that the proposed approach can be applied on different network
structures such as IT networks, smart grids, microgrids [95], and even IoT networks.

Abbreviations
The list of abbreviations and the symbols used in the paper are listed in Table 16 in “List
of the symbols used in the paper” section.

Page 36 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

Appendix
List of the symbols used in the paper

The symbols, which are defined and used in this paper, are listed in Table 16.

Table 16  List of the symbols used in the paper

Symbol Category Description

Event Class Event type (of all possible events)

Subject Class Subject type (of all possible subjects)

Object Class Object type (of all possible objects)

Action Class Action type (of all possible actions)

subject : EventI −→ SubjectI Function Determines the subject of an event

object : EventI −→ ObjectI Function Determines the object of an event

action : EventI −→ {R,W} Function Determines the action of an event

time : EventI −→ N Function Determines the timestamp of an event

∼ Relation Event relation

ES ⊆ EventI Set Suspicious event set

SP ⊆ EventI Set Set of all unauthorized events

I : EventI −→ EventI Function Effect function

⊑ Subsumption
partOf
−−−→

Relation Part of relation

W Individual Abbr. of Write

R Individual Abbr. of Read

νi Set Attack vector

ν Set Set of all attack vectors

f : Event × N → N Function Specifies the number of events in a specific event set which
have a specific timestamp

me : SubjectI −→ P(ObjectI) Function Determines the memory of a specific subject

ma : SubjectI −→ P(ObjectI) Function Determines the objects that are changed by a specific subject

� : P(E) → P(E) Function Abstracting function

WE Set Set of events

AE Set Set of abstracted events

APT Abbr. of Advanced Persistent Threat

SWRL Abbr. of Semantic Web Rule Language

IPC Abbr. of Inter-Process Communication

DLP Abbr. of Data Loss Prevention

OWL Abbr. of Ontology Web Language

DL Abbr. of Description Logic

IDMEF Abbr. of Intrusion Detection Message Exchange Format

SANSA Abbr. of Scalable Semantic Analytics Stack

ROC Abbr. of Receiver Operating Characteristic

SSDT S
ystem service dispatch table

Page 37 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

Syntax and semantics of description logic

Part of syntax and semantics of description logic (DL), which is used in our research, are
shown in Table 17.

Authors’ information
Amir M. Lajevardi received the Ph.D. degrees in the computer software engineering Sharif University ofTechnology, Tehran, Iran,
and now he is a postdoctoral research associate in the Department of ComputerEngineering at the Sharif University of Technol-
ogy. His research interests are intrusion detection systems,malware detection, alert correlation, and operating system security.
Morteza Amini is currently an associate professor at the Department of Computer Engineering, SharifUniversity of Technology,
Tehran, Iran and he is also one of the directors of Data and Network Security Lab(DNSL) in this department. His research interests
include database security, access control, intrusion detectionsystems, and formal methods in information security.

Acknowledgements
This article is supported and funded by a research grant from the Iran National Science Foundation (INSF) and Iran’s
National Elite Foundation with the grant number 99020686.

Author’s contributions
AML research principal in this work as well as the technical issues. MA advise all process for this work. All authors read
and approved the final manuscript.

Funding
This article is supported and funded by a research grant from the Iran National Science Foundation (INSF) and Iran’s
National Elite Foundation with the grant number 99020686.

Availability of data and materials
The datasets for this study are available on request to the corresponding author.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran. 2 Department of Computer Engi-
neering, Sharif University of Technology, Tehran, Iran.

Received: 23 July 2021 Accepted: 23 October 2021

Table 17  Syntax and semantics of description logic [18]

- The model is M = ��, .I� , where

� is the domain of objects, and

I is an interpretation function

Syntax Description Semantics

C, D Concepts or Classes C
I ,DI ⊆ �

R, S Relations or Properties RI , SI ⊆ �×�

C ⊑ D Class subsumption CI ⊆ DI

R ⊑ S Property subsumption RI ⊆ SI

C ⊔ D Union of classes (C ⊔ D)I = CI ∪ DI

C ⊓ D Intersection of classes (C ⊓ D)I = CI ∩ DI

¬C Complement (¬C)I = �− CI

∃R.C Existential quantification (∃R.C)I = {a ∈ �|∃b, �a, b� ∈ RI ∧ b ∈ CI}

∀R.C Value restriction (∀R.C)I = {a ∈ �|∀b, �a, b� ∈ RI → b ∈ CI}

⊤ Top concept or Thing ⊤I = �

⊥ Bottom concept or Nothing ⊥I = ∅

Page 38 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

References
	1.	 Jeun, I, Lee, Y, Won D. A practical study on advanced persistent threats. Comput Appl Secur Control Syst Eng.

2012;144–152 (Chap. 21).
	2.	 Zhang, Q, Li, H, Hu, J. A study on security framework against advanced persistent threat. In: Proceedings of 2017 IEEE

7th International Conference on Electronics Information and Emergency Communication, ICEIEC 2017, 2017; pp.
128–131. https://​doi.​org/​10.​1109/​ICEIEC.​2017.​80765​27

	3.	 Cole E. Advanced persistent threat: understanding the danger and how to protect your organization. 2012. p. 320.
	4.	 Auty M. Anatomy of an advanced persistent threat. Netw Secur. 2015;4(4):13–6.
	5.	 Chen P, Desmet L, Huygens C. A study on advanced persistent threats. In: Conference on Communications and

Multimedia Security, 2014; pp. 63–72
	6.	 Ghafir I, Prenosil V. Advanced persistent threat attack detection: an overview. 2014;4(4):1–5.
	7.	 Tankard C. Advanced persistent threats and how to monitor and deter them. Netw Secur. 2011;2011(8):16–9.
	8.	 Thonnard O, Bilge, L O’Gorman, G Kiernan, S Lee, M. Industrial espionage and targeted attacks: Understanding the

characteristics of an escalating threat. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7462 LNCS, 2012;pp. 64–85. https://​doi.​org/​10.​1007/​
978-3-​642-​33338-5_4

	9.	 Thomson G. APTs: a poorly understood challenge. Netw Secur. 2011;2011(11):9–11.
	10.	 Brewer R. Advanced persistent threats: minimising the damage. Netw Secur. 2014;2014(4):5–9.
	11.	 Virvilis N, Gritzalis D, Apostolopoulos T. Trusted computing vs. Advanced persistent threats: Can a defender win this

game? In: International Conference on Autonomic and Trusted Computing, pp. 2013;396–403
	12.	 Marchetti M, Pierazzi F, Colajanni M, Guido A. Analysis of high volumes of network traffic for advanced persistent

threat detection. Comput Netw. 2016;109(2):127–41.
	13.	 Lemay A, Calvet J, Menet F, Fernandez JM. Survey of publicly available reports on advanced persistent threat actors.

Comput Secur. 2018;72:26–59.
	14.	 Chen J, Su C, Yeh KH, Yung M. Special issue on advanced persistent threat. Future Gen Comput Syst. 2018;79:243–6.
	15.	 Kaspersky: Targeted cyberattacks logbook. https://​apt.​secur​elist.​com Accessed 2021-11-27.
	16.	 Lajevardi AM, Amini M. A semantic-based correlation approach for detecting hybrid and low-level APTs. Future

Generat Comput Syst. 2019;96:64–88.
	17.	 Lehmann J, Sejdiu G, Bühmann L, Westphal P, Stadler C, Ermilov I, Bin S, Chakraborty N, Saleem M, Ngonga Ngomo

AC, Jabeen H. Distributed semantic analytics using the SANSA stack. In: Lecture Notes in Computer Science (includ-
ing Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10588 LNCS, 2017;pp.
147–155. Springer. https://​doi.​org/​10.​1007/​978-3-​319-​68204-4_​15

	18.	 Mann CJH. The description logic handbook-theory, implementation and applications. Kybernetes. 2003;32(9/10).
https://​doi.​org/​10.​1108/k.​2003.​06732​iae.​006.

	19.	 Matrosov A, Rodionov E, Harley D, Malcho J. Stuxnet under the microscope. ESET LLC. 2010.
	20.	 Global Research and Analysis Team: The ProjectSauron APT. Kaspersky Lab 2016;02, 1–23.
	21.	 US9628507B2-Advanced persistent threat (APT) detection center-Google Patents. https://​paten​ts.​google.​com/​pat-

ent/​US962​8507B2/​en. Accessed 2020-02-05.
	22.	 Balduzzi M, Ciangaglini V, McArdle R. Targeted attacks detection with SPuNge. In: International Conference on

Privacy, Security and Trust, 2013;pp. 185–194
	23.	 Liu ST, Chen YM, Lin SJ. A novel search engine to uncover potential victims for APT investigations. Lecture Notes in

Computer Science. 2013;405–416 (Chap. 34).
	24.	 Quader F, Janeja V, Stauffer J. Persistent threat pattern discovery. In: IEEE International Conference on Intelligence

and Security Informatics, 2015;pp. 179–181.
	25.	 Zhao G, Xu K, Xu L, Wu B. Detecting APT malware infections based on malicious DNS and traffic analysis. IEEE Access.

2015;3:1132–42.
	26.	 Niu W, Zhan X, Li K, Yang G, Chen R. Modeling attack process of advanced persistent threat. In: International Confer-

ence on Security, Privacy and Anonymity in Computation, Communication and Storage, 2016;pp. 383–391.
	27.	 Friedberg I, Skopik F, Settanni G, Fiedler R. Combating advanced persistent threats: From network event correlation

to incident detection. Comput Secur. 2015;48:35–57.
	28.	 Bhatt P, Yano E, Gustavsson P. Towards a framework to detect multi-stage advanced persistent threats attacks. In:

International Symposium on Service Oriented System Engineering, 2014;pp. 390–395.
	29.	 Haopu, Y. Method for behavior-prediction of APT attack based on dynamic Bayesian game. In: Proceedings of

2016 IEEE International Conference on Cloud Computing and Big Data Analysis, ICCCBDA 2016, 2016;pp. 177–182.
https://​doi.​org/​10.​1109/​ICCCB​DA.​2016.​75295​54

	30.	 Giura, P, Wang, W. A context-based detection framework for advanced persistent threats. In: Proceedings of the 2012
ASE International Conference on Cyber Security, CyberSecurity 2012, 2012;pp. 69–74. https://​doi.​org/​10.​1109/​Cyber​
Secur​ity.​2012.​16.

	31.	 Moon D, Im H, Kim I, Park JH. DTB-IDS: an intrusion detection system based on decision tree using behavior analysis
for preventing APT attacks. J Supercomput. 2017;73(7):2881–95.

	32.	 Das A, Shen MY, Shashanka M, Wang J. Detection of exfiltration and tunneling over DNS. In: Proceedings - 16th IEEE
International Conference on Machine Learning and Applications, ICMLA 2017, vol. 2017-Decem, 2017;pp. 737–742.
https://​doi.​org/​10.​1109/​ICMLA.​2017.​00-​71.

	33.	 Debatty T, Mees W, Gilon T. Graph-based APT detection. In: 2018 International Conference on Military Communica-
tions and Information Systems, ICMCIS 2018, 2018;pp. 1–8. https://​doi.​org/​10.​1109/​ICMCIS.​2018.​83987​08.

	34.	 Joloudari JH, Haderbadi M, Mashmool A, Ghasemigol M, Band SS, Mosavi A. Early detection of the advanced persis-
tent threat attack using performance analysis of deep learning. IEEE Access. 2020;8:186125–37. https://​doi.​org/​10.​
1109/​ACCESS.​2020.​30292​02.

	35.	 Zimba A, Chen H, Wang Z, Chishimba M. Modeling and detection of the multi-stages of Advanced Persistent Threats
attacks based on semi-supervised learning and complex networks characteristics. Future Generat Comput Syst.
2020;106:501–17. https://​doi.​org/​10.​1016/j.​future.​2020.​01.​032.

https://doi.org/10.1109/ICEIEC.2017.8076527
https://doi.org/10.1007/978-3-642-33338-5_4
https://doi.org/10.1007/978-3-642-33338-5_4
https://apt.securelist.com
https://doi.org/10.1007/978-3-319-68204-4_15
https://doi.org/10.1108/k.2003.06732iae.006
https://patents.google.com/patent/US9628507B2/en
https://patents.google.com/patent/US9628507B2/en
https://doi.org/10.1109/ICCCBDA.2016.7529554
https://doi.org/10.1109/CyberSecurity.2012.16
https://doi.org/10.1109/CyberSecurity.2012.16
https://doi.org/10.1109/ICMLA.2017.00-71
https://doi.org/10.1109/ICMCIS.2018.8398708
https://doi.org/10.1109/ACCESS.2020.3029202
https://doi.org/10.1109/ACCESS.2020.3029202
https://doi.org/10.1016/j.future.2020.01.032

Page 39 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148 	

	36.	 Xiang Z, Guo D, Li Q. Detecting mobile advanced persistent threats based on large-scale DNS logs. Computers and
Security. 2020;96. https://​doi.​org/​10.​1016/j.​cose.​2020.​101933.

	37.	 Shang L, Guo D, Ji Y, Li Q. Discovering unknown advanced persistent threat using shared features mined by neural
networks. Comput Netw. 2021;189:107937. https://​doi.​org/​10.​1016/j.​comnet.​2021.​107937.

	38.	 Mohamed N, Belaton B. SBI model for the detection of advanced persistent threat based on strange behavior of
using credential dumping technique. IEEE Access. 2021;9:42919–32. https://​doi.​org/​10.​1109/​ACCESS.​2021.​30662​89.

	39.	 Brogi G, Tong VVT. TerminAPTor: Highlighting advanced persistent threats through information flow tracking. In:
International Conference on New Technologies, Mobility and Security, 2016;pp. 1–5.

	40.	 Ghafir I, Hammoudeh M, Prenosil V, Han L, Hegarty R, Rabie K, Aparicio-Navarro FJ. Detection of advanced persistent
threat using machine-learning correlation analysis. Future Generat Comput Syst. 2018;89:349–59.

	41.	 Ourston D, Matzner S, Stump W, Hopkins B. Applications of hidden Markov models to detecting multi-stage net-
work attacks. In: Proceedings of Conference on System Sciences, 2003;pp. 1–10.

	42.	 Fensel D, van Harmelen F, Horrocks I, McGuinness DL, Patel-Schneider PFOIL. An ontology infrastructure for the
semantic web. IEEE Intell Syst. 2001;16(2):38–45.

	43.	 Costa R, Cachulo N, Cortez P. An intelligent alarm management system for large-scale telecommunication compa-
nies. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 5816 LNAI, 2009;pp. 386–399. https://​doi.​org/​10.​1007/​978-3-​642-​04686-5_​32.

	44.	 McGuinness DL, Van H, Frank. OWL web ontology language overview. W3C Recommend. 2004;10(10):1–22.
	45.	 Agarwal M, Purwar S, Biswas S, Nandi S. Intrusion detection system for PS-Poll DoS attack in 802.11 networks using real

time discrete event system. IEEE/CAA J Automat Sin. 2017;4(4):792–808. https://​doi.​org/​10.​1109/​JAS.​2016.​75101​78.
	46.	 Reasoners and rule engines: Jena inference support. https://​jena.​apache.​org/​docum​entat​ion/​infer​ence/ Accessed

2019-02-12.
	47.	 1998 DARPA Intrusion Detection Evaluation Data Set. https://​www.​ll.​mit.​edu/​ideval/​data/​1998d​ata.​html Accessed

2019-04-03.
	48.	 1999 DARPA Intrusion Detection Evaluation Data Set. https://​www.​ll.​mit.​edu/​ideval/​data/​1999d​ata.​html Accessed

2021-04-03.
	49.	 2000 DARPA Intrusion Detection Scenario Specific Data Sets. https://​www.​ll.​mit.​edu/​ideval/​data/​2000d​ata.​html

Accessed 2021-04-03.
	50.	 KDD Cup Archives. http://​www.​kdd.​org/​kdd-​cup Accessed 2016-04-03.
	51.	 Shiravi A, Shiravi H, Tavallaee M, Ghorbani AA. Toward developing a systematic approach to generate benchmark

datasets for intrusion detection. Comput Secur. 2012;31(3):357–74.
	52.	 Defcon. https://​www.​defcon.​org/ Accessed 2021-04-03.
	53.	 LBNL/ICSI enterprise tracing project. http://​www.​icir.​org/​enter​prise-​traci​ng/​Overv​iew.​html Accessed 2019-04-03.
	54.	 Sharafaldin I, Habibi Lashkari A, Ghorbani AA. Toward Generating a New Intrusion Detection Dataset and Intrusion

Traffic Characterization. In: International Conference on Information Systems Security and Privacy, 2018;pp. 108–116.
	55.	 Sharafaldin, Iman, Lashkari, Arash Habibi, Ghorbani AA. Toward generating a new intrusion detection dataset and

intrusion traffic characterization. In: ICISSp, 2018;pp. 108–116.
	56.	 Sharafaldin I, Lashkari AH, Hakak S, Ghorbani AA. Developing realistic distributed denial of service (DDoS) attack

dataset and taxonomy. In: Proceedings - International Carnahan Conference on Security Technology, vol. 2019-
Octob 2019. https://​doi.​org/​10.​1109/​CCST.​2019.​88884​19. https://​ieeex​plore.​ieee.​org/​abstr​act/​docum​ent/​88884​19/.

	57.	 Habibi Lashkari A, Kaur G, Rahali A. In: DIDarknet: DIDarknet: A contemporary approach to detect and character-
ize the darknet traffic using deep image learning. In: ACM International Conference Proceeding Series, pp. 1–13.
Association for Computing Machinery, (2020). https://​doi.​org/​10.​1145/​34425​20.​34425​21.

	58.	 Teng S, Wu N, Zhu H, Teng L, Zhang W. SVM-DT-based adaptive and collaborative intrusion detection. IEEE/CAA J
Automat Sin. 2018;5(1):108–18. https://​doi.​org/​10.​1109/​JAS.​2017.​75107​30.

	59.	 APT Test Dataset. http://​www.​ce.​sharif.​edu/​lajev​ardi/​APTDa​taset Accessed 2021-05-04.
	60.	 EasyHook. https://​easyh​ook.​github.​io/ Accessed 2020-03-03.
	61.	 Ether: Malware Analysis via Hardware Virtualization Extensions. http://​ether.​gtisc.​gatech.​edu/​source.​html Accessed

2021-03-03.
	62.	 The Flame: Questions and Answers. https://​secur​elist.​com/​blog/​incid​ents/​34344/​the-​flame-​quest​ions-​and-​answe​

rs-​51/ Accessed 2021-02-03.
	63.	 Global Research and Analysis Team (GReAT): Shamoon the Wiper – Copycats at Work. https://​secur​elist.​com/​shamo​

on-​the-​wiper-​copyc​ats-​at-​work/​57854/ Accessed 2021-04-04.
	64.	 Global Research and Analysis Team (GReAT): From Shamoon to StoneDrill. https://​secur​elist.​com/​from-​shamo​on-​to-​

stone​drill/​77725/ Accessed 2021-04-04.
	65.	 Global Research and Analysis Team (GReAT): WannaCry ransomware used in widespread attacks all over the world.

https://​secur​elist.​com/​wanna​cry-​ranso​mware-​used-​in-​wides​pread-​attac​ks-​all-​over-​the-​world/​78351/ Accessed
2021-04-04.

	66.	 Global Research and Analysis Team (GReAT): Cloud Atlas: RedOctober APT is back in style. https://​secur​elist.​com/​
cloud-​atlas-​redoc​tober-​apt-​is-​back-​in-​style/​68083/ Accessed 2021-04-04.

	67.	 Global Research and Analysis Team (GReAT): Red October Diplomatic Cyber Attacks Investigation. https://​secur​elist.​
com/​red-​octob​er-​diplo​matic-​cyber-​attac​ks-​inves​tigat​ion/​36740/ Accessed 2021-04-04.

	68.	 Global Research and Analysis Team (GReAT): Poseidon Group: a Targeted Attack Boutique specializing in global
cyber-espionage. https://​secur​elist.​com/​posei​don-​group-a-​targe​ted-​attack-​bouti​que-​speci​alizi​ng-​in-​global-​cyber-​
espio​nage/​73673/ Accessed 2021-04-04.

	69.	 Global Research and Analysis Team (GReAT): The Darkhotel APT. https://​secur​elist.​com/​the-​darkh​otel-​apt/​66779/
Accessed 2021-04-04.

	70.	 Microsoft WinDbg. https://​devel​oper.​micro​soft.​com/​en-​us/​windo​ws/​hardw​are/​downl​oad-​windbg Accessed
2017-04-02.

	71.	 Microsoft MSDN. https://​msdn.​micro​soft.​com/​libra​ry Accessed 2019-04-03.

https://doi.org/10.1016/j.cose.2020.101933
https://doi.org/10.1016/j.comnet.2021.107937
https://doi.org/10.1109/ACCESS.2021.3066289
https://doi.org/10.1007/978-3-642-04686-5_32
https://doi.org/10.1109/JAS.2016.7510178
https://jena.apache.org/documentation/inference/
https://www.ll.mit.edu/ideval/data/1998data.html
https://www.ll.mit.edu/ideval/data/1999data.html
https://www.ll.mit.edu/ideval/data/2000data.html
http://www.kdd.org/kdd-cup
https://www.defcon.org/
http://www.icir.org/enterprise-tracing/Overview.html
https://doi.org/10.1109/CCST.2019.8888419
https://ieeexplore.ieee.org/abstract/document/8888419/
https://doi.org/10.1145/3442520.3442521
https://doi.org/10.1109/JAS.2017.7510730
http://www.ce.sharif.edu/lajevardi/APTDataset
https://easyhook.github.io/
http://ether.gtisc.gatech.edu/source.html
https://securelist.com/blog/incidents/34344/the-flame-questions-and-answers-51/
https://securelist.com/blog/incidents/34344/the-flame-questions-and-answers-51/
https://securelist.com/shamoon-the-wiper-copycats-at-work/57854/
https://securelist.com/shamoon-the-wiper-copycats-at-work/57854/
https://securelist.com/from-shamoon-to-stonedrill/77725/
https://securelist.com/from-shamoon-to-stonedrill/77725/
https://securelist.com/wannacry-ransomware-used-in-widespread-attacks-all-over-the-world/78351/
https://securelist.com/cloud-atlas-redoctober-apt-is-back-in-style/68083/
https://securelist.com/cloud-atlas-redoctober-apt-is-back-in-style/68083/
https://securelist.com/red-october-diplomatic-cyber-attacks-investigation/36740/
https://securelist.com/red-october-diplomatic-cyber-attacks-investigation/36740/
https://securelist.com/poseidon-group-a-targeted-attack-boutique-specializing-in-global-cyber-espionage/73673/
https://securelist.com/poseidon-group-a-targeted-attack-boutique-specializing-in-global-cyber-espionage/73673/
https://securelist.com/the-darkhotel-apt/66779/
https://developer.microsoft.com/en-us/windows/hardware/download-windbg
https://msdn.microsoft.com/library

Page 40 of 40Lajevardi and Amini ﻿Journal of Big Data (2021) 8:148

	72.	 Horrocks I, Patel-schneider PF, Boley H, Tabet S, Grosof B, Dean M. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. W3C Member submission 21. 2004;21(79):1–20.

	73.	 Debar H, Wespi A. Aggregation and Correlation of Intrusion Detection Alerts. In: International Workshop on Recent
Advances in Intrusion Detection, 2001;vol. 2212, pp. 85–103.

	74.	 Valeur F, Vigna G, Kruegel C, Kemmerer RA. A comprehensive approach to intrusion detection alert correlation.
Dependable and Secure. Computing. 2004;1(3):146–68.

	75.	 Wang C-H, Chiou Y-C. Alert correlation system with automatic extraction of attack strategies by using dynamic
feature weights. Comput Commun Eng. 2016;5(1):1–10.

	76.	 Valdes A, Skinner K. Probabilistic alert correlation. In: International Workshop on Recent Advances in Intrusion
Detection, 2001;pp. 54–68.

	77.	 Julisch K. Mining alarm clusters to improve alarm handling efficiency. in Proceedings of Annual Computer Security
Applications Conference, 2001;12–21.

	78.	 Julisch. Clustering intrusion detection alarms to support root cause analysis. ACM Trans Inform Syst Secur.
2003;6(4):443–71.

	79.	 Al-Mamory SO, Zhang H. IDs alerts correlation using grammar-based approach. Comput Virol. 2009;5(4):271–82.
	80.	 Peng X, Zhang Y, Xiao S, Zheng W, Cui JQ, Chen L, Xiao D. An alert correlation method based on improved cluster

algorithm. In: Workshop on Computational Intelligence and Industrial Application, 2008; vol. 1, pp. 342–347.
	81.	 Qin X, Lee W. Attack plan recognition and prediction using causal networks. In: Conference on Computer Security

Applications, 2004; pp. 370–379
	82.	 Goldman RP, Heimerdinger W, Harp SA, Geib CW, Thomas V, Carter RL. Information modeling for intrusion report aggre-

gation. In: Proceedings of DARPA Information Survivability Conference and Exposition, 2001;vol. 1, pp. 329–342.
	83.	 Viinikka J, Debar H, Mé L, Séguier R. Time series modeling for IDS alert management. In: Proceedings of the ACM

Symposium on Information, Computer and Communications Security, 2006; pp. 102–113.
	84.	 Treinen JJ, Thurimella RA. Framework for the Application of Association Rule Mining in Large Intrusion Detection. In:

Workshop on Recent Advances in Intrusion Detection, 2006;pp. 1–18.
	85.	 Ren H, Stakhanova N, Ghorbani AA. An Online Adaptive Approach to Alert Correlation. In: Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, 2010;pp. 153–172.
	86.	 Zhitang L, Aifang Z, Jie L, Li W. Real-time correlation of network security alerts. In: Proceedings of Conference on

e-Business Engineering, 2007;pp. 73–80.
	87.	 Jie M, Li ZT, Li WM. Real-time alert stream clustering and correlation for discovering attack strategies. In: Proceedings

of the 5th International Conference on Fuzzy Systems and Knowledge Discovery, 2008;vol. 4, pp. 379–384.
	88.	 Li Z, Zhang A, Li D, Wang L. Discovering novel multistage attack strategies. In: Lecture Notes in Computer Science

(including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2007;vol. 4632
LNAI, pp. 45–56. Springer, https://​doi.​org/​10.​1007/​978-3-​540-​73871-8_6.

	89.	 Farhadi H, Amirhaeri M, Khansari M. Alert correlation and prediction using data mining and HMM. ISC J Inform Secur
(ISeCure). 2015;3(2):77–101.

	90.	 Manganiello F, Marchetti M, Colajanni M. Multistep attack detection and alert correlation in intrusion detection
systems. In: Conference on Information Security and Assurance, vol. 200, 2011;pp. 101–110.

	91.	 Soleimani M, Ghorbani AA. Multi-layer episode filtering for the multi-step attack detection. Comput Commun.
2012;35(11):1368–79.

	92.	 Ramaki AA, Amini M, Ebrahimi Atani R. RTECA: Real time episode correlation algorithm for multi-step attack sce-
narios detection. Comput Secur. 2015;49:206–19.

	93.	 Westphal P, Fernández JD, Kirrane S, Lehmann JSPIRIT. A semantic transparency and compliance stack. In: CEUR
Workshop Proceedings. 2018;2198.

	94.	 Ter Horst HJ. Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension
involving the OWL vocabulary. Web Semant Sci Serv Agents World Wide Web. 2005;3(2–3):79–115.

	95.	 Rana MM, Li L, Su SW. Cyber attack protection and control of microgrids. IEEE/CAA J Automat Sin. 2018;5(2):602–9.
https://​doi.​org/​10.​1109/​JAS.​2017.​75106​55.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-540-73871-8_6
https://doi.org/10.1109/JAS.2017.7510655

	Big knowledge-based semantic correlation for detecting slow and low-level advanced persistent threats
	Abstract
	Introduction
	Preliminaries
	Background and problem statement
	APT characteristics
	Related works
	Problem statement

	Proposed approach
	Semantic correlation
	Step 1: event interception
	Step 2: event normalization
	Step 3: big event set processing
	Step 4: policy checking

	Big event knowledge-based processing
	Vermiform window
	Expanding: knowledge-based inference
	Shrinking: event abstraction
	Other restrictions

	Evaluation
	Dataset
	Experimental results
	Discussion

	Conclusion
	Abbreviations
	Acknowledgements
	References

