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Introduction
Interests in applying machine learning technologies for object recognition have 
increased greatly in recent years [1–11]. The advancements of deep learning technolo-
gies are the drivers of the progress in the field [12]. Convolutional neural networks 
(CNNs) [13–15] are the dominant deep learning architectures for image data. Studies 
have shown CNN is better than traditional machine learning methods for many fields of 
object recognition, such as face recognition [16, 17], character recognition [4, 18], vehi-
cle number detection [19, 20], vehicle surveillance in autonomous driving [21], medical 
imaging [22], identification of plant varieties [23–26], quality inspection of agricultural 
products [27], and detection of plant diseases [28–37]. This is due to their ability to 

Abstract 

In this paper, we propose a novel deep learning-based feature learning architecture for 
object classification. Conventionally, deep learning methods are trained with super-
vised learning for object classification. But, this would require large amount of training 
data. Currently there are increasing trends to employ unsupervised learning for deep 
learning. By doing so, dependency on the availability of large training data could be 
reduced. One implementation of unsupervised deep learning is for feature learning 
where the network is designed to “learn” features automatically from data to obtain 
good representation that then could be used for classification. Autoencoder and 
generative adversarial networks (GAN) are examples of unsupervised deep learning 
methods. For GAN however, the trajectories of feature learning may go to unpredicted 
directions due to random initialization, making it unsuitable for feature learning. To 
overcome this, a hybrid of encoder and deep convolutional generative adversarial 
network (DCGAN) architectures, a variant of GAN, are proposed. Encoder is put on top 
of the Generator networks of GAN to avoid random initialisation. We called our method 
as EGAN. The output of EGAN is used as features for two deep convolutional neural 
networks (DCNNs): AlexNet and DenseNet. We evaluate the proposed methods on 
three types of dataset and the results indicate that better performances are achieved 
by our proposed method compared to using autoencoder and GAN.

Keywords:  Generative adversarial network, Unsupervised feature learning, 
Autoencoder, Convolutional neural networks

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Suryawati et al. J Big Data           (2021) 8:118  
https://doi.org/10.1186/s40537-021-00508-9

*Correspondence:   
hilm001@lipi.go.id 
Research Center 
for Informatics, Indonesian 
Institute of Sciences, 
Bandung, Indonesia

http://orcid.org/0000-0001-8078-7592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00508-9&domain=pdf


Page 2 of 17Suryawati et al. J Big Data           (2021) 8:118 

model complex relations between data with their target classes which are not easily be 
done by traditional shallow machine learning methods.

Many implementations of CNNs for object recognition employ them in supervised 
learning. The networks’ parameters are optimized to map the data to the correspond-
ing labels. Due to the great amount of the CNNs’ parameters, a great amount of data 
training is needed. Otherwise, the networks are prone to over-fit, making them sensitive 
when they are tested with data from different distributions as in the training. However, 
collecting large amount of labelled data is expensive and requires huge efforts.

Training CNNs in unsupervised learning is one of the solutions for the above men-
tioned problem. Collecting unlabelled data is much easier and less expensive. Feature 
learning is one implementation of unsupervised learning for deep learning [38]. The 
implementation of deep learning as feature learning is illustrated in Fig.  1. In feature 
learning, the deep learning architectures are trained such that they to “learn” features 
automatically from unlabelled the data. After finishing the training, the resulting model 
is used to extract “features” from labelled data. These features are then be used as inputs 
to classifiers for object classifications. Several implementations of feature learning could 
refer to [25, 36, 37, 39–45].

Autoencoders and generative adversarial networks (GANs) are examples of deep 
learning methods that are applied for feature learning. An autoencoder is a network that 

Fig. 1  Development and evaluation feature learning model
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comprises of two sub-networks: encoder and decoder. An encoder is designed so that 
the number of output nodes is greatly larger than the number of the input nodes. The 
aim is to compress the data into their latent variables. Meanwhile, a decoder is the mir-
ror network of the encoder. The aim is to decompresses data back to the original dimen-
sions. In [36], autoencoders are applied for the detection of plant diseases. In [42], they 
are applied for detection of epilepsy using EEG signals. Bottleneck features are intro-
duced using autoencoders in [25] to reduce the data dimensionality. But, autoencoders 
have major limitations. Autoencoders are often merely “memorizing” the data during 
training, making them prone to over-fit. Several variants of autoencoders have been pro-
posed to improve them. They are denoising autoencoders [43, 44], variational autoen-
coder (VAE) [45], and their combinations [37].

Meanwhile, GANs [46] are originally designed to generate new data from blindly pre-
sumed distributions of real data. They comprise two networks: generator (G) and dis-
criminator (D). G aims to generate fake data that can fool D without ever really sees the 
distributions of real data, while D aims to discriminate fake images that are generated 
by G and the real ones. After the training is finished, G models are then used to gener-
ate additional data. Several implementations of GANs have been proposed in literature, 
for instance for generating more training data [47, 48], for image translation [49, 50], 
for creating super-resolution images [51], and for predicting the succeeding frames in 
a video [52]. There have been many variants of GAN that have been proposed. One of 
them is deep convolutional GAN (DCGAN) [39]. In DCGAN, CNNs are used to replace 
multi-layer perceptrons in the original GAN.

In recent years, GANs and their variats are also used for features learning [53]. 
DCGAN and deep neural networks (DNN) are combined for feature learning in [40]. 
BiGAN is introduced in [41], where GAN is designed to learn the latent representation 
of the data. For various implementations of GANs for feature learning could refer to [54, 
55].

Unfortunately, the use of random noise as input for G network makes GAN’s learning 
projection to be unpredictable. To overcome this, we propose to use hybrid networks of 
encoders and GANs. We adopt the DCGAN architecture and place the encoder at the 
top of the G network. We call it Encoder-GAN (EGAN). By doing so, the encoder could 
learn the latent variables of the data and then passes them to the G network of GAN. 
So, instead of using random distributions as inputs, G uses latent variables of real data. 
Hence, the learning projection of G could be more predicted.

The use of an encoder with GAN has been proposed previously. They are RDCGAN 
[40] and BiGAN [41]. However, there are differences between them. Their differences 
are illustrated in Fig.  2. In the RDCGAN, G accepts two types of inputs. They are 
that of the encoder and random distributions. Meanwhile, for BiGAN, the inputs of G 
are still from random distributions. Encoder is used in parallel with the G networks 
where both outputs are used as inputs for the D network. Meanwhile, G in EGAN 
only accepts outputs of the encoder as inputs and the D network only accept output 
of G as inputs. By doing so, G is expected to have more knowledge about the data. In 
addition to the new architecture, we also introduce nested training schemes for train-
ing the EGAN and DCNN networks. Usually, when GAN is used for feature learning, 
it is trained separately with the classifier. The GAN networks are trained first, and 
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then after the training is finished, it is used to extract features of labelled training data 
to train the classifiers. Here, we train EGAN and the classifier together. Hence, the 
results of classification are also used as feedbacks for EGAN.

This work is an extension of our work in [24]. In that paper, EGAN is applied to 
multi-layer perceptron classifiers, while in this paper, we extend it as inputs to deep 
CNN architectures: Alexnet and DenseNet. Furthermore, we evaluate the generaliza-
tion capability of EGAN to wider tasks. In this paper, we evaluate EGAN with two 
publicly available datasets: PlantVillage, a dataset for plant diseases detection, and 
MNIST dataset, a popular dataset for benchmarking methods for object classification, 

Fig. 2  Comparison between EGAN, RDCGAN, and BiGAN
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in addition to Tea clone dataset. Comparisons with autoencoder, GAN, and BiGAN 
show that EGAN is more effective for all three datasets.

The remainder of the paper is organized as follow. In “A review of deep convolutional 
neural network (DCNN)” section, we briefly explain about CNN. We also briefly explain 
about GAN and autoencoder. We explain our proposed method in “The proposed 
method” section. The experimental setup is described in “Experimental setup” section 
and the results are explained in “Results and discussions” section. The paper is con-
cluded in “Conclusions” section.

A review of deep convolutional neural network (DCNN)
In this section we first briefly explain about the use of DCNN for supervised learning. 
A typical composition of DCNN is explained. Then, we describe the use of DCNN for 
unsupervised learning. We explain both autoencoder and GAN briefly.

Figure 3 shows a typical structure of DCNN. DCNN has two main components. They 
are the feature extraction and the classification sections. The feature extractor usually 
consists of stacks of convolutional layers and the pooling layers. Weighted sum opera-
tions between the inputs and the kernels are conducted in the convolutional layers while 
the pooling layers “summarize” the output of convolutional layers, typically by taking 
the maximum or the average values and reduce the dimensionality of the inputs. The 
classification section usually consists of fully-connected layers that maps the outputs of 
feature extractors to the target labels.

DCNN could also be trained in an unsupervised way. The DCNN architecture is 
designed such that the network learns automatically the “important” underlying pat-
tern of the data. Therefore, we can train DCNN to learn the features using unlabelled 
data. This is called feature learning. Then, after training the DCNN models in unsuper-
vised way, they are used to extract features from a small amount of labelled data which 
are used to train classifiers in a supervised way. Two common architectures for feature 
learning are autoencoder and GAN.

The architecture of an autoencoder is shown Fig.  4. A typical autoencoder con-
sists of two sub-networks: encoder and decoder. In the encoder, the dimensions 
of the input data are forcedly reduced to obtain compressed features. Then, the 
decoder reconstructs the data from compressed features to get the original data. 
The compressed features could be seen as a latent representation of data. By forc-
ing the number of the outputs to be hugely reduced from the inputs, the encoder 

Fig. 3  CNN architecture
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learns underlying latent information about the data that are relevant and discard the 
unuseful information. In other words, the encoder could be seen as a nonlinear prin-
cipal components analysis of the data.

GAN is another deep learning method that employ unsupervised learning. A struc-
ture of GAN is shown in Fig. 5. GAN consists of two networks. They are Generator 
(G) and Discriminator (D) networks. GANs work by contending both G and D. Gen-
erator learns to generate images through the presumptive distributions that it has 
never seen before. Meanwhile, D assesses the generated images, whether they are 
real or fake images. The D’s assessment results would be the reference for G to opti-
mize the presumptive distributions and generate images closer to real ones to fool D. 
This adversarial training continues until D cannot distinguish between real and fake 
images. GANs cannot remember input data like the autoencoder since the real data 
are never seen. Therefore, GANs can avoid the overfitting problem on the networks. 
However, GANs are sensitive to initialization since the presumptive distributions for 
G are usually random, making the learning trajectories to be unpredicted.

Fig. 4  A typical architecture of an autoencoder

Fig. 5  The architecture of a generative adversarial network
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The proposed method
The grand scheme of using deep learning for feature learning have been explained in Fig. 1. 
In our implementation, we design an architecture, called EGAN as feature learning where 
it is trained with unlabelled data to obtain the feature learning model. This model is used 
to extract features from the labelled that, where the features are used to train Deep CNN 
(DCNN).

Figure  6 show the architecture of EGAN. EGAN is a hybrid between encoder and 
DCGAN. We put the encoder on the top of the Generator of the DCGAN network. Tradi-
tionally, the G networks of GAN accept random distribution (usually Gaussian) as inputs. 
But, this would make the learning trajectory of GAN to be unpredictable. So, the purpose 
of using encoder is to avoid that.

Let px is the target distribution of real data x . Let pz is noise distribution that G would 
map to data z . G aim to learn distribution pg (x) = Ez∼pz [pg (x)|z) so that pg (x) = px . To 
do this, GAN plays minimax game of function V between G and D as follows:

(1)min
G

max
D

V (D,G) = Ex∼px(x)[logD(x)]+ Ez∼pz(z)[log (1− D(G(z)))]

Fig. 6  Architecture of the proposed EGAN
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However, since G never sees actual data, the learning trajectories of pg could be very far 
from px . It makes the Generator to be very sensitive to initialization. To avoid this, we 
employ encoder E, so now E introduces distribution pE(z|x) = pz(z) that map the real 
data x to latent variables z . Therefore, (1) becomes:

By doing so, G does not learn from random initialisation. By putting encoder on top of G 
networks, we expect the learning process of G to be more predictable. Instead of blindly 
learn the distribution of the real data, the G network of GAN has prior knowledge of the 
data.

Here, we use DCGAN [39] as the backbone for GAN. It is a variant of GAN that 
employ convolutional layers instead of multilayer perceptrons as in GAN. DCGAN is 
found to be more stable in the training process than GAN. Meanwhile, the encoder is 
built by using one convolutional layer and one BatchNormalization process. We use 
encoder with convolutional layer with stride 2 and reduce the RGB input dimensions 
to a half of the original image’s dimensions. This is the optimum setting for the encoder 
based on our observation. We only use a single convolutional layer and BatchNormaliza-
tion for the encoder since we found that having more convolutional layers are not effec-
tive for the tasks and the performance tends to get worse. We do not use the decoder in 
our design as we aim to find the underlying latent variables of the data as input to GAN. 
Therefore, we need an architecture that compress the data into much smaller dimen-
sions. Hence, we employ only encoder for this as adding decoder would reconstruct the 
data to the original dimensions.

For supervised DCNN, we use two architectures: AlexNet [13] and DenseNet [56]. The 
architectures of AlexNet and DenseNet are shown in Figs. 7 and 8 respectively. AlexNet 

(2)
min
G,E

max
D

V (D,G,E) =Ex∼px(x)[logD(x)]+

Ez∼pE(z|x)[log (1− D(G(z)))]

Fig. 7  Architecture of AlexNet

Fig. 8  Architecture of DenseNet
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comprises of stacked five convolutional layers that are followed by three fully connected 
layers. Meanwhile, DenseNet is much deeper than AlexNet. To avoid gradient vanish-
ing problems that occur in very deep CNN, DenseNet apply multi-skip connections that 
carry information, pass it over for several layers, and then concatenate them, adding 
more width to the networks. Due to its intense concatenation operation to all previous 
layers, DenseNet requires larger memory usage.

To train EGAN and DCNN, we modify gradient based optimization as in [46]. We 
apply nested training for training EGAN and DCNN classifiers. In this paper, we use 
epoch L = 200 to train EGAN, and for each epoch, we train DCNN using sub-epoch 
K = 5 . The detailed algorithm for training is described as follows: 

Algorithm 1: Minibatch stochastic gradient descent for EGAN. There are
number of sub-iteration, denoted as K is applied. Here K = 5 is applied

initialization;
for L steps do

• Sample minibatch m from data x to encoder generating distribution pE(z|x)
and obtain m samples {z(1), ..., z(m)} for generator;

• Sample minibatch m from data {x(1), ...,x(m)}, generating px(x);
• Update Discriminator by using gradient descent
• Sample minibatch m from data x to encoder generating distribution pE(z|x)

and obtain m samples {z(1), ..., z(m)} for generator;
• Update Generator using gradient descent;

for K steps do
• Sample minibatch n samples from data x to generator and obtain features

{v(1), ...,v(n)} for generator;
• Update DCNN classifiers using gradient descent

end

end

Experimental setup
The dataset

We use three datasets for evaluating our method. They are the Tea Clone, PlantVillage, 
and MNIST datasets. We develop a tea clone dataset for tea clones recognition tasks 
[24]. PlantVillage and MNIST are public datasets. PlantVillage contains images of leafs 
with various diseases, whereas MNIST is used for handwriting character recognition.

For the tea clones dataset, we collected 4520 tea leaf images to build the dataset from 
the Research Institute for Tea and Cinchona (RITC) in Gambung, West Java, Indonesia. 
There are 11 types of Gambung tea clones. They are called the GMB (Gambung) Clone 
series. This research focuses only on two tea clones, and they are GMB 3 and GMB 9. 
We used 14 different types of cameras, DSLR cameras, and smartphones. We intend to 
enrich the data variation in the way of taking pictures through the various cameras. We 
capture images indoor and ignore the lighting arrangement and the distance of the leaf 
to the camera. We use the autofocus feature when capturing the image. The image sam-
ples of GMB 3 and GMB 9 are shown in Fig. 9.

Penn State University develops the PlantVillage (PV) dataset. This dataset is created 
based on the premise that food growth knowledge should be accessible openly to every-
one. We choose three plants (corn, potato, and apple) of this dataset. Some of the sam-
ples are shown in Fig. 10.
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MNIST (Modified Nasional Institute of Standards and Technology) is a dataset of 
handwritten digits 0 to 9. It is released in 1999 and become the benchmarking stand-
ard for classifications. Fig. 11 show the sample of the MNIST dataset. There are 70,000 
images in the MNIST dataset. It is consists of 60,000 training images and 10,000 testing 
images. The training and testing images contain greyscale images.

System setup

Each dataset is divided into three parts: training, validation, and testing sets. The 
detailed distribution of data for all datasets is summarized in Table 1. We train EGAN 
using three datasets separately. For tea clones and PlantVillage datasets, each data-
set is divided into three parts; 80% of training, 10% of validation, and 10% of testing. 
Meanwhile, we use 23,000 images in MNIST consisting of 20,000 training images and 

Fig. 9  The samples of GMB 3 and GMB 9

Fig. 10  The samples of PlantVillage dataset
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3000 testing images. For validation, we separate 20% of training data. Here, we use the 
same data to train EGAN and DCNN classifiers: AlexNet, and DenseNet.

The capability of EGAN is evaluated as follows. First, EGAN’s evaluation as the fea-
ture learning model using three datasets (the tea clones, PlantVillage, and MNIST) 
and two popular classifiers (AlexNet and DenseNet). This is evaluated using the accu-
racies of the classifier. We only use accuracy since the data is fairly balanced. Here, 
we compare EGAN with other feature learning methods: GAN, BiGAN, and autoen-
coder. For the referenced methods, we use GAN architecture as in [46], BiGAN as 
in [41] and whereas for autoencoder, we use the architecture DCNN-based autoen-
coder as in [36]. We denote this method CNN-AE from now on. For GAN, we apply 
the same training strategies as EGAN, while for CNN-AE, we train CNN-AE with the 
same number of the epoch as EGAN.

Fig. 11  The sample of MNIST dataset

Table 1  The data distribution in the experiments

Dataset Class labels Training Validation Testing Total

Tea clones GMB 3 1832 232 231 2295

GMB 9 1784 220 221 2225

PV corn Cercospora leaf spot 449 32 32 513

Common rust 1031 81 80 1192

Northern leaf blight 849 68 68 985

Healthy 1017 73 72 1162

PV potato Early blight 875 63 62 1000

Late blight 875 62 63 1000

Healthy 131 10 11 152

PV apple Apple scab 552 39 39 630

Black rot 544 39 38 621

Cedar apple rust 241 17 17 275

Healthy 1440 103 102 1645

MNIST) 0–9 16,000 4000 3000 23,000



Page 12 of 17Suryawati et al. J Big Data           (2021) 8:118 

To find the best parameters for EGAN, we tune the hyper-parameters of the networks 
as follow: 

1.	 Optimizer : Adam optimizer is applied in this study. For initialization, we use Adam 
(0.0002, 0.5) for EGAN and Adam(lr=1e–5) for AlexNet and DenseNet.

2.	 Batch size : We varied 8, 16, 32, and 64 for training EGAN, AlexNet, and DenseNet 
for all datasets. In our case, the choice of small batch size due to our computing capa-
bility.

3.	 Epoch: We use 200 epochs for training EGAN and 5 epochs for sub-training each 
classifier. These values are selected based on our empirical observation.

For computation, we used Intel Xeon E5-2695 as the CPU, with 512 GB memory size 
and NVidia Tesla P100 16  GB as the GPU. All the architectures are developed with 
library from Keras [57] with Tensorflow [58] as the back-end.

Results and discussions
EGAN as feature learning model

Table 2 summarises the performance of EGAN as feature extractor and DCNN classi-
fiers when batch-sizes are varied for all evaluated datasets. For all datasets, satisfactory 
performance could be achieved, and in most cases, 16 may have been suitable for batch-
size. For that reason, we will use it in subsequent experiments. Need to be noted how-
ever, better performance could be achieved when a larger batch-size is applied. However, 
due to the limitation of our memory size, especially for DenseNet implementation, 
which requires a high memory load, implementation with a larger size than 32 could not 
be implemented.

In most cases, we found that DenseNet achieves slightly better accuracies than 
AlexNet. It is not surprising since DenseNet has more depth and width than AlexNet, 
which may be better in modeling nonlinear relations between features and their class 
targets. However, DenseNet has more training parameters than AlexNet and slower to 
train.

Table 2  Performance of EGAN when batch size is varied for all evaluated datasets

The best performance for each dataset and classifier is printed in bold

Dataset Classifier Batch size

8 16 32 64

Tea clones AlexNet 92.92 94.02 92.47 91.15

DenseNet 94.24 94.46 92.25 94.02

PV corn AlexNet 91.26 93.25 91.66 92.85

DenseNet 96.03 95.63 96.42 96.42

PV potato AlexNet 94.85 97.05 94.11 97.05
DenseNet 98.52 98.52 96.32 97.79

PV apple AlexNet 88.26 93.87 91.83 92.85

DenseNet 96.93 95.91 97.95 95.40

MNIST AlexNet 97.86 97.70 97.63 97.03

DenseNet 98.43 98.80 98.63 98.43
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Comparison with other feature learning methods

Table  3 compares the performance of EGAN with other features and feature learn-
ing algorithms. They are RGB (without feature learning), GAN, BiGAN, and CNN-
AE. It is clear that EGAN is superior to others for all datasets. Need to be noted that 
in this study, the classifiers are all trained without pre-training. On average, relative 
improvements of 4.72%, 19.92%, 6.86%, and 15.55% are achieved compared to RGB, 
GAN, CNN-AE, and BiGAN respectively. Interestingly, we found, RGB is largely bet-
ter than GAN and BiGAN. It is slightly better than CNN-AE in most cases. This may 
be expected, as when GAN is applied, the presumed distributions of the data may 
completely different than the real data, and hence, may cause mismatch when they are 
used in training. BiGAN is generally better than GAN. But due to the use of random 
variables to input of G, the trajectory of the learning may not be as targeted as our 
proposed method.

Table 4 summarizes the running time of GANm CNN-AE, BiGAN, and EGAN. It is 
clear that EGAN is considerably slower than GAN and CNN-AE. This is as expected 
due to its much larger number of parameters than GAN and CNN-AE. Furthermore, 
the nested training requires more computation per epoch since each epoch requires five 

Table 3  Comparison of performance (Accuracy %) between EGAN , other features and feature 
learning methods

The best performance for each dataset and classifier is printed in bold

Dataset Classifier Feature extraction

RGB GAN CNNAE BiGAN EGAN

Tea clones AlexNet 90.48 81.85 87.83 78.76 94.02
DenseNet 80.97 75.22 80.75 82.30 94.46

PV corn AlexNet 92.46 84.12 92.86 83.73 93.25
DenseNet 92.46 78.57 90.08 81.74 95.63

PV potato AlexNet 89.70 83.08 91.91 85.29 97.05
DenseNet 94.85 80.14 88.97 85.29 98.52

PV apple AlexNet 91.32 76.53 87.76 78.57 93.87
DenseNet 89.28 69.38 87.76 77.55 95.91

MNIST AlexNet 96.10 90.96 95.30 90.20 97.70
DenseNet 97.00 83.63 96.07 86.70 98.83

Table 4  Comparison of running time between EGAN and other feature learning methods

Dataset Classifier GAN CNNAE BIGAN EGAN

Tea clones AlexNet 17.28 1.42 18.37 21.82

DenseNet 109.71 2.13 114.62 117.39

PV corn AlexNet 15.90 1.54 16.41 18.20

DenseNet 100.62 2.02 102.88 106.25

PVpotato AlexNet 9.21 5.97 9.05 10.45

DenseNet 57.13 1.17 58.00 60.00

PV apple AlexNet 13.12 1.21 13.42 15.28

DenseNet 83.53 1.69 85.12 87.30

MNIST AlexNet 69.71 5.97 67.57 70.09

DenseNet 333.67 7.85 336.89 334.16
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sub-epochs to train the classifiers. Meanwhile, the training time for EGAN and BiGAN 
is quite comparable. But EGAN has superior performance.

Conclusions
In this paper, we propose encoder-deep convolutional generative adversarial network 
(EGAN) as a solution for unsupervised feature learning. In EGAN, an encoder is put on 
top of GAN’s Generator networks to avoid GAN learns completely different distribu-
tions from data training. We use DCGAN architectures and encoder with one convolu-
tional layers for EGAN. For supervised learning, we employ two DCNN architectures. 
They are AlexNet and DenseNet. In addition, we use nested training to train both EGAN 
and DCNN.

Our evaluations of three types of datasets, including MNIST datasets, confirm that our 
proposed method is better than directly using RGB as features in two popular DCNN 
classifiers. It is also largely better than three feature learning methods: GAN, CNN-AE, 
and BiGAN. Our evaluation also shows that GAN performs much worse than directly 
using RGB. This strongly indicate how unpredictable the learning outcome of GAN due 
to random noise inputs.

During experiments, we found that number of layers for encoder may affect the per-
formance. Having more layers may not produce significant improvements and the per-
formance tend to get worse. We also found the selection of number of epoch for nested 
training may be influential to the performance.

In the future, we plan to evaluate the robustness of EGAN. Implementation of the 
encoder variants, data preprocessing, or data augmentation for improvements of our 
method also becomes our interest in the future.

Abbreviations
DCNN: Deep convolutional neural networks; DCGAN: Deep convolutional generative adversarial network; PV: 
PlantVillage.
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