
Performance testing on Transparent
Data Encryption for SQL Server’s reliability
and efficiency
Evaristus Didik Madyatmadja1*  , Aditya Nur Hakim1 and David Jumpa Malem Sembiring2 

Introduction
In the age of information explosion, data has already been a part of our daily lives that
we are often unaware that we are using one. Data are processed to create information as
meaningful and useful content and communicated to a recipient who uses it to make a
decision [1]. Therefore, a system called Database Management System (DBMS) is used
as a solution for storing and retrieving data [2]. When managing data, the user wants the
system application to be providing the needs of their data management at ease. How-
ever, the existence of risks in using the system cannot be avoided as our present-day life
is vastly driven by data [3]. Various possibilities of data theft can occur when carrying
out a particular project such as database server migration, cloning activities on data file
storage, natural disasters that may arise, or when trying to retrieve existing data file stor-
age [4]. Hence, the database’s security is essential as data is one of the most valuable
assets owned and cannot be disclosed by anyone [5].

According to research conducted by Hammouchi [6], from January 2005 to Decem-
ber 2018, the Privacy Rights Clearinghouse (PRC) has recorded more than 9,000 hack-
ing cases containing 12 billion data with many instances. "Each breach can be caused by
an insider that intentionally breaches information (INSD), payment card fraud (CARD),
physical loss (PHYS), lost or stolen portable device (PORT), being hacked by someone or
infected by malware (HACK), stationary equipment loss (STAT), an unknown method

Abstract 

Data security is being one of the most crucial aspects to be focused on system
development. However, using such a feature to enhance the security of data might
affect the system’s performance. This study aims to observe how substantial Transpar-
ent Data Encryption as a solution for data security on Microsoft SQL Server will affect
the database management system’s performance. Each of the system performance is
conducted with stress and load test. This paper concentrates on the upsides of using
Transparent Data Encryption over standard database by finding how significant perfor-
mance degradation has occurred in terms of Reliability and Efficiency.

Keywords:  Microsoft SQL Server, Transparent Data Encryption, Performance testing

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Madyatmadja et al. J Big Data (2021) 8:134
https://doi.org/10.1186/s40537-021-00520-z

*Correspondence:
emadyatmadja@binus.edu
1 Information Systems
Department, School
of Information Systems, Bina
Nusantara University, Jakarta,
Indonesia
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-3316-5226
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00520-z&domain=pdf

Page 2 of 14Madyatmadja et al. J Big Data (2021) 8:134

(UNKN) or an unintended disclosure like sending an email to the wrong person (DISC)"
[6]. As much as 13.05% of data loss was caused by data storage being stolen and 2.77%
due to missing onsite equipment. This can lead to the possibility of perpetrators to view
existing data by taking physical storage places containing confidential and essential files.
As in Fig. 1, distribution of hack types from 2005 to 2018.

As in Fig. 2, data hacking from 2005 to 2009 was experienced by losing physical storage
devices and increasing all types of hacks between 2009 and 2013. However, the decline
in data hacking decreased as business activists understood how vital data security must
be maintained. The PORT and STAT types of hacks remain stable from year to year and
have not as many data hacks as other restrictions, but the trend is still there and remains
a data security risk.

Being one of the world’s largest software vendors, Microsoft designed a DBMS called
Microsoft SQL Server. SQL Server is a relational database server that supports the

Fig. 1  Distribution of hack types from 2005 to 2018

Fig. 2  Hack type trends from 2005 to 2018

Page 3 of 14Madyatmadja et al. J Big Data (2021) 8:134 	

well-known Structured Query Language (SQL) database language [7]. As a publicly
known DBMS, SQL Server has the advantage of being streamlined installation, enhanced
performance, lower cost of ownership, and better security features. However, it also
has several shortcomings in terms of complex performance tuning, no native support
of source control, and expensive cost for the enterprise edition. As a security measure-
ment, SQL Server offers one of its features called Transparent Data Encryption (TDE). It
encrypts data files and logs in real-time at disk level [8, 9]. This creates a solution where
sensitive data can be gated security by using a Database Encryption Key (DEK), which
is stored in a database that must be unlocked using a special certificate that was formed
when implementing Transparent Data Encryption [10]. This can prevent the possibility
of someone using data without having a key and increasing the security of the database
system owned by the company by preventing unwanted access, reducing cost for manag-
ing user privacy, and provide maximal protection by inhibits the perpetrator to open the
data contents of physical files [11].

Related work
Big data encryption

Privacy and security in the context of big data are critical issues. In the case of compli-
cated applications, the big data security paradigm is not recommended, hence it is disa-
bled by default. However, in its absence, data can always be easily corrupted [12].

Big data may contain sensitive information about persons, privacy is a crucial con-
sideration. To address the privacy issue, data can be de-identified by deleting traits that
would allow an individual to be identified. This is a technique that, when done effec-
tively, works both while data is controlled and when it is released [13].

Encryption is a powerful method for ensuring data security. The essence of data
encryption is to use algorithms to convert the original plaintext file or data into an
unreadable string of code known as ciphertext. Even if someone intercepts the distorted
code, he or she cannot utilize it to obtain the original message. This efficiently preserves
the secrecy of the data and prevents tampering with the data Users with access can
decrypt the file using the matching private key, then update or modify the ciphertext.
There are two types of encryption: symmetric encryption and asymmetric encryption.
To encrypt and decrypt data, symmetric encryption employs a secret key [14].

Encryption also is the most widely discussed approach, and it can protect data secrecy
and integrity. Because not all encryption methods are created equal, cloud service pro-
viders and users must employ the most recent encryption techniques (Homomorphic
encryption, AES or DES) and longer keys, which strain processor capabilities [15].

Transparent data encryption concept

Shmueli and Vaisenberg investigate five traditional database encryption architectures
and compare them. The writers illustrate that existing design can offer a high degree
of security, have a considerable effect on performance and impose large changes on the
application layer or can be transparent to the application layer and provide great perfor-
mance [16].

However, the use of encryption in the database system will impact the performance
of a system. As stated by Sharma and Trivedi [17], based on the research that has been

Page 4 of 14Madyatmadja et al. J Big Data (2021) 8:134

done, taking an approach to modeling from several levels for error prevention and
safety may require sacrifices based on several attributes such as Efficiency and Reliabil-
ity. Other research conducted by Wolter and Reinecke showed that the combination of
security and performance poses interesting tradeoffs and inspires similar models as the
combination of performance and dependability, known as performability [18]. The con-
sequences of security on the probability of having a particular system state require more
performance, judging by the increased need for transactions for encryption time, com-
bined performance and security (CPSM), and ongoing transactions.

Transparent data encryption may help, however solutions for TDE supplied with
important database systems only ensure a data-only system, and are seemingly unneces-
sary if the adversary can access the computer physically, which poses a likely concern
when hosting in the cloud. This work provides an alternative approach to TDE, taking
into consideration cloud-specific hazards, extends encryption to cover data in use and
partially information in motion and is able to run huge SQL sub-sets including heavy
relationship operations, complex attribute and transaction operations [16].

Transparent encryption technology allows data to be encrypted throughout the pro-
cess without altering user habits. It’s an encryption algorithm that is also stressed in
encryption as "transparent." The window system now potentially have a useful applica-
tion with transparent encryption technologies. The hook software intercepts the open-
ing function of the file when the user opens the file. The file is copied to the hidden
directory folder, decrypted data and provided to reader to obtain a clear copy before the
file information is sent to the reader. The hook application also can intercept the clos-
ing process if the user shuts the file, encrypts the file above, before saving to the storage
device and then transfers it to the original folder. This completes the transparent process
of the complete document encoding and decryption [19].

A study done by [20] focuses on Transparent Data Encryption, a technique that is
used to tackle data security issues. Transparent encryption implies that databases are
encrypted on a hard drive and on any backup medium. Today there are many security
dangers and compliance problems in the global corporate world need security solutions
that are transparent by design to defend against data theft and fraud. Transparent Data
Encoding provides a transparent, standard-based security system that secures network,
disk and media data. By transparently encrypting data it is straightforward and efficient
to safeguard the stored data. High security levels for columns, tables and tables that
are database files saved on hard drives or floppy drives or CDs, and other protection
information.

Transparent Data Encryption (TDE) offers transparent, standard-based security for
network, disk, and backup data protection. By transparent encryption of data, it is easy
and efficient protection of stored data. TDE is able to encode and decrypt data and log
files in real-time. The encryption employs a Database Encryption Key (DEK), which is
saved for recovery in the database boot. The DEK is a symmetric key encrypted with an
EKM module protected certificates in the server’s master data base or with an asymmet-
ric key. TDE secures ’rest’ data, which means data and log files. It enables many rules,
regulation and guidelines made in different industries to be complied with [21].

In fact, TDE works effectively, if the backup of your database to be protected. You need
a master key, a certificate to restore if you are implementing TDE in the source server

Page 5 of 14Madyatmadja et al. J Big Data (2021) 8:134 	

and wish to restorate your database to another server. Think about opening your bank
locker. One key is to implement an extra layer of protection with you and the other key
is the prohibition specialist. The Always Encrypted (AE) allows transparent encryption
of client apps from the database. This AE function is enhanced by TDE by the addition
of an enclosure layer in the memory and transit of sensitive data as well as in rest. In
fact, the Always Encrypted Driver encrypts and decrypts the application. Any potential
leakage to database administration can therefore be managed by the information owner
by keeping the decryption keys, in order to prevent administrators from accessing sensi-
tive data. In contrast, the database administrator uses the master key and certificates to
access the TDE encryption keys [22].

Thus, determining on how much percentage of performance would be taken from
using TDE and not using TDE. SQL interface encryption implemented is: (1) the sensi-
tive table is renamed; (2) the sensitive table is encrypted, (3) the encryption trigger is
defined; (4) the decryption view has been defined. In theory, the application layer should
be transparent in this architecture. In practice it is not, however, as: (1) some actions
cannot be executed on the view and must be reprogrammed to utilize the renaming
table (for example, insert, update or truncate). (2) No questioning of range is supported.
The aforementioned cache design is to be implemented in MySQL, and only by modify-
ing two strategic areas in the InnoDB storage engine: the cache location (added decryp-
tion) and the cache value location (add encryption). Similar to the aforementioned cache
architecture, the storeroom architecture implementation requires only two strategic
points in an InnoDB storage device to be changed: the location where a site reads from
the disk (i.e. all cells in this page will be decrypted) and the location of the site on the
disk (i.e., encrypt all cells in this page) [16].

Reliability and efficiency

This research was conducted by initiating performance testing and compare the imple-
mented TDE’s SQL Server and non-implemented TDE’s SQL Server. We focus on per-
formance value such as Reliability and Efficiency to know how significant performance
degradation once a system is implemented by TDE by doing Load Testing, Stress Testing
and Backup Testing. Each of test can show how affected the systems are by implement-
ing TDE on database system.

Challenged with greater hurdles than demands for results, reliability and availability.
For example, failure rates for software systems are exceedingly difficult to assess unless
software testing is improved [23].

Reliability, availability models, and recovery and maintenance times are as well as
models that are used to drive the models, such as failure rates, recovery success rates.
The state of SW systems can be very vast to limit the application of analytical models
of availability. Simulation models with substantial approximations therefore become the
only means for testing availability and reliability [23].

Performance testing

The result from this paper will be achieved using HammerDB as a benchmarking tool
and Performance Analysis of Logs (PAL) as an analysis tool. This paper aims to provide
knowledge about how Transparent Data Encryption would affect the database system’s

Page 6 of 14Madyatmadja et al. J Big Data (2021) 8:134

performance and how substantial the degradation of performance is by gaining a secu-
rity measurement on the system.

The performance of a machine learning-based approach, particularly modern machine
learning, is well recognized to depend on several exercise models. This variety can be
expressed by number of subjects in a given scenario, such as our case. In this part, the
impact on recognition performance of the number of training subjects is examined [24].

Research methodology
This research will be conducted using performance testing, divided into Load Test-
ing, Stress Testing, and Backup Testing—carried out to see the effect of a system’s
performance when implementing Transparent Data Encryption based on hardware
performance. We will compare the result based on two values, which are Reliability and
Efficiency. Reliability is assessed based on the number of transactions per minute, and
efficiency assessed based on CPU and Memory usage in percentage units and the dura-
tion for data backup.

For the test itself, we have created a trial model with the same performance to be com-
pared; the difference is only on the implementation of TDE. Here is some detail for the
trial model.

Figure 3 shows the research object in this study. Table 1 shows the trial model has a
similar specification

We will conduct the Performance Test with HammerDB version 3.3 as a benchmark-
ing tool. It is used as a database load and stress testing by simulating multiple virtual

Fig. 3  Research object

Page 7 of 14Madyatmadja et al. J Big Data (2021) 8:134 	

users’ workload against the database for transactional and analytic scenarios [25]. Ham-
merDB will create a schema with a structured data type database and became a simu-
lation object for performance testing. Afterward, HammerDB will run a test workload
with 4,482,350 total data used as a transaction, documented with a performance counter
log, and analyze with PAL ver 2.8.2 as a monitoring tool. PAL is used by analyzing the
performance counter log that has been captured and converts it into graphical data. As
the database was generated using a model database, we can assume that database is suf-
ficiently provisioned with a resource that allows the performance model to be built [26].
The test will carried out to find that the system is ready for use in a work environment
that cannot be disturbed. By knowing system performance from the start, developers
can detect early possible design problems and can fix them in detail and precisely [26].

This research will be focused on two values, namely reliability, and efficiency. One
of the depictions that can be done in technical work on software quality metrics is the
Rome Air Development Center (RADC) software quality consumer-oriented attributes.
Used to show the classification of requirements from how the system can answer exist-
ing problems [27]. Table 2 shows functional attributes that have been classified as the
purpose of this research.

Testing will be carried out by three methods, namely Load Testing, Stress Testing, and
Backup Testing. Hardware performance counters are used for capturing the result of the
difference between the system used by software engineers for measuring performance
and allowing software vendors to enhance their code [28]. As a benchmarking tool,

Table 1  Trial model specification

Specification System 1 System 2

CPU Intel Core I7-7700HQ CPU @ 2.80Ghz (2 CPUs) Intel Core I7-7700HQI7-
7700HQ CPU @ 2.80Ghz
(2 CPUs)

Memory 6 GB 6 GB

OS Windows Server 2016 Windows Server 2016

DBMS Microsoft SQL Server 2017 Microsoft SQL Server 2017

Security Measure With TDE Without TDE

Memory 6 GB 6 GB

CPU Intel Core I7-7700HQ CPU @ 2.80Ghz (2 CPUs) Intel Core I7-7700HQI7-
7700HQ CPU @ 2.80Ghz
(2 CPUs)

Memory 6 GB 6 GB

Table 2  Functional attribute

Value types User problem Functional requirement Test scenario Test parameter

Reliability How can transac-
tions run smoothly
without interrup-
tion?

The transaction was stable,
and there were no interrup-
tions

Load Testing Number of Transactions in
minute (transaction/min)

Efficiency How can the sys-
tem use resources
properly?

The system runs with the
resources that have been
provided (no difference)

Stress Testing,
Backup Testing

CPU Usage (%), Memory
Usage (%),
Backup Duration (ms)

Page 8 of 14Madyatmadja et al. J Big Data (2021) 8:134

HammerDB is using an automatic task and categorize the benchmark into five randomly
selected mixed transactions following the percentage as follows:

1.	 New-Order: Receiving new orders from customers (45%),
2.	 Payment: Updating accounts customer to record payment (43%),
3.	 Delivery: Giving orders asynchronously (4%),
4.	 Order-Status: Receiving customer status based on the latest order (4%), and
5.	 Stock-Level: Providing status of warehouse storage (4%).

The following is an explanation of the three methods used to perform performance
testing.

Load Testing is done to look for differences in a system’s performance with a sig-
nificant load, aiming to look for performance and functional problems under load
pressure [29]. Load Testing can be measured through several criteria, one of which is
Transaction Rate. Thus, Load Testing can help testers to perform assessments on the
Reliability type. For Load Testing that will be performed, the examiner will simulate
transactions on database file in system 1 using TDE and system 2 without TDE. The
number of transactions given is 100,000 transactions, and then it will be seen the
number of transactions that are running using the Transaction Counter query as a
reference in determining the Reliability value.

Stress Testing has the meaning to put enormous pressure on a system for quite
a long time. The reason for doing Stress Testing is to find out the behavior of the
application when facing pressure that is greater than expected to face daily activi-
ties when there is a large enough pressure [27]. Running a load that is large enough
for an extended period makes it easy to identify problems that may occur, such as
memory, CPU, storage space, or other needs. We will simulate transactions on the
database used on system 1 using TDE and system 2 without TDE. Transactions will
run for 30 min with four virtual users. Simultaneously, the performance monitor
will perform data retrieval to assess the performance of the two systems. Then the
results will be processed and analyzed using monitoring tools, namely PAL. By using
PAL, we can see system performance in terms of CPU utilization and memory con-
sumption as a reference in assessing the Efficiency value. Thus, stress testing can
help the examiner to determine the Efficiency value.

Backup Testing aims to see how the backup process can be affected by the per-
formance of a system after implemented security measurement, Transparent Data
Encryption. The reason for the Backup Testing process is to find out how a system
can restore data when there is a spontaneous activity, such as data loss or others.
However, a backup test can also be done to find out how long this activity will be
carried out by a system because the action to perform a backup can be affected by
the performance of the existing database system [30]. We will conduct the test by
doing a database backup process using compression and not using compression
on system 1 using TDE and system 2 without TDE. The database size that will be
backed up is 1.232 MB or about 1.2 GB. We will then record the time for the backup
process by displaying the time before and after the backup in milliseconds. We use
SQL Server Management Tools (SSMS) to perform backup queries and gain time to

Page 9 of 14Madyatmadja et al. J Big Data (2021) 8:134 	

perform backup activities. Thus, Backup Testing can help the examiner to determine
the Efficiency value.

Result and discussion
Performance testing is carried out in stages starting from system 1, followed by sys-
tem 2, which begins with Load Testing, then continues with Stress Testing, and ends
with Backup Testing. The parameters used in Performance Testing are as follows: Load
Testing looks at the number of transactions per minute. Stress Testing looks at the per-
centage of CPU usage when performing tests, the percentage of Memory usage when
performing tests, and Backup Testing looks at the time per minute when backing up the
database.

Load Testing is done by running the HammerDB application as a benchmarking tool
and observing how many transactions that run when completing 100,000 transactions
that are conducted three times for more detailed and definite reference. The results
obtained are transactions per minute for each system. It is used as a reference for analyz-
ing the average output of each test. The purpose of this test is to see whether the TDE
system and the TDE system have an effect seen from the transactional rate. These are the
result of Load Testing.

Figure 4 above shows that system 1 and system 2 transactions have a not-so-significant
difference when observed from the number of transactions executed. The transaction
runs for 22 min with 2 min as a ramp-up time or as preparation time for the benchmark

Fig. 4  Comparison of average load testing result

Table 3  Comparison of load testing values

TDE (system 1) Non-TDE
(system 2)

Transaction gap Transaction
gap (%)

Average transactions per minute 3555 3623 − 68 2

Minimal transactions per minute 3129 3007 122 −4

Maximal transactions per minute 3906 4219 − 312 7

Page 10 of 14Madyatmadja et al. J Big Data (2021) 8:134

tool to prepare its test transaction execution. System 1 gets an average transaction rate
of 3,555 per minute, while system 2 receives an average transaction rate of 3623 per min-
ute. Table 3 shows conclusions from the load testing.

From the table above, it can be concluded that the result from the average transac-
tion that runs every minute is 68 transactions per minute or 2% of the total transac-
tions per minute. From the results, it can be seen that the usage of Transparent Data
Encryption will affect the non-implemented Transparent Data Encryption’s system up
to 7%.

Stress testing is done by running a performance monitor to retrieve the required
data with the Data Collector Set and the HammerDB application as benchmark-
ing tools. The data retrieved includes information about the average read and write
speed of the logical disk, memory consumption in terms of available memory, and
CPU usage. The result obtained is a file in the form (.blg), which contains information
about the system’s performance for 30 min, running with four virtual user transaction
processes against the database. The purpose of this test is to see whether the Trans-
parent Database Encryption system and non-Transparent Data Encryption system
has a difference in the form of an effect on system performance seen from the use of
hardware. These are the result of Stress Testing.

Figure 5 shows that system 1 and system 2 hardware usage have a not-so-significant
difference when observed from the percentage of CPU usage and memory consumption.
Based on the test conducted, the result shown that the average CPU usage on system 1 is
29%, average CPU usage on system 2 is 21%, average memory consumption on system 1
is 35%, and average memory consumption for system 2 is 34%. CPU Usage is a term used
to describe how much the processor is working. Memory Consumption is the amount of
memory a particular program utilizes throughout its execution.

The two results above indicate that the use of TDE has an insignificant effect on
system performance. As in Table 4, comparison table of the two data obtained after
testing.

From the table above, it can be concluded that the amount of difference that exists
when viewed from the average CPU usage that runs for 30 min is 8%, and the average

Fig. 5  Comparison of average stress testing results

Page 11 of 14Madyatmadja et al. J Big Data (2021) 8:134 	

memory usage is 2%. From the results, it can be seen that the use of Transparent Data
Encryption will affect the non-implemented Transparent Data Encryption’s CPU
Usage up to 8% and Memory Usage up to 4%

Backup Testing was conducted by running a backup query to perform the data-
base backup process. The backup process is done by saving the time before doing the
backup activity and after doing the backup activity and comparing it in milliseconds.
The following are the results of the tests.

Figure 6 shows that the two tests with compression and without compression have
a difference between system 1 and system 2. Compression is the process of reduction
in bit number required for representing a data. Systems using TDE seem to require
more time than systems that do not use TDE. It might be happening because the
backup process is encrypted by the Database Encryption Key so that it takes a longer

Table 4  Comparison of stress testing values

System 1 (TDE) System 2 (Non-
TDE)

Performance gap Performance
gap (%)

CPU usage

 Average 29% 21% 8

 Minimal 12% 14% − 2

 Maximal 42% 37% 5

Memory usage (MB)

 Average 2161 2086 − 75 2

 Minimal 2236 2180 − 56 2

 Maximal 2125 1978 − 147 4

Fig. 6  Comparison of average backup testing results

Table 5  Comparison of Backup Testing Values

Backup type Compression Non-compression

System System 1 (TDE) System 2 (Non-TDE) System 1 (TDE) System 2 (Non-TDE)

Duration (Ms) 26,121 23,540 28,344 23,183

Gap duration (%) 90% 82%

Page 12 of 14Madyatmadja et al. J Big Data (2021) 8:134

time for the security of the backup file provided. Table 5 shows comparison of backup
testing values.

Based on the table above, the use of TDE in system 1 increases the backup process
duration compared to system 2 that does not use TDE. The total duration increases
by about 10–18% depending on whether or not compression is used when performing
backups.

The conclusion of performance testing is Transparent Data Encryption has a little deg-
radation in terms of system performance by a bit of margin. The differences can be seen
from the percentage of CPU usage, memory, and duration when doing backup activities.
The conclusion from the performance testing that the author has done shows in Table 6.

The difference in performance varies between 2 and 15% depending on what activity is
being carried out, and this test is carried out in a position where the buffer pool does not
have any data because the new database is formed, so the results can be the worst-case
scenario. When conducting experiments on systems that have been running for a long
time, the performance results can improve compared to this test’s results.

Conclusion
This paper has shown that Transparent Data Encryption develop a performance degra-
dation for database system. Figure 7 shows conclusion of performance testing.

Transparent Data Encryption uses approximately 2–15% of system databases’ per-
formance on each value focused on, namely Reliability and Efficiency. Transaction rate

Table 6  Conclusion of performance testing trials

Testing type Criteria Gap difference Percentage
difference

Load testing Transaction rate 68 transaction/min 2%

Stress testing CPU usage 8%

Memory usage 75 MB 2%

Backup testing Duration time 3871 ms 15%

Fig. 7  Conclusion of performance testing

Page 13 of 14Madyatmadja et al. J Big Data (2021) 8:134 	

is number of writes, backup time is time of the process of backing up the operational
state, architecture and stored data of database software. For Reliability value, it appears
that Transparent Data Encryption will be degrading the system performance up to 7% of
the transaction rate per minute. For Efficiency, it seems that Transparent Data Encryp-
tion will be degrading the system performance up to 15% of CPU, Memory, and Backup
Duration. However, the benefit of using Transparent Data Encryption for security meas-
urement is considered useful and adds another layer of security for the system’s data.
We concluded that Transparent Data Encryption is practical to use regardless of the
degradation performance shown on the system because the advantages of Transparent
Data Encryption can be a consideration based on the feature that it has. For the future
research can try to implement using SQL Server Big Data Clusters to make it better in
implementing big data.
Acknowledgements
Thanks to Bina Nusantara University who has funding support.

Authors’ contributions
EDM: Data collection, writing the manuscript, analysis and interpretation data. ANH: Programmer. DJMS: Data collection,
writing the manuscript. All authors read and approved the final manuscript.

Funding
This work is supported by Research and Technology Transfer Office, Bina Nusantara University.

Availability of data and materials
Data is attached in the form of rar data.

Declarations

Ethics approval and consent to participate
No need ethics approval and consent to participate.

Competing interests
We don’t have a financial and non-financial competing interests must be declared in this section.

Author details
1 Information Systems Department, School of Information Systems, Bina Nusantara University, Jakarta, Indonesia. 2 Teknik
Informatika, Institut Teknologi dan Bisnis Indonesia, Medan, Indonesia.

Received: 13 April 2021 Accepted: 27 September 2021

References
	1.	 Gupta B, Mittal A. Introduction to database management system. Delhi: University Science Press; 2017.
	2.	 Jagadish H, Chapman A, Elkiss A, Jayapandian M, Li Y, Nandi A, Yu C. Making database systems usable. In: Proceed-

ings of the 2007 ACM SIGMOD International Conference on Management of Data. 2007; p. 13–24.
	3.	 Deshmukh APAG. Transparent data encryption—solution for security of database. Int J Adv Comput Sci Appl. 2011,

p. 25–27.
	4.	 Cherry D. Securing SQL Server: protecting your database from attackers. Burlington: Syngress; 2011.
	5.	 Mattson UT, A practical implementation of transparent encryption and separation of duties in enterprise databases:

protection against external and internal attacks on databases. Seventh IEEE International Conference on E-Com-
merce Technology (CEC’05). 2004; p. 559–565.

	6.	 Hammouchi H, Cherqi O, Mezzour G, Ghogho M, Koutbi ME. Digging deeper into data breaches: an exploratory data
analysis of hacking breaches over time. International Symposium on Machine Learning and Big Data Analytics for
Cybersecurity and Privacy. 2019; p. 1004–1009.

	7.	 Varga S, Cherry D, D’Antoni J. Introducing Microsoft SQL Server 2016: mission-critical application, deeper insights,
hyperscale cloud, microsoft press. London: Pearson; 2016.

	8.	 Coles M, Landrum R. Expert SQL Server 2008 Encryption, 2011; Springer Natur.
	9.	 Mukherjee S. Popular SQL server database encryption choices. SSRG Int J Comput Sci Eng. 2018;66(1):1–6.
	10.	 Guyer K, To V, Milener G, Ray M, Transparent Data Encryption (TDE),” 09 05 2019. https://​docs.​micro​soft.​com/​en-​us/​

sql/​relat​ional-​datab​ases/​secur​ity/​encry​ption/​trans​parent-​data-​encry​ption?​view=​sql-​server-​ver15.
	11.	 Alain N, Ann KIBE, Cheruiyot WK. Use of enhanced transparent data encryption to protect database against expo-

sure of backup data. Int J Sci Eng Technol. 2016;5:477–81.

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-server-ver15

Page 14 of 14Madyatmadja et al. J Big Data (2021) 8:134

	12.	 Jain P, Gyanchandani M, Khare N. Big data privacy: a technological perspective and review. J Big Data. 2016. https://​
doi.​org/​10.​1186/​s40537-​016-​0059-y.

	13.	 Joshi JBD. Security and privacy for big data: a systematic literature review. Institute of Electrical and Electronics
Engineers, and IEEE Computer Society, Proceedings, 2 IEEE International Conference on Big Data. 2015

	14.	 Nelson B, Olovsson T. Security and privacy for big data: a systematic literature review. IEEE Computer Society and
Institute of Electrical and Electronics Engineers, ICISS 2015 : International Conference on Information Science and
Security : 2015 in Seoul, Kor 2015.

	15.	 Yang P, Xiong N, Ren J. Data security and privacy protection for cloud storage: a survey. IEEE Access. 2020;8:131723–
40. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30098​76.

	16.	 Shmueli E, Vaisenberg R, Gudes E, Elovici Y, Sidorov V, Ng WK. Transparent data encryption for data-in-use and data-
at-rest in a cloud-based database-as-a-Service Solution. Proc. - 2015 IEEE World Congr. Serv. Serv. 2015;44(2): 33–50,
https://​doi.​org/​10.​1109/​SERVI​CES.​2015.​40.

	17.	 Sharma VS, Trivedi KS. Quantifying software performance, reliability and security: an architecture-based approach. J
Syst Softw. 2006;80:193–509.

	18.	 Wolter K, Reinecke P. Formal methods for quantitative aspects of programming languages. Perform Secur Tradeoff.
2010;6154:135–67.

	19.	 Pang P, Aourra K, Xue Y, Li Y, Zhang Q. A transparent encryption scheme of video data for android devices. Proc. -
2017 IEEE Int Conf Comput Sci Eng IEEE/IFIP Int Conf Embed Ubiquitous Comput CSE EUC. 2017; 1: 817–822.https://​
doi.​org/​10.​1109/​CSE-​EUC.​2017.​163

	20.	 Anwar D, Riyazuddin D. Transparent data encryption—solution for security of database contents. Int J Adv Comput
Sci Appl. 2011;2(3):25–8. https://​doi.​org/​10.​14569/​ijacsa.​2011.​020305.

	21.	 Husain R, Security of database contents using transparent data encryption in microsoft sql server enterprise edition.
International J Adv Comput, 2012; p. 97–108.

	22.	 Mukherjee S. Popular SQL server database encryption choices. Int J Comput Trends Technol. 2019;66(1):14–9.
https://​doi.​org/​10.​14445/​22312​803/​ijctt-​v66p1​03.

	23.	 Malkawi MI. The art of software systems development: Reliability. Availab vol. Maintaina, no. Performance (RAMP).
2013; 1–17.

	24.	 Uddin MZ, et al. The OU-ISIR large population Gait Database with real-life carried object and its performance evalua-
tion. IPSJ Trans Comput Vis Appl. 2018. https://​doi.​org/​10.​1186/​s41074-​018-​0041-z.

	25.	 Shaw S. About: HammerDB. November 2019. https://​hamme​rdb.​com/​about.​html. Acessed 6 May 2020.
	26.	 Oshman R, Knottenbelt WJ. Database system performance evaluation models: a survey. Assoc Comput Mach.

2012;69(10):471–93.
	27.	 Wilson S, Lin S. Techniques for testing performance/scalability and stress-testing ADF applications. California: Oracle

White Paper; 2011.
	28.	 Chung L, Nixon BA, Yu E, Mylopoulos J. Non-functional requirements in software engineering. New York: Springer;

2000.
	29.	 Leif U, Andy G, Ingrid V. Exploiting hardware performance counters. 5th Workshop on Fault Diagnosis and Tolerance

in Cryptography. 2008; 59–67.
	30.	 Thakur N, Bansal KL. Load testing on web application using automated testing tool: load complete. Int J Innov Res

Comput Commun Eng. 2015;9305–9315

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s40537-016-0059-y
https://doi.org/10.1186/s40537-016-0059-y
https://doi.org/10.1109/ACCESS.2020.3009876
https://doi.org/10.1109/SERVICES.2015.40
https://doi.org/10.1109/CSE-EUC.2017.163
https://doi.org/10.1109/CSE-EUC.2017.163
https://doi.org/10.14569/ijacsa.2011.020305
https://doi.org/10.14445/22312803/ijctt-v66p103
https://doi.org/10.1186/s41074-018-0041-z
https://hammerdb.com/about.html

	Performance testing on Transparent Data Encryption for SQL Server’s reliability and efficiency
	Abstract
	Introduction
	Related work
	Big data encryption
	Transparent data encryption concept
	Reliability and efficiency
	Performance testing

	Research methodology
	Result and discussion
	Conclusion
	Acknowledgements
	References

