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Introduction
Minimally invasive surgery (MIS) techniques had a massive effect on operations from 
the 1990s. This progression in operative techniques improved the satisfaction of patients 
enduring surgical interventions. MIS surgeons operate with minimal damage to the body 
than with open surgery. Minimally invasive surgery (Fig. 1a) is now the common surgical 
method in plentiful interventions, like cholecystectomy(removal of the gallbladder). It 
is effectuated by three to four holes(a few millimeters long) in the abdomen, instead of a 
large overture in the open surgery. The laparoscope is inserted in one incision, while the 
surgical instruments are entered into the others. The laparoscope is the main instrument 
in the minimally invasive surgery, which is a thin tool with a tiny high-resolution camera 
at the end. The image stream of the high-resolution camera is broadcast on a screen in 
the operations room. 
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Context-aware system (CAS) is a system that can understand the context of a given 
situation and either share this context with other systems for their response or respond 
by itself. In surgery, these systems are intended to assist surgeons enhance the sched-
uling productivity of operating rooms (OR) and surgical teams, and promote a compre-
hensive perception and consciousness of the OR. Furthermore, the automated surgical 
tool classification in medical images is a real-time computerized assistance to the 
surgeons in conducting different operations. Moreover, deep learning has embroiled 
in every facet of life due to the availability of large datasets and the emergence of 
convolutional neural networks (CNN) that have paved the way for the development 
of different image related processes. The aim of this paper is to resolve the problem of 
unbalanced data in the publicly available Cholec80 laparoscopy video dataset, using 
multiple data augmentation techniques. Furthermore, we implement a fine-tuned 
CNN to tackle the automatic tool detection during a surgery, with prospective use in 
the teaching field, evaluating surgeons, and surgical quality assessment (SQA). The 
proposed method is evaluated on a dataset of 80 cholecystectomy videos (Cholec80 
dataset). A mean average precision of 93.75% demonstrates the effectiveness of the 
proposed method, outperforming the other models significantly.
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Minimally invasive surgery has myriad advantages than conventional open surgery 
[1, 2]: 

–	 Smaller incisions: The hysterectomy is an operation to remove the uterus. It 
requires between 152mm and 300mm incision using open surgery. On the other 
hand, using minimally invasive surgery requires only 5 to 15 millimeters only.

–	 Less pain: Trauma caused by cutting large sections of muscle and tissues in open 
surgery is unnecessary. MIS is characterized by its small surgical tools, requiring 
smaller scars and causing less pain and faster healing.

–	 Reduced Risk of complications: The risk of blood loss, which can take the patient’s 
life, is reduced when using smaller incisions [3].

–	 Shorter hospital stays: Open surgery patients need 2 to 3 nights stay, while MIS 
patients can go home after only one night at the hospital.

–	 The visual results: MIS is done with very little incision. Scars are undetectable 
after a couple of months.

On the other hand, learning MIS procedures have multiple limitations, such as: 

–	 The operative area is displayed on the monitor as a 2-D image, instead of the regu-
lar 3-D eyesight. This absence of depth perception is a challenge for surgeons.

–	 Limited training chances because of patient safety and resource concerns.

To overcome these issues, the surgical video stream is recorded and exploited. 
These videos are utilized in retrospective analysis and postoperative Surgical Quality 
Assessment (SQA), which are investigating the recorded videos narrowly, to detect 
possible mistakes and evaluate the surgeon expertise. They are also used as academic 
material for debutante surgeons [4]. Furthermore, recording the surgical intervention 
is compulsory in many countries [5], and provided as proof in divers circumstances.

However, MIS videos tend to last several hours. Thus, navigation and search-
ing through these videos are cumbersome and time-effort consuming. To overcome 
this problem, we propose a deep learning-based solution to classify surgical tools in 
MIS videos and stock the results in a database, to execute specific queries, and allow 

(a) Laparoscopic surgery
(b) Robotic Surgery

Fig. 1  Minimaly invasive surgery type
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amateur surgeons and postoperative controllers, to navigate and access to desired 
video segments easily.

In this study, we designed a system for the classification of surgical tools in MIS videos 
utilizing advanced deep neural networks. The system consists of the following steps:

Firstly, preprocessing the digital images which includes splitting the Cholec80 videos 
in one frame per second images, then resizing these images to a fixed size.

The next essential step includes an augmentation process to overcome the unbalanced 
data problem by increasing the size of minority classes.

Finally, we use a well-known deep learning model to train it on the augmented data 
images. Then, we compare the proposed approach with other methods.

This paper is organized as follows: Sect.  "Related works" presents the related works, 
Sect. "Deep learning and computer vision" defines the basic concepts of the deep learn-
ing and computer vision, Sect.  "Our approach" describes the detailed methodology of 
the proposed approach, including the implementation and experimental results, whereas 
sect. "Conclusions and future works" covers the conclusion of the paper.

Related works
Classification, segmentation, and tracking using convolutional neural networks (CNN) 
have made state-of-the-art results in the field of medicine, for example, pulmonary 
tuberculosis segmentation [6], brain tumor segmentation [7], stroke lesion segmentation 
[8], breast cancer classification [9], and artery and vein classification [10].

The purpose of cholecystectomy is to remove the gallbladder: this operation can be 
performed laparoscopically and monitored through an endoscope. The recorded videos 
were used for multiple purposes. We summarize some uses of computer vision in mini-
mally invasive surgery videos in: 

–	 Laparoscopy: Kletz [11] applied a region-based convolutional neural network 
(R-CNN), to recognize the surgical instruments in laparoscopy. A custom dataset 
generated from laparoscopic gynecological videos was used. Amy [12] combined a 
region-based convolutional neural network (faster R-CNN) and VGG16 to detect 
laparoscopic surgical tools and perform an operative skill assessment. The dataset 
used is M2CAI. Christian [13] performed the segmentation of surgical instruments 
in laparoscopic surgery using a self-supervised method based on the kinematic model 
of the robot as a source of information. A fully convolutional neural network (FCN) 
was used on VIVO dataset. This dataset was obtained from a robotized endoscopy 
system. Choi [14] choose a convolutional neural Network called YOLO (You Only 
Look Once) to perform the surgical tools detection in laparoscopic surgery on the 
M2CAI 2016 challenge dataset. Wang [15] proposed an ensemble learning approach 
based on VGGNet and GoogleNet. The multi-label classification of the surgical 
instruments was tested on M2CAI dataset. Atttia.m [16] used a hybrid CNN-RNN 
AutoEncoder-Decoder to segment surgical tools. The approach was tested on MIC-
CAI 2016 endoscopic vision challenge dataset.

–	 Robotic surgery (Fig.  1b: Shvets [17] presented a deep learning-based solution for 
robotic instrument segmentation. The dataset used is MICCAI 2017 endoscopic 
vision sub challenge [18]. Islam [19] proposed a real-time instrument segmentation 
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tool in robot-assisted minimally invasive surgery (RMIS) using Multiresolution Fea-
ture Fusion (MFF) block and a light-weight CNN to identify the surgical tool. This 
approach was tested on MICCAI 2017 dataset. Shvets [20] presented an instrument 
segmentation framework, in robotic surgery, using adversarial learning, Multi-reso-
lution Feature Fusion (MFF), and a fully convolutional network (FCN). Colleoni [21] 
applied spatiotemporal layers using a fully convolutional neural network (FCNN), 
to perform robotic surgical tool detection and articulation estimation. EndoVis 
challenge 2015 dataset was used. Automatic instrument segmentation in robot-
assisted surgery was implemented by Shvets [20] using U-Net, TernausNet, LinkNet, 
VGG11, and VGG16 encoders, on a custom dataset obtained from DA Vinci Xi sur-
gical system. Sarikaya [22] performed the detection and localization of robotic tools 
in robot-assisted surgery videos using region proposal network (RPN), on ATLAS 
Dione dataset.

–	 Other uses of MIS videos: As we mentioned earlier, minimally invasive surgery videos 
often have a duration of several hours. That’s why Chittajallu [23] presented a con-
tent-based video retrieval system, similar to a query image. The author used a CNN 
model called ResNet50, trained with a siamese triplet, ranked and refined with IQR 
(iterative query refinement), based on the user feedback. The Model can detect the 
surgical instrument in the query image and search for similar frames in the stocked 
MIS videos.

The preoperative surgery duration prediction is done manually, thus, the surgeons 
underestimate surgery duration by 31 min [24] on average, causing a longer waiting time 
for patients and a non-optimized exploitation of the operation room. Twinanda [25] 
proposed an automatic method, using the visual information from laparoscopic video, 
to detect instruments corresponding to a specific phase, and it continuously predicts 
remaining surgery duration, without any human intervention. A CNN is used to extract 
visual features from the video frames, and LSTM (long-short term memory) was used to 
predict the remaining surgery time. The results were very positive, with 15.2± 4.7 min-
utes for short videos, 12.5± 4.6 minutes in medium videos, and 23.1± 9.4 minutes in 
long videos.

Deep learning and computer vision
Machine learning (ML), unlike other types of computer programming, provides the abil-
ity to automatically learn and improve from experience without being explicitly pro-
grammed. ML focuses on the development of computer programs that can gather data 
and use it to learn. Deep Learning (DL) is a member of the ML family and has seen 
a qualitative leap in the past years, driven by the availability of large datasets and the 
evolution of computer resources. This field has witnessed imminent progress in the abil-
ity of machines to understand and manipulate data, including videos and images. DL is 
based on artificial neural networks, that imitate the human brain in the decision-making 
process by generating patterns.
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Some of the biggest hits of deep learning have been in the area of computer vision 
(CV). CV is a field of artificial intelligence that trains computers to interpret and 
understand the visual world from digital images or videos. Computer vision is also 
defined as an area of study that seeks to develop techniques to help computers “see” 
and understand the content of digital images. When the computer receives an image 
as an input, it’s an array of pixel values (Fig.  2), each of these values is a number 
between zero and 255, which tells the intensity of the pixel, meaningless to humans, 
but it is the only input to machines. 

Deep Learning achieved revolutionary results on challenging computer vision prob-
lems such as image classification [26], object detection [27] and face recognition [28]. 
Medical imaging is one of the most benefiting fields from the evolution of computer 
vision, it helps doctors by alerting them when an area in an image is doubtable (e.g. 
detecting a tumor in an image).

Convolutional neural networks (CNNs) [29] is a specific class of neural network 
(NN) that was created to learn visual features from images. Nowadays, it is the most 
successful deep learning approach to handle the image classification task [30].

The standard CNN is basically composed of three layers: convolutional, pooling, 
and fully connected layers. 

–	 Convolutional layer: is the core building block of a CNN, it does massive math oper-
ations. The picture is convoluted with a specific filter to extract the desired features. 
It is the first action is a CNN, the result is an activation map or a feature map.

–	 Pooling Layer: aims to reduce the dimensions of the feature maps. For each feature 
map received from the previous layer, a filter is applied to summarize the features 
lying within the region covered by the filter.

–	 Fully connected layer: is the last layer, and the classification result is specified based 
on the category (or categories) with highest value. At this stage, the output of the 
previous layer is flattened and turned into a single vector, then assigning weights to 
predict the correct label and giving the final probabilities for each category.

In the medical field, CNN is employed quite successfully in detecting and tracking 
surgical tools (Fig. 3). CNN obtain an image as input and transform it to a vector and 
apply some simple operations like convolution, pooling, then, output a probability of 
potential image classes. 

Fig. 2  Image to an array of pixels values
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Our approach
This section includes the dataset description, data preprocessing, data augmenta-
tion, network architecture of the proposed model, the experimental results, and the 
discussion.

Data preprocessing

Dataset

Cholec80 [31] is a cholecystectomy surgery videos dataset containing 80 videos, per-
formed by 13 surgeons. Video resolution is 1920 × 1080 pixels with 25 Frames Per 
Second(fps) as frame rate. Video length is varied between 12 min 19 s (minimum) and 
1 hour 39 min 55 s (maximum), with 38 min and 26 s on average and more than 51 
hours of surgery in total. Cholec80 is fully annotated with image-level surgical tool 
labels for binary detection.

In Cholec80, seven tools were used and annotated (Fig. 4) show an example of the 
seven surgical tools present in the dataset, namely: specimen bag, bipolar, scissors, 
clipper, hook, grasper, and irrigator. As the images are collected using different lap-
aroscopes and from different surgeons, they come with different angles and resolu-
tions, and sometimes they have a poor resolution, focus, or blurred. In addition, the 
tool is labeled as present if half of it appears in the image. One binary label is pro-
vided per image and per tool as an annotation (Multilabel classification).

Fig. 3  Convolutional Neural Network architecture

Fig. 4  Seven surgical tools included in the CHOLEC80 dataset
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Data preprocessing

Videos are processed using FFmpeg 3.0 and all video streams are encoded with libx264, 
using 25 frame per second (FPS).

Firstly, the video width is scaled to 480, and the height is determined to maintain the 
aspect ratio of the original input video. Next, the audio is isolated from all videos.

Since videos are brut and not edited, they have several empty and irrelevant frames 
at multiple scenes (beginning and the end of the videos). Furthermore, these frames are 
noisy and computationally expensive. Therefore, we cut these nonrelevant frames using 
a background detection model. The latter was trained to identify unimportant segments 
that were captured outside the body. Next, these frames are used to recognize the real 
start and end of the surgery in the original video and cut it down.

This step and the final verified video files are automatically processed and stored in 
local computer.

Since the Cholec80 dataset is labelled with 1 fps tool presence annotation, we split the 
preprocessed videos in 1 frame per second images. Splitting videos is a display technique 
that reposes on fractioning the video into images.

Finally, and given that neural networks receive inputs of the same size, all images need 
to be resized to a fixed size before inputting them to the CNN. Moreover, the image 
dimension is often reduced in order to fit a reasonably sized batch in GPU memory. 
Thus, each image is resized to 250 × 250pixels.

Data augmentation

In Cholecystectomy surgery, some tools are used more frequently than others. Conse-
quently, Cholec80 video frames belonging to those tools outnumber the video frames 
belonging to the other tools, leading to unbalanced data. This issue affects the generali-
zation of the model and reduces the CNN efficiency to classify the different tools.

To overcome this problem, image augmentation techniques are used to increase the 
size of the minority classes. Images are augmented by affine transformations and blur-
ring (Fig. 5). We consider those transformations that preserve tool presence, like: 

–	 Rotation: Minority class images are rotated at an angle of zero, 40, 85, 125, 250, and 
300.

–	 Mirroring: Mirror the image along the x-axis and y-axis.
–	 Shearing: The images were shifted at 40 degrees in the counter-clockwise direction.

Fig. 5  Tools presence before and after augmentation
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–	 Padding: Padding 5px on each border, using the reflect mode, which pad with the 
reflection of image without repeating the last value on the edge.

As shown in Fig.  5, the total number of images before the this phase was 245086 
frames, and after the augmentation it becomes 310054 frames.

Network architecture

InceptionResnetV2

The residual neural network (ResNet) is an artificial neural network that was probably 
the most revolutionary work in computer vision/deep learning in recent years. Resnet 
made a state-of-art results on many computer vision applications, such as object detec-
tion and face recognition. From Alexnet [32] in 2012, that win the SVRC2012 classifi-
cation contest, Researchers focused on developing Deep Residual Networks. VGG 
Network (19 layers) and GoogleNet (22 layers) are state-of-arts CNN architectures. They 
tried to go deeper and deeper, however, piling layers does not mean increasing network 
depth. The vanishing gradient problem makes the neural network very hard to train, 
that’s why Resnet introduce “Identity Shortcut Connection” , to skip layers. The authors 
of [33] argue that stacking layers shouldn’t degrade the network performance, because 
we could simply stack identity mappings (layer that doesn’t do anything) upon the cur-
rent network, and the resulting architecture would perform the same.

Another neural network that was a milestone in the CNN development is the Incep-
tion network. CNNs tends to stack convolution layers. Unlike CNNs, inception uses 
other solutions to get a better performance in terms of speed and accuracy.

InceptionResnet-V2 (Fig.  6) is a hybrid inception network that combines incep-
tion and residual networks (both are SOTA architectures), to boost the performance. 

Fig. 6  InceptionResnet-v2 architecture
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InceptionResnetV2 is trained on more than one million images from the ImageNet data-
set [34]. The network has a default input size of 299-by-299. 

Transfer learning

Transfer learning is taking a network pretrained on a dataset and apply it to recognize 
new image/object categories. Essentially, we can exploit the robust, discriminative fil-
ters learned by state-of-the-art networks on challenging datasets (such as ImageNet or 
COCO), and use these networks to recognize objects the model was never trained on.

In deep learning, feature extraction and fine-tuning are two types of transfer learning: 

–	 Transfer learning via feature extraction is done by freezing all the convolutional neu-
ral network layers, and changing only the classification layer, which is the final layer. 
The pretrained network is used to extract the input image features. This technique is 
used when the new data are similar to the original training dataset (Imagenet).

–	 On the other hand, fine-tuning requires more modifications than feature extraction 
(Fig. 7). The layers are initialized with the pre-trained neural network model weights. 
The model architecture is updated by removing the fully connected layer heads and 
replacing it with a new one, then training it to predict the input classes. Furthermore, 
some of the last layers could be unfrozen, in order to perform a second pass of train-
ing. Freezing means that these layer weights will not be updated in the training pro-
cess. This technique is used when data similarity is low between the original training 
dataset (Imagenet) and our images. That is why, in our case we fine-tuned Inception-
ResnetV2.

Fig. 7  Illustration of fine-tuning a convolutional neural network pretrained on ImageNet dataset
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Fine‑tuning inceptionResnetV2

In the fine-tuning approach, the representations learnt by the previous network are used 
to extract the meaningful features of the new dataset images and the activation maps 
generated from the last convolutional layer are fed to the newly constructed fully con-
nected network which acts as the classifier.

Therefore, the first step is to truncate the fully connected node at the end of the pre-
trained network (Softmax layer), and change it with a new freshly initialized sigmoid 
layer that is compatible with our multilabel classification task. This will predict a prob-
ability of class membership for the seven labels and assign a value between 0 and 1. The 
sigmoid function is calculated as :

After leaving off the fully connected (FC) head of InceptionResnetV2 that contains 1000 
classes (the 1000 output classes of the ImageNet dataset), we construct a new FC layer 
(classifier layer), with seven classes (surgical tools number), and append it to our model.

Next, in order to learn very generic features, we freeze the first early blocks. Moreover, 
it lets the network capture common features like edges and curves that are applicable to 
our new classification task. Additionally, this step ensures that any previous robust fea-
tures learned by the CNN are not destroyed.

Then, we train the new FC head that is connected to the model to take the lower level 
features from the front of the network and map them to the desired output classes. Once 
this has been done, we unfreeze some layers of the top layer of the frozen model, by 
setting these layers as “trainable=True”, and continue training, so that in further SGD 
epochs their weights can be fine-tuned for the new task too. Furthermore, we used a 
smaller learning rate to train the network because we expect that the pretrained weights 
are quite good already as compared to randomly initialized weights.

Finally, the input size of the model was changed to (250, 250, 3), with 250 * 250 as our 
frame dimension and 3 is our color channels (RGB).

Experimental results and discussion

Implementation parameters

As we mention in section A-1, we used Cholec80 for performance evaluation. 60 videos 
were assigned to the training set (producing 241 842 image), while 20 videos (produc-
ing 68 212 images) were assigned to the test set. The grasper and hook appear more 
often than other tools, leading to unbalanced data. Image augmentation techniques are 
applied to overcome this problem, as described in the A-2 section.

We fine-tuned InceptionResnet-v2. The latter is pretrained on ImageNet dataset. The 
fine-tuning process is defined in an earlier section.

The tool detection is multilabel and multiclass task, as different tools can be pre-
sent at the same time. Our model is trained using stochastic gradient descent, while 
binary Cross-Entropy is used as a loss function and Sigmoid is used as a final activation 
function.

The training process was run for 70K iterations on a batch size of 32 images, with an 
initial learning rate of 0.001, that we decay it by a factor of 10 after 12K iterations.

(1)S(x) = 1

1+e−x =
ex

ex+1
= 1− S(−x)
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The network is trained on Intel®CoreTM i7-9700K processor, 16GB memory and 
NVIDIA Geforce GTX 2080.

Results and discussion
We implemented Convolutional Neural Network for surgical tool classification. This 
network is trained on Cholec80, which is a cholecystectomy surgery videos dataset con-
taining 80 videos.

Figure 5 shows that the instances of surgical tool presence in laparoscopy is massively 
unbalanced. Among the seven tools, the grasper and the hook are present majority of 
the time, although scissors has very fewer samples. Giving any network such unbalanced 
data polarizes the network to the surgical tools which have high number of samples. 
Therefore, we used some augmentation techniques in order to overcome this problem.

The performance of our model is measured by the average precision (AP) metric, pre-
sented in Eq. (2). It is a popular metric in measuring the accuracy of object detectors. 
Each frame is annotated with a single or multiple surgical tools. Accuracy is calculated by 
comparing the ground truth annotations with the predicted labels. Additionally, we used 
Precision-Recall curves. Precision-Recall curves are used instead of the ROC(Receiver 
Operating Characteristic) curves when there is a class unbalance (Fig.8).

The average precision (AP) is calculated as:

where

(2)AP =
1

k

∑
Recalli

Precision(Recalli)

(3)Precision =
TP

TP+FP

Fig. 8  Precision-recall (PR) curve
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and

and k is the number of points interpolated in the Precision-Recall curve,
TP = True Positives, FP = False Positives, and FN = False Negatives.
The performance of each model is calculated by the mean Average Precision (mAP), 

which is the mean of the average precision score for each surgical tool. It is calculated as :

where 7 is the number of surgical instruments.
The classification performance for all instruments using the augmented data is shown 

in Table 1. It specifies the average precision of the trained model for classifying the seven 
surgical tools. 

In this work, we overcome the unbalanced data problem of the Cholec80 dataset. 
However, training the model to recognize minor classes (e.g., scissors, irrigator) was 
a real challenge. It can be seen that the hook obtains the greatest average precision. 
Two possible explanations are that it has the highest samples number, and it has a 
unique shape, making it easily recognizable from other tools. Moreover, the specimen 
bag, bipolar, clipper, and the grasper performed well. Irrigator is often misclassified, 
maybe due to its universal shape along with infrequent and irregular presence. The 
latter is an instrument used for flushing and suctioning a space, it is typically used 
essentially when blood concentrates in the surgical area. When taking a closer look at 
the average precision between these instruments and scissors, remarkable differences 
can be regarded, reflecting the fact that the latter has the lowest sample number and 
its common two-pronged shape.

To evaluate the performance of the proposed model, we compared the results with 
those of previous studies. Table  2 outlines and compares our model with the best 

(4)Recall =
TP

TP+FN

(5)mAP =
1

7

∑
7

i=1
APi

Table 1  Average precision (AP) for all tools, evaluated on Cholec80 dataset

Surgical tool Grasper Bipolar Hook Scissors Clipper Irrigator SpecimenBag Average

Average precision 96.58 95.04 99.68 81.24 95.11 93.71 94.92 93.75

Table 2  Comparison of the Average precision (AP) for all tools with other models

Tool M.Sahu [35] EndoNet [31] Amy.J [12] Jo [36] Kanakatte [37] Our Model

Grasper 73.9 84.8 87.2 92.1 93.8 96.58

Bipolar 40.8 86.9 75.1 82.3 90.0 95.04

Hook 95.1 95.6 95.3 85.9 86.1 99.68

Scissors 26.2 58.6 70.8 81.2 100 81.24

Clipper 35.3 80.1 88.4 85.3 91.9 95.11

Irrigator 33.2 74.4 73.5 82.9 88.4 93.71

SpecimenBag 76.6 86.8 82.1 83.2 83.1 94.92

Average (mAP) 54.44 81.0 81.8 84.7 90.5 93.75
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performing related models. To differentiate our model from the models, we used the 
average precision computed for all classes, and the mean average precision for each 
model. 

Sahu [35] and Twinanda [31] fine-tuned AlexNet on Cholec80 dataset, without any 
data augmentation techniques. While Amy [12] used VGG16, which is is an exten-
sion of Alexnet, containing eight weight layers, with a new architecture including 16 
weight layers, and the authors performed data augmentation by randomly flipping 
frames horizontally. On the other hand, Jo [36] used YOLO9000 with motion vector 
prediction, and Kanakatte [37] approach was based on Resnet.

It can be seen that our model yields significantly better results than Sahu [35], 
EndoNet [31], Amy [12], and Jo [36] architectures, especially in the scissors, which 
is the less represented class in Cholec80. This may be due to the multiple augmenta-
tion techniques used. We can also observe that our model outperforms all models 
in classifying almost all the surgical tools. Two potential justification for this: in the 
pre-processing phase, we used more augmentation techniques, that’s justify what the 
average precision is higher. In addition, InceptionResnet-v2 is network of 164 layers 
deep, having much more convolutional layers than VGG16 and AlexNet. Each convo-
lutional layer’s parameters consist of a set of learnable filters, allowing the network to 
learn much more information.

The results demonstrated that leaving off the classic pre-processing techniques 
improved the classification outcomes. This is principally crucial in the case of classifi-
cation projects with highly unbalanced data. Data augmentation overcomes this issue, 
leading to a higher average precision than the models trained without data augmen-
tation. However, one drawback of adding more data is the demand on resources and 
computational intensiveness, which can increase the time of total data preparation 
and training time.

Conclusions and future works
In this research, we overcome the unbalanced data problem in the publicly available lap-
aroscopy video dataset Cholec80. We proposed multiple data augmentation techniques. 
Moreover, we exploited the techniques of transfer learning, especially the fine-tuning 
approach. Then, we choose to train the augmented data with a fine-tuned Inception-
Resnet-v2 network. The latter relies on convolutional neural networks (CNNs) and it 
is pretrained on ImageNet dataset. Our Model has shown that the classification task 
works reliably. It was observed that the proposed model outperform the other methods 
in terms of classifying the surgical tools with an accuracy of 96.58, 95.04, 99.68, 81.24, 
95.11, 93.71, and 94.92% for the surgical instruments Grasper, Bipolar, Hook, Scissors, 
Clipper, Irrigator and SpecimenBag, and an average mean precision of 93.75%. Due to 
this high average precision of our model, it can be used for Computer-assisted instruc-
tion (CAI) as a basis of automatic surgical video indexing.

In future works, we will test some other neural network architectures, such as NAS-
Net, DenseNet, and EfficientNet, and try it on other surgical datasets, with other aug-
mentation data techniques. Furthermore, we plan to investigate the impact of the 
augmentation data phase on the processing time.
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