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Introduction
Feature selection is a process of identifying a subset of features that dictate the predic-
tion accuracy of the target variables/class labels in a given machine learning task [1–3]. 
Identification of relevant features improves the machine learning (ML) models’ gener-
alized performance and facilitates a better understanding of the data in relation to the 
ML model [4]. For performing the task of feature selection, various methods have been 
proposed by researchers in the past. These methods could be broadly grouped into six 
categories, namely, filter methods, wrapper methods, embedded methods, hybrid meth-
ods, ensemble methods, and integrative methods [5–7]. While filter methods select fea-
tures based on a performance metric regardless of the supervised learning algorithm 
[8–12], the wrapper methods choose feature subset by iteratively examining a certain or 
an ensemble of the ML algorithm’s performance for selected features [13]. Examples of 
filter methods include Pearson correlation coefficient, information gain, gain ratio, Chi-
square, Fisher score, ReliefF, etc., and examples of wrapper method include sequential 
feature selection, genetic algorithms, etc. On the other hand, in embedded methods, the 
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feature selection algorithm is integrated into the learning algorithm [5, 9, 13]. Examples 
of the embedded method include decision tree, random forest, support vector machine 
recursive feature elimination (SVM-RFE). When compared to filter-based approaches, 
the embedded approach yields higher accuracy because of its interaction with a specific 
classification model. A comprehensive review of these three methods’ description and 
comparison is discussed by various researchers in the literature [4, 5, 14–19].

In hybrid methods, multiple conjunct primary feature selection methods are applied 
consecutively [6]. For instance, Liu et al. [20] proposed a hybrid feature selection method 
in which mutual information was first applied to identify the relevant features from the 
feature set, and then the wrapper method was applied subsequently to choose the subset 
of best features from the relevant features. Ensemble feature selection methods use an 
aggregate of feature subsets of diverse base classifiers [6]. For instance, Hoque et al. [21] 
proposed an Ensemble Feature Selection—Feature Selection (EMI-FS) in which infor-
mation gain, gain ratio, ReliefF, symmetric uncertainty, and Chi-square were employed 
as base filter methods to obtain the relevant subset of features which were subsequently 
combined to extract the optimal subset. In the integrative feature selection method, the 
external knowledge of feature selection is integrated [6]. For example, Cindy et al. [7], 
proposed an integrative gene selection approach in which gene rankings are determined 
by considering both the statistical significance of a gene in the dataset and the biological 
background information acquired through research. In this paper, we restrict our scope 
to the embedded feature selection methods that incorporate feed-forward neural net-
works/multi-layer perceptron as the learning models.

Multi-layer Perceptron (MLP) is a basic type of neural network that learns a func-
tion g : Rq → R

m by training on a dataset, where q is the number of inputs and m is 
the number of outputs. MLP’s were employed for performing feature selection by vari-
ous researchers in the past. For instance, Setiono and Liu [22] developed a neural net-
work feature selector method based on backward elimination wherein weights of low 
magnitude in the network were converged to zero by adding a penalty term to the error 
function. Sindhwani et al. [23] presented a maximum output information algorithm for 
feature selection. Liefeng Bo [24] proposed MLP Embedded Feature Selection (MLP-
EFS), in which each feature is multiplied by the corresponding scaling factor. By apply-
ing truncated Laplace prior to the scaling factors, feature selection is integrated into 
MLP-EFS.

Notwithstanding to methods mentioned above, sensitivity analysis of MLP and sup-
port vector machines (SVM) was also carried out to perform feature selection. For 
instance, Ruck et al. [25] developed a technique that analyzes the weights in MLP to 
determine essential features. Gasca et al. [26] proposed a saliency measure that esti-
mates the input features’ relative contribution to the output neurons. Utans et al. [27] 
proposed a ‘sensitivity-based-pruning (SBP)’ to remove irrelevant input features from 
a nonlinear regression model. Acir et al. [28] implemented the perturbation method 
in the framework of SVM to perform feature selection for classification of Electrocar-
diogram (ECG) beats. Sensitivity analysis examines the change in the target output 
when one of the input features is perturbed, i.e., first-order derivatives of the target 
variable with respect to the input feature are evaluated. Herein we refer the first-order 
derivative term as the feature sensitivity metric. The higher the magnitude of change 
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in feature sensitivity metric, the higher is the importance of input feature. At this 
juncture, it is important to note that sensitivity analysis methods involve computa-
tion of the feature sensitivity metric or first-order derivative for identifying important 
features. In general backpropagation algorithm (for MLP), is employed or finite dif-
ference schemes [29–32] is used for computing feature sensitivity metric. Employing 
numerical differentiation techniques such as finite difference approximation (FDA) 
(see Eq. 1) and central finite difference approximation (CFDA) (see Eq. 2) results in 
inaccurate computation of derivatives [33, 34] because of inappropriate choice of step 
size. For instance, Juana et al. [35] introduced the iterative perturbation method for 
auto-tuning the step size for SVM. Such errors arising due to the choice of smaller 
step sizes are referred to as subtractive cancellation errors.

Finite difference approximation (FDA)

Central finite difference (CFDA)

where x =
(

x1, x2, . . . xk , . . . xq
)′
∈ R

q×1 are the inputs, q is the number of inputs, g(.) 
is the function mapping the inputs to the output variable and, g ′(.) is the first partial 
derivative approximation of f (.) with respect to the input xk . The feature xk is perturbed 
in both the cases to get the first derivative as seen in Eq. (1) and (2).

In this paper, a novel Complex-step sensitivity analysis-based feature selection 
method referred to as CS-FS is proposed, which incorporates a complex-step pertur-
bation of the input feature to compute the feature sensitivity metric and identify the 
important features. It evaluates the analytical quality first-order derivatives without 
the need for extra computations in neural networks or SVM machine learning mod-
els. A brief overview of the complex step perturbation approach is provided in section 
“Overview of complex-step perturbation approach (CSPA)”, and its implementation 
in the framework of FFNN to perform feature selection is described in section “Com-
plex-step feature selection method”. The details of the dataset are provided in section 
“Numerical experiments” and the efficacy of the proposed method is then demon-
strated on real-world datasets in section “Results”, and the summary and future work 
are provided in Section “Summary and future work”.

Overview of complex‑step perturbation approach (CSPA)
CSPA, originally referred to as complex-step derivative approximation (CSDA), was 
proposed by Lyness and Moler [36] to evaluate the first-order derivative of analytic 
functions. A simplified version of mathematical derivation for computing the first-
order derivative of a scalar function using complex-step perturbation was then pro-
vided by Squire and Trapp [37] which is as follows.

(1)g ′
(

x1, x2, . . . xk , . . . xq
)

≈

(

f
(

x1, x2, . . . xk + h, . . . xq
)

− f
(

x1, x2, . . . xk , . . . xq
))

h

(2)

g ′
(

x1, x2, . . . xk , . . . xq
)

≈

(

f
(

x1, x2, . . . xk + h, . . . xq
)

− f
(

x1, x2, . . . xk − h, . . . xq
))

2h
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Consider a holomorphic function f (.) which is infinitely differentiable. The Taylor 
series expansion of the function f (.) evaluated at the complex perturbed point x0 + ih is 
expressed as

where, h is the step size and i2 = −1.
By taking the imaginary component of f (x0 + ih) , and truncating the higher-order 

terms in the Taylor series, the first-order derivative can be expressed as

where, Imag (*) denotes the imaginary component and O
(

h2
)

 is the second-order trun-
cation error. It is evident from Eq. 4 that the first-order derivative evaluated using the 
CSPA technique is not prone to subtractive cancellation errors (see Eq. 1 and Eq. 2) due 
to the absence of subtractive operations. Furthermore, a choice of the small magnitude 
of h could possibly eliminate the truncation error O

(

h2
)

 too. A simple example illustrat-
ing the accuracy of CSPA over finite difference schemes can be found elsewhere [38, 39]. 
Some examples of the fields where CSPA is currently gaining a lot of attention for per-
forming sensitivity analysis includes aerospace [40–43], computational mechanics [38, 
39, 44], estimation theory (e.g., second-order Kalman filter) [45].

Complex‑step feature selection method
In the proposed method, we implement a complex-step perturbation in the framework 
of feed-forward neural networks to illustrate the task of feature selection. Note that this 
could be extended to other ML models such as SVM whose decision function is holo-
morphic. Higher the change in the magnitude of the output variable y ∈ R of the FFNN 
with respect to the input feature xk ∈ R , higher is the importance of the feature xk . For a 
multivariate function, the extended form of CSPA can be expressed as

where x =
(

x1, x2, . . . xk , . . . xq
)′
∈ R

q×1 is a vector of input features, q is the number of 
input features, g(.) is the function mapping the input features to the output target vari-
able and, g ′(.) is the first-order derivative approximation of g(.) with respect to the kth 
input feature xk.

Feature selection for regression using complex‑step sensitivity
The proposed feature selection method for the regression task involves four steps (see 
Fig. 1). In the first step, an FFNN is configured and trained for a given dataset. Configur-
ing the FFNN is a trial-and-error process that involves finding the appropriate number of 
neurons and hidden layers in a network. A neural network is said to be configured when 
it is capable of learning a mathematical mapping between the input features and the 
associated target variable such that it could be generalized to the unseen data instances. 
In the second step, one of the input features, xk is chosen at a time and is perturbed with 

(3)f (x0 + ih) = f (x0)+ ihf ′(x0)−
h2

2!
f ′′(x0)−

ih3

3!
f ′′′(x0)+ . . .

(4)f ′(x0) =
Imag

(

f (x0 + ih)
)

h
+O

(
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)
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an imaginary step size of ih ( whereh ≪ 10−8 ). Feedforward operation is then performed 
with the perturbed feature on the trained FFNN, and the results in the output layer are 
obtained. In the third step, the imaginary components of the output neurons’ results are 
extracted for each perturbed feature and are divided with the step size (h) (see Eq. 5), i.e., 
the first-order derivative of the target output with respect to the input feature is evalu-
ated. Note that step 2 and step 3 are repeated for all instances in the dataset, and the 
average absolute magnitude of the first-order derivative of the target output with respect 
to the input feature is evaluated. For example, if y is the target output variable and xjk is 
the kth feature in the jth observation that is complex-step perturbed ( ih ), then the first 
order derivative of the target output with respect to the input feature averaged over all 
instances of datasets is expressed as (see Eq. 6)

where, N  denotes the number of instances in the dataset, k = 1 . . . q indicates the input 
feature, and j represents the observation number in the dataset. In the fourth and final 
step, the rank of each input feature is determined based on the magnitude of the first-
order derivatives evaluated, as shown in Eq. 5. The feature with a higher magnitude of 
the first-order derivative is assigned a higher rank and vice versa. Note that for training 
the feedforward neural network, a backpropagation algorithm, in conjunction with the 
Levenberg–Marquardt optimization technique, is employed in this study [46].

Feature selection for classification using complex‑step sensitivity
Unlike regression, a modification to step 3 is needed in the proposed method when 
feature selection is performed on the classification task, i.e., evaluating the first-
order derivative of target output with respect to perturbed input feature. The need 

(6)
∂y

∂xk
=

1

N

N
∑

j=1

∣

∣

∣

∣

∂y

∂xjk

∣

∣

∣

∣

Fig. 1  Steps involved in the complex-step sensitivity for regression task
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for modification could be attributed to two reasons: (1) discrete output in the output 
layer and (2) multiple first-order derivatives yielded by the feed-forward neural net-
work output layer (SoftMax layer) (see Fig. 2). Considering the fact that the inputs fed 
to the SoftMax activation neurons in the output layer are not discrete, the first-order 
derivatives of such inputs could still be evaluated. These first-order derivatives will 
aid in providing information about the importance of the input features. If �r repre-
sents the net function of rth neuron in the SoftMax layer, then the first-order deriva-
tive of the net function �r with respect to the kth feature xk is expressed as (see Eq. 7)

where, r = 1 . . . ..m and m indicates the number of class labels. To quantify the change in 
the target output with respect to the kth input feature xk , the average of the first-order 
derivatives obtained for all neurons in the output layer is determined. This average mag-
nitude is referred to as saliency ( Sk ) of kth input feature [25] and is expressed as (see 
Eq. 8):

where r denotes the neuron in the SoftMax output layer, m represents the number of 
class labels, �r represents the net function of rth neuron in the SoftMax layer. The rank 
of each input feature is then determined based on the magnitude of the first-order deriv-
atives for each perturbed feature xk determined as shown in Eq. 8.

(7)
(

∂�r

∂xk

)

=
1

h
Imag(�r(xk + ih))

(8)Sk =
1

N

N
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m
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∣
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Fig. 2  Steps involved in the complex-step sensitivity for the classification task
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Numerical experiments
In this section, numerical experiments are performed to demonstrate the effective-
ness of the proposed method.

Datasets

Three real-world datasets, each for regression and classification problems, are 
employed to demonstrate the proposed method’s efficacy. The datasets are obtained 
from the UCI open-source data repository [47]. For regression problems, the body fat 
percentage dataset, abalone dataset, and wine quality dataset are chosen, and, for the 
classification task, a vehicle dataset, segmentation dataset, and breast cancer dataset 
are chosen. One of the main reasons for choosing these datasets is that they are com-
monly adopted in the literature of feature selection. On the other hand, the results 
obtained from some of the chosen datasets such as body fat percentage, wine quality, 
segmentation are easily interpretable and aids in ensuring the verification of the pro-
posed method. While most of the chosen datasets have descriptive features that are 
continuous in nature, the proposed method can be extended to the datasets consist-
ing of discrete input features. The descriptive features and target variables for each 
dataset are mentioned as follows.

Regression

Body fat percentage dataset [48]: Features—(1) Age (years), (2) Weight (kg), (3) 
Height (cm), (4) Neck (cm), (5) Chest (cm), (6) Abdomen (cm), (7) Hip (cm), (8) Thigh 
(cm), (9) Knee (cm), (10) Ankle (cm), (11) Biceps (cm), (12) Forearm (cm), (13) Wrist 
(cm); Target variable—percentage of body fat.

Abalone dataset [49]: Features—(1) Female, (2) Infant, (3) Male, (4) Length (gms.), 
(5) Diameter (gms.), (6) Height (gms.), (7) Whole weight (gms.), (8) Shucked weight 
(gms.), (9) Viscera weight (gms.), (10) Shell weight (gms.); Target variable—Number 
of rings.

Wine quality dataset [50]: Features—(1) fixed acidity, (2) volatile acidity, (3) citric 
acid, (4) residual sugar, (5) chlorides, (6) free sulfur dioxide, (7) total sulfur dioxide, 
(8) density, (9) pH, (10) sulfates, (11) alcohol; Target variable – quality score (1 to 10).

Classification

Vehicle dataset [51]: Features—(1) Compactness, (2) circularity, (3) radius circular-
ity, (4) radius ratio, (5) axis aspect ratio, (6) maximum length aspect ratio, (7) scatter 
ratio, (8) elongatedness, (9) axis rectangularity, (10) maximum length rectangularity, 
(11) scaled variance major, (12) scaled variance minor, (13) scaled radius of gyration, 
(14) skewness major, (15) skewness minor, (16) kurtosis major, (17) kurtosis minor, 
(18) hollow ratio; Target variable—Class label 1 (van), Class label 2 (Saab), Class label 
3 (bus), Class label 4 (Opel).

Segmentation dataset [47]: Features—(1) region-centroid-col (2) region-centroid-
row (3) short-line-density (4) the results of a line extraction algorithm that counts 
how many lines of length (5) vedge-mean (6) vedge-sd (7) hedge-mean (8) hedge-sd 
(9) intensity-mean (10) rawred-mean (11) rawblue-mean (12) rawgreen-mean (13) 
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exred-mean (14) exblue-mean (15) exgreen-mean (16) value-mean (17) saturatoin-
mean (18) hue-mean; Target variable—Class label 1 (Window), Class label 2 (foil-
age), Class label 3 (brickface), Class label 4 (path), Class label 5 (cement), Class label 6 
(grass), Class label 7 (sky).

Breast cancer dataset [52]: Features—(1) radius1, (2) texture1, (3) perimeter1, (4) 
area1, (5) smoothness1, (6) compactness1, (7) concavity1, (8) concave points1, (9) sym-
metry1, (10) fractal dimension1, (11) radius2, (12) texture2, (13) perimeter2, (14) area2, 
(15) smoothness2, (16) compactness2, (17) concavity2, (18) concave points2, (19) sym-
metry2, (20) fractal dimension2, (21) radius3, (22) texture3, (23) perimeter3, (24) area3, 
(25) smoothness3, (26) compactness3, (27) concavity3, (28) concave points3, (29) sym-
metry3, (30) fractal dimension3; Target variable—Class label 1 (Benign), Class label 2 
(Malignant).

Other details about regression and classification datasets are provided in Table 1 and 
Table 2, respectively. 

Configuring feed‑forward neural networks

Feed-forward neural networks (FFNN) with three hidden layers (HL) are configured to 
train on the regression and classification datasets. While a configuration of 1st HL—20 
neurons, 2nd HL—10 neurons, and 3rd HL—5 neurons is employed to train on regres-
sion datasets, a configuration of 1st HL—60 neurons, 2nd HL—40 neurons, and 3rd 
HL—20 neurons is employed to train on classification datasets. A Rectified Linear Unit 
(ReLU) nonlinear function is used as an activation function for all the configurations 
[53]. Note that different architectures and model parameters yield different results 
if a suitable configuration is not adopted. In this study, various trail configurations of 
increased complexity (i.e., more hidden neurons and hidden layers) were examined 
before choosing a suitable configuration. Herein, the suitable configuration refers to the 
model architecture for which further improvement in performance was not observed 
with an increase in complexity of architecture. For training, validating, and testing 
the chosen configurations, the datasets are randomly partitioned into 70:15:15 ratio, 

Table 1  Description of the datasets used for regression task

Dataset name Instances No. of features No. of 
target 
variables

Bodyfat 252 13 1

Abalone 4177 10 1

Wine quality 4898 11 1

Table 2  Description of the datasets used for the classification task

Dataset name Instances No. of features No. of 
class 
labels

Vehicle 846 30 4

Segmentation 210 18 7

Breast cancer 569 18 2
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respectively. Note that in the case of the classification task, the partition ratio is main-
tained consistently for each class label, i.e., 70:15:15 of training, validation, and test-
ing data from each class label is chosen. To ensure that the chosen configurations yield 
repeatable results, the training operation is performed 100 times with the same partition 
ratio but with the replacement of instances randomly selected in every iteration. The 
performance metric, namely mean squared error (MSE) and accuracy, are evaluated for 
regression and classification datasets, respectively, for chosen configurations. The aver-
age MSE error for body fat percentage, abalone, and wine quality datasets is determined 
to be 20.41, 4.6, and 0.53, respectively. The average accuracy for the vehicle, segmenta-
tion, and breast cancer dataset is determined to be 75%, 80% and, 90%, respectively. The 
addition of more hidden layers or neurons in each hidden layer to the chosen configura-
tion was found to yield similar MSE errors or accuracies and hence are not considered in 
this study.

Results
Followed by the determination of FFNN configuration, the rank of the features in each 
dataset is evaluated using the proposed method. Furthermore, other feature ranking 
methods are also considered in this study for the sake of comparison. An open-source 
software WEKA is employed for this purpose. While feature ranking methods such as 
Pearson correlation coefficient, ReliefF and, mutual information are used for regres-
sion task, symmetric uncertainty, information gain, gain ratio, reliefF and, chi-square is 
employed for the classification task. The efficacy of all feature ranking methods is then 
assessed by evaluating the performance of FFNN, wherein the size of the input layer is 
increased by one feature in each succession. In other words, the performance of FFNN 
for the only top-most feature is first assessed, and then the process is repeated by includ-
ing the second most important feature and so on.

Table 3  Important features identified by various feature selection methods for regression task 
(ranked in the descending order of their importance)

Bodyfat dataset Abalone dataset Wine quality dataset

Corr ReliefF MI CS-FS Corr ReliefF MI CS-FS Corr ReliefF MI CS-FS

6 6 6 6 10 10 10 7 11 2 8 11

5 5 5 3 5 7 5 8 9 11 11 4

7 7 7 13 6 8 7 6 10 6 4 6

2 2 2 4 4 9 6 10 6 9 7 2

8 8 8 8 7 5 9 9 3 7 5 7

9 9 9 2 9 6 4 4 4 1 6 5

1 1 11 1 8 4 8 5 1 10 3 1

11 11 4 7 1 2 2 2 7 8 2 9

3 3 1 5 3 3 1 3 2 3 9 3

4 4 13 12 2 1 3 1 5 4 1 8

10 10 12 11 8 5 10 10

13 13 10 10

12 12 3 9
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Regression

From Table 3, it can be inferred that all four feature ranking methods yielded feature 6 
(Abdomen) as the most important feature and feature 10 (Ankle) as the least relevant 
feature for determining the percentage of body fat. While the top six features deter-
mined using Pearson correlation coefficient, ReliefF and, mutual information method 
are noticed to be similar; the proposed method yielded different feature ranks. Fur-
thermore, the MSE for body fat dataset with each feature’s inclusion is evaluated for all 
four feature ranking methods and is shown in Fig. 3a. From Fig. 3a, it is evident that the 
overall trend of MSE for FFNN decreases with the inclusion of each feature. While the 
proposed method was found to yield lower MSE with only seven top-most features, the 
mutual information method yielded lower MSE for eleven features for the bodyfat data-
set. In other words, the filter based approach was found to be ineffective at determining 
a subset of important features that could reduce the MSE. According to the proposed 
method, following features are found to be least important as they do not contribute fur-
ther for reduction of MSE: (5) Chest (cm), (7) Hip (cm), (9) Knee (cm), (10) Ankle (cm), 
(11) Biceps (cm), (12) Forearm (cm).

In the case of the abalone dataset, the least relevant features are determined to 
be the same by all four feature ranking methods, i.e., feature 1 (female), feature 2 
(infant), and feature 3 (male) are identified to be the least relevant (see Table  3). 
While the remaining seven features’ rank was found to vary, feature 10 (shell weight) 
and feature 7 (whole weight) were common in the top four features for all feature 

(a) (b)

(c)

Fig. 3  Comparison of the complex-step sensitivity method with other feature selection methods for 
regression task
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ranking methods, including the proposed method. Similar to the body fat dataset, 
the MSE of FFNN with the inclusion of each feature is determined for all feature 
ranking methods and is shown in Fig. 3b. From Fig. 3b, it can be inferred that the 
trend of ReliefF and the proposed method are similar. Both ReliefF and the proposed 
method identified feature 5 (diameter), feature 6 (height), feature 7 (whole weight), 
and feature 10 (shell weight) as the top 4 features that yield the lowest MSE. In other 
words, ReliefF was found to be effective among all the filter-based methods. Accord-
ing to the proposed method, following features are found to be least important as 
they do not contribute further for reduction of MSE: (1) Female, (2) Infant, (3) Male, 
(4) Length (gms.), (8) Shucked weight (gms.), (9) Viscera weight (gms.).

Interestingly, in the wine quality dataset, all four feature ranking methods yielded 
different ranks for the features (see Table 3). However, feature 11 (alcohol) is deter-
mined to be one of the top two features by all four feature ranking methods. Fur-
thermore, feature 6 (free sulfurdioxide) is determined to be common among first 
four features determined by all feature ranking methods except mutual information. 
The MSE of FFNN with each feature’s inclusion is determined for all feature ranking 
methods and is shown in Fig. 3c. The trend obtained in Fig. 3c, reveals that all fea-
ture ranking methods performed more or less similar.

Table 4  Important features identified by various feature selection methods for classification task 
(ranked in the descending order of their importance)

Method Feature ranking

Vehicle dataset

 ReliefF 8, 7, 12, 9, 3, 11, 18, 4, 2, 1, 13, 10, 16, 14, 17, 6, 15, 5

 Symmetric uncertainty 12, 7, 8, 11, 9, 6, 3, 4, 1, 13, 2, 14, 10, 17, 18, 5, 16, 15

 Info gain 12, 7, 8, 11, 9, 3, 6, 2, 1, 4, 13, 10, 14, 17, 18, 5, 16, 15

 Gain ratio 11, 9, 12, 7, 4, 8, 6, 3, 5, 18, 13, 14, 1, 2, 16, 10, 15, 17

 Chi-squared 12, 7, 8, 9, 11, 3, 6, 1, 2, 10, 14, 13, 4, 17, 18, 5, 16, 15

 CS-FS 10, 8, 5, 17, 14, 18, 11, 3, 6, 12, 7, 1, 9, 4, 13, 2, 15, 16

Segmentation dataset

 ReliefF 11, 16, 18, 9, 12, 10, 2, 15, 14, 13, 17, 1, 5, 7, 3, 4, 6, 8

 Symmetric uncertainty 18, 10, 9, 16, 12, 11, 15, 17, 2, 14, 13, 7, 8, 5, 6, 3, 4, 1

 Info gain 18, 9, 12, 16, 10, 11, 15, 17, 13, 14, 2, 7, 8, 5, 6, 3, 4, 1

 Gain ratio 10, 11, 9, 16, 18, 2, 12, 14, 15, 17, 13, 8, 7, 5, 6, 3, 4, 1

 Chi-squared 18, 12, 9, 16, 10, 11, 13, 15, 17, 14, 2, 7, 8, 5, 6, 3, 4, 1

 CS-FS 2, 18, 15, 13, 10, 16, 11, 12, 17, 9, 14, 6, 8, 7, 5, 4, 3, 1

Breast cancer dataset

 ReliefF 28, 8, 21, 23, 3, 1, 7, 24, 4, 27, 26, 6, 22, 25, 11, 2, 14, 13, 29, 30, 10, 18, 5, 16, 9, 17, 19, 15, 
12, 20

 Symmetric uncertainty 23, 21, 24, 28, 8, 3, 7, 4, 1, 27, 14, 11, 13, 6, 26, 17, 2, 18, 22, 25, 29, 16, 5, 30, 9, 19, 20, 10, 
12, 15

 Info gain 23, 24, 21, 28, 8, 3, 4, 1, 7, 14, 27, 11, 13, 26, 6, 17, 18, 22, 2, 29, 16, 25, 9, 5, 30, 20, 19, 10, 
12, 15

 Gain ratio 23, 21, 24, 28, 8, 7, 27, 3, 4, 1, 14, 6, 11, 13, 26, 17, 2, 19, 18, 25, 22, 29, 5, 16, 30, 9, 20, 12, 
10, 15

 Chi-squared 23, 21, 24, 28, 8, 3, 4, 1, 7, 14, 27, 11, 13, 26, 6, 17, 18, 22, 2, 29, 25, 16, 9, 5, 30, 20, 19, 10, 
12, 15

 CS-FS 21, 23, 28, 20, 8, 4, 7, 11, 24, 17, 15, 2, 22, 30, 12, 26, 13, 16, 1, 14, 10, 9, 29, 25, 18, 19, 6, 
3, 27, 5
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Classification

From Table  4, it can be inferred that all feature ranking methods employed for the 
classification task identified similar least relevant features for the vehicle dataset 
(feature 15 (skewness minor), feature 16 (kurtosis major)). However, the rank of the 
remaining features was found to vary. While feature 12 (scaled variance minor), fea-
ture 7 (scatter ratio) and feature 8 (elongatedness) was found to be the top three fea-
tures for symmetric uncertainty, information gain, gain ratio, reliefF and, chi-square, 
feature 10 (maximum length rectangularity), feature 8 (elongatedness) and feature 5 
(axis aspect ratio) was found to be the top 3 features for the proposed method, i.e., 
feature 8 (elongatedness) was found to be common among top 3 features predicted 
by all feature ranking methods. Furthermore, the trend of the accuracy is determined 
for vehicle dataset for all feature ranking methods with the inclusion of each feature 
in succession and is shown in Fig. 4a. From Fig. 4a, it is evident that the accuracy of 
the FFNN increases with the addition of each feature for the vehicle dataset. The pro-
posed method yielded an accuracy of 75% by selecting only the top 6 features and was 
found to outperform the other feature ranking methods. The top 6 features are identi-
fied as follows: (5) axis aspect ratio, (8) elongatedness, (10) maximum length rectan-
gularity, (14) skewness major, (17) kurtosis minor and (18) hollow ratio.

Similar to the vehicle dataset, all feature ranking methods employed in the case of 
the segmentation dataset obtained the same least relevant features (feature 1 (region-
centroid-col), feature 3 (short-line density), feature 4 (lines of length), feature 6 
(vedge-sd), and feature 8 (hedge-sd)). While the rank of the top features was found 

(a) (b)

(c)

Fig. 4  Comparison of the complex-step sensitivity method with other feature selection methods for the 
classification task
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to vary for all feature ranking methods, feature 10 (rawred-mean), feature 16 (value-
mean), and feature 18 (hue-mean) were found to be common among the top-most 6 
features. The trend of the accuracy for the segmentation dataset is determined for 
all feature ranking methods with the inclusion of each feature in succession and is 
shown in Fig. 4b. From Fig. 4b, it is evident that the accuracy of the FFNN increases 
with the addition of each feature for the segmentation dataset. Among all the feature 
ranking methods, the proposed method was found to outperform yielding the highest 
accuracy of 90% with only the top 6 features. In other words, the filter based methods 
suggested top 10 features are important for achieving an accuracy of 85%.

Interestingly, in the breast cancer dataset, all feature ranking methods resulted in 
similar top-most features, i.e., feature 21 (radius3) and feature 23 (perimeter3). While 
symmetric uncertainty, information gain, gain ratio, reliefF and, chi-square identified 
feature 10 (fractal dimension1), feature 12 (texture2), and feature 15 (smoothness2) 
as least relevant, the proposed method identified the feature 3 (perimeter1), feature 
5 (smoothness1) and feature 27 (concavity3) are least relevant. Similar to the vehi-
cle and segmentation dataset, the trend of accuracy is obtained for the breast cancer 
dataset with the inclusion of each feature in each succession and is shown in Fig. 4c 
In the case of the breast cancer dataset, the trend of all feature ranking methods was 
found to be more or less similar. An accuracy of 93% is achieved by the inclusion of 
the top two features, i.e., feature 21 (radius3) and feature 23 (perimeter3).

Summary and future work
A novel complex-step sensitivity analysis-based feature selection method is proposed 
in this study for regression and classification tasks. A step-by-step process involved in 
implementing the proposed method in the framework of FFNN is described, and its effi-
cacy on real-world datasets is demonstrated. Three real-world datasets, namely, body fat 
percentage dataset, abalone dataset, and wine quality dataset, are chosen for the regres-
sion task and, three datasets, namely vehicle dataset, segmentation dataset, and breast 
cancer dataset, are chosen for the classification task. While the proposed method was 
found to outperform other popular feature ranking methods for classification datasets 
(vehicle, segmentation, and breast cancer), it was found to perform more or less simi-
lar with other methods in the case of regression datasets (body fat, abalone, and wine 
quality). An average MSE of 20.41, 4.6, and 0.53 were observed for body fat, abalone, 
and wine quality datasets, respectively, and an average accuracy of 75%, 80%, and 90% 
was observed for the vehicle segmentation and breast cancer datasets, respectively. Fur-
thermore, the top-most relevant features and irrelevant features are identified for all 
the employed datasets. At this juncture, it is also important to note that the proposed 
method possesses the advantage of performing sensitivity analysis through the forward 
propagation of FFNN, i.e., no backpropagation is required for evaluating the derivatives.

In future work, the authors intend to extend the proposed method to the multiple out-
put regression problems. In addition to this, the authors would also like to investigate 
the influence of different activation functions (e.g., Sigmoid, tanh, Softplus, Leaky ReLU, 
etc.). Other supervised ML classification algorithms will be employed, and the efficacy 
of the proposed method will be examined. Note that often complete dataset may not be 



Page 14 of 16Naik and kiran ﻿J Big Data           (2021) 8:128 

required for training the FFNN when the size of the dataset is large. Hence the influence 
of a number of instances on the determination of the important features would also be 
studied. Furthermore, the proposed method would also be extended to the datasets that 
consists of discrete and continuous features and also include redundant features.
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