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Introduction
The evolution of the Web has led to an increased adoption of Web APIs1, revolutionizing 
the way end users and software systems access information and services. Web APIs have 
enabled companies to increase their revenues, by discovering and joining forces with 
complementors. For example, Salesforce generates 50% of its revenue through APIs, 
Expedia generates 90%, and eBay, 60% [3]. It is abundantly clear that Web APIs represent 
a huge potential for creating added value through service orchestration across provid-
ers. Nevertheless, the industry still relies on manual service-composition approaches, 
requiring a considerable development investment. Application developers need to 
examine large amounts of natural-language documentation in order to understand how 
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to write client code for specific APIs, compose compatible APIs, and manage authentica-
tion credentials. And they have to do it all over again, when any of these APIs change. 
As a result, even though data can, in principle, be easily accessed through Web APIs, in 
many cases it still remains captive in isolated silos that do not interoperate with other 
resources and services on the Web.

Recently, the evolution of REST services2 has led to widely adopted description for-
mats, such as OpenAPI3 and RAML4, that specify relevant implementation details, 
including resources, status codes and input arguments, but completely ignore the under-
lying service semantics. In parallel, the development of semantic-representation lan-
guages has driven the creation of promising knowledge-description formalisms, such as 
the Linking Open Data (LOD) project [4], and schema.org [5], which demonstrate the 
potential of Linked Data approaches for data integration.

The synergy of these two popular technologies, namely standardized specifications for 
REST APIs and Linked Data semantics, has motivated the emergence of approaches for 
semantic annotation of Web APIs, such as JWASA [6], AutomAPIc [7], and our own 
work on Linked REST APIs (LRA) [1, 2], which attempt to simplify, and partially auto-
mate, the way developers interact with data provided from Web APIs.

The Linked REST API approach starts by describing a general conceptual framework 
for REST-service specification based on Linked Data models, and a corresponding soft-
ware architecture for automatically composing API calls to respond to data queries, 
considering quality and access-control constraints. This work was subsequently formal-
ized in [2], in which we defined the formal semantics of the LRA API specification, and 
the discovery and composition algorithms grounded on this formalism. We validated 
the usefulness and accuracy of the LRA composition algorithm in the context of several 
realistic use-case scenarios around a collection of publicly accessible Web APIs.

The LRA methodology entails the use of SPARQL: developers no longer browse Web 
API documentation but they declaratively specify the desired functionality in terms of a 
SPARQL query, and the LRA composition-and-enactment algorithm retrieves appropri-
ate APIs from multiple providers and automatically composes them in a data produc-
tion-consumption graphs. SPARQL has been shown to be a powerful tool in the hands 
of experienced users, but is considered as difficult to understand for average applica-
tion developers. In fact, many authors acknowledge that the Semantic-Web technolo-
gies are only accessible to highly-trained experts, offering benefits often considered 
unworthy of the additional effort investment [8–11]. Thus, in spite of the realism of our 
evaluation methodology and its promising results, we recognize that LRA’s reliance on 
SPARQL may hinder its real-world adoption. This is why, in this paper, we implement 
the LRAWbench , initially introduced in [12], that develops the LRA algorithms and pro-
vides a set of tools to support software development using LRA-specified APIs.

The LRAWbench  is an integrated-development environment that streamlines the use 
of LRA, enabling developers to express their information needs without extensive 

2  REST service is an API that conforms to the design principles of the REST (Representational state transfer architec-
tural style), based on HTTP methods to access resources and the use of JSON or XML to transmit data.
3  https://​www.​opena​pis.​org/.
4  https://​raml.​org/.

https://www.openapis.org/
https://raml.org/
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knowledge of the LRA encoding formalisms, delegating the query formulation and inter-
pretation process to a set of tools, that abstract SPARQL and RDF from the user. The 
LRAWbench  builds upon previous research on visual-query formalisms for Linked Data 
systems, and guides the creation of query structures through the inference of a global 
schema of the data that can be provided by the Web APIs.

The creation of the LRAWbench  led us to formulate our first research question: Does 
the LRAWbench help developers to formulate LRA-compliant SPARQL queries? To answer 
this question, we conducted an empirical study to assess the accuracy, efficiency, and 
perceived usability when asked developers to produce queries using the LRAWbench . Fur-
thermore, we compared the performance of developers using the LRAWbench against that 
of developers using YASGUI, a popular SPARQL interface, used as front-end by a large 
number of Linked Data publishers. The results demonstrate that developers perceive the 
LRAWbench as considerably more usable than YASGUI.

Having confirmed the effectiveness of the LRAWbench  in making SPARQL more easy 
to use, we proceeded to examine its impact in the software-development process, which 
led us to our second research question: Does the use of the LRAWbench result in improved 
developer efficiency and code quality? To answer this question, we conducted an empiri-
cal study, using the traditional hand-crafted endpoint request workflows as the industry 
baseline. In this study we measure the quality of the produced software artifacts, and the 
accuracy and efficiency of developers when asked to develop a mashup web application 
using LRAWbench . We compared the quality of their code and their performance with 
that of developers using the traditional approach where the developer manually designs 
a workflow that submit requests directly to the service endpoints. We found that, when 
implementing service compositions, LRA developers produce significantly less complex 
code, when compared to developers using classic development environments. Addition-
ally, the results show that LRA developers spend less time to code the solutions than 
developers using the traditional approach. For simple composition workflows, namely 
service discovery, we identified that the performance and code complexity of develop-
ers using LRA is comparable to that of developers using the traditional approach. Our 
study also revealed that the overhead imposed by the matchmaking at runtime of LRA is 
negligible.

The remainder of this paper is organized as follows. "The linked REST APIs approach" 
section introduces the methodology used by LRA to automatically compose Web APIs. 
"Review of Linked-Data query systems" section presents a systematic survey on Linked-
Data query systems, used to identify the desired features of our development environ-
ment. "The LRAWbench" section introduces a detailed description of the proposed query 
environment, and  "Usability evaluation of the LRAWbench" section discusses the protocol 
of our usability study of the LRAWbench. "Effectiveness evaluation of the LRAWbench" pre-
sents the empirical evaluation of the LRA environment, shows the results of the study, 
and discusses our findings. Finally, "Conclusions" section summarizes the contributions 
of our approach.
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The linked REST APIs approach
This section briefly describes the LRA approach for Web API semantic description and 
automated discovery and composition. The Linked REST APIs define a data model and a 
composition methodology that delineate the requirements and constraints implemented 
in the development environment in  "Review of Linked-Data query systems" section. 
Interested readers should look at [1, 2] for a detailed overview of the LRA approach.

In our previous work [1], we introduced the concept Linked REST APIs, a middle-
ware for REST-service integration based on Linked Data models, that brings together 
a long history of web-service description formalisms into a concise Web API descrip-
tion model. In LRA, the data exposed by REST services is mapped to Linked Data sche-
mas, and based on those descriptions, a middleware can automatically compose API 
calls to respond to a family of SPARQL queries, called well-designed graph patterns [13]. 
In addition, the LRA model can describe the access-control protocols of the said APIs 
and the quality of the data they expose, enabling the creation of “legal” compositions 
with desired levels of quality. As a consequence, LRA can potentially change the inter-
action paradigm from the manual formulation of procedures, to the automatic defini-
tion of compositions based on graph matching between queries and available service 
operations.

Conceptually, the LRA model considers the data provided by Web APIs as RDF graphs 
under the control of external service providers. LRAs are described by the schema of 
the data they serve, expressed as SPARQL graph patterns. A Linked REST API is speci-
fied as a set of operations, each defined by a 6-tuple S = (E,P, In,Out,A,T ) as follows: 
endpoint information, a graph pattern, inputs, outputs, authentications mechanism, and 
quality attributes, respectively.

In order to leverage the LRA descriptions, SPARQL is used to mediate the integra-
tion of heterogeneous sources. Therefore, a query graph pattern5 is used to find service 
operations that can provide all or part of the answer, by matching subgraphs of the query 
graph against subgraphs of the graph patterns defined in the LRA operations.

Once the query has been defined, the LRA composition problem is formulated as 
that of finding a sequence of API operations S = �S1, · · · , Sn� , such that: (a) each service 
operation Si ∈ S has a non-empty mapping with the query, (b) each required query triple 
is mapped by at least one of the operations (c) the variables projected in the SELECT 
clause are included as the output in one of the service operations, and (d) the service 
operations, when executed in sequence, form compatible subgraph matches, where a 
match is considered compatible if the service operation can be executed with the inputs 
available in the query. A detailed description of the data model and the composition 
algorithm can be found in [2].

Although the preliminary results for performance and accuracy of LRA are encourag-
ing, the early adopters of the approach reported difficulties formulating SPARQL que-
ries, despite they are well-versed in similar technologies, such as SQL. Unfortunately, 
while powerful and expressive, structured query models like SPARQL are fundamentally 
difficult for users to adopt because they require users to learn a new data model and to 

5  LRA queries are restricted to well-designed graph patterns, as defined by Perez et al. [13]
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comprehend the structure of the dataset, in order to express queries in terms of that par-
ticular structure. We argue that, while proficiency in SPARQL is crucial for an optimal 
interaction with LRAs, a higher-level query system is needed to ease the learning curve 
and allow developers to formulate queries in a natural way.

Review of Linked‑Data query systems
Supporting users with the task of formulating SPARQL queries has long been recog-
nized as an important research objective, and a number of methods have been proposed 
to address this problem. Hence, in this section we analyze the previous work on Linked-
Data Query Systems, in relation with the requirements specified by the LRA middle-
ware, and then, based on the most auspicious characteristics, we design a development 
environment that abstracts the complexity of querying Linked REST APIs. The develop-
ment environment is evaluated through an empirical study that reveals the effectiveness 
of developers using our IDE in the formulation of LRA-complaint queries.

In order to guide the design of a development environment that enhances accessibility 
to LRA, we conducted a survey of the literature and comparatively analyzed the most 
prominent works on Linked-Data query systems, with a particular focus on the more 
recent contributions. We performed a systematic search of “Linked Data query systems” 
in the ACM Digital Library, IEEE Xplore, Google Scholar, Google Search, and Springer 
Link. We further retrieved relevant references cited by the works found through the first 
search. We found 17 highly relevant publications, summarized in Table 1. In this sec-
tion, we organize our review of the main features of these systems around five key design 
dimensions: (a) user interface, (b) query interpretation, (c) usability, (d) structural-dis-
covery support, and (e) results rendering. To the best of our knowledge, this is the most 
comprehensive study of Linked Data query systems.

User interface

Query interfaces typically rely on the capacity of the human perceptual system to draw 
inferences based on symbols and their properties, enabling the interpretation of con-
cisely encoded, large quantities of information. The user interfaces of the existing sys-
tems are organized into four categories.

Text editors are a natural choice for software developers accustomed to writing code in 
programming-language IDEs and relational-database clients. These editors are typically 
used by large dataset providers, such as DBpedia6 and Bio2RDF7, and can be employed 
to compose queries using SPARQL directly. Some of them, such as OpenLink Virtuoso 
[14], provide only a simple text box for the user to type a complete SPARQL query. Oth-
ers, such as YASGUI [15], offer syntax-directed editing features, including autocomple-
tion, syntax highlighting, and error checking. Although this type of interfaces have been 
adopted as the de-facto standard interaction model in triple stores, several authors rec-
ognize that textual interfaces are generally inaccessible to typical software developers [16, 
17], because in order to formulate semantically meaningful queries, users need to know, 
not only the structure of the data, but also the syntax of the query language.

6  Available at http://​dbped​ia.​org/.
7  Available at http://​bio2r​df.​org/.

http://dbpedia.org/
http://bio2rdf.org/
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Form-based interfaces capitalize on common user-interface design patterns, adopted 
by most of modern computer systems, thus increasing the initial familiarity with users. 
In those approaches, the queries are specified through the use of text boxes, drop-down 
menus, check boxes, and other well known form elements. The systems typically follow a 
faceted search interface, enabling users to explore a data set by applying multiple filters. 
K-Search [18], SemFacet [19], and PepeSearch [20] are some of the systems adopting 
such a faceted-search interface. Some of them combine elements from other interaction 
models, such as SPARQL Builder [16] and K-Search that provide a graph visualization to 
illustrate the relationships among classes.

Although casual users prefer this type of interface over other visual approaches, build-
ing queries by exploring the search space through facets, as in form-based approaches, 
can be very time consuming, especially as the ontology gets larger and the query gets more 
complex [21].

Natural-Language Interfaces (NLIs) enable users to formulate factoid queries with wh-
terms (which, what, who, when, where), or commands (give, list, show). Some repre-
sentative examples of these interfaces are SPARQL2NL [17] and NLP-Reduce [22]. Due 
to linguistic ambiguities of natural language, some NLIs, such as Ginseng [23] and Que-
rix [24] restrict the user input to a controlled/structured natural language, constrained 
in its grammar and lexicon. As a result, although such “almost natural” language may 
be perceived as more intuitive than other approaches, the restriction on the acceptable 
language constructs limits expressiveness and imposes cognitive challenges on the users.

Visual approaches adopt a diagrammatic language, consisting of geometric shapes, 
textures, and connections between them, to convey the query semantics. The sys-
tems in this category vary depending on their adopted graph data model. For example, 
iSPARQL [25], Nitelight [26], Affective Graphs [27], Semantic Crystal [23] and Query-
VOWL [28] represent RDF triples using nodes for subjects and objects, and links for 
the predicates that connect them. gFacet [29] uses a UML-like representation of classes 
with their properties inside a box. MashQL [30] uses visual pipes to represent the flow of 
data, where nodes define filter functions and edges depict the flow of data. Some of the 
node representations take concepts from form-based interfaces, allowing users to define 
properties through embedded form elements, such as check boxes and drop-down lists, 
as in the case of gFacet and MashQL.

Past usability studies have shown that expert users prefer graph-based interfaces, due to 
their reduced complexity and high expressiveness [21]. Accordingly, LRA’s Visual Query 
Assistant (VQA) adopts a visual-query interface based on a graph model, where the 
direct mapping between the visual syntax and the underlying query language may facili-
tate an eventual transition to text-based interfaces.

Query interpretation

Query interpretation is the process of translating the expression constructed through 
the system’s interface, to a request into the formalism used by the data store. The inter-
pretation approaches are organized into three categories.

Navigation approaches present concepts with property values of focal concepts, logi-
cally organized in groups. By iteratively selecting subsets of these values, a query is 
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created, requesting the refinement of the data of interest. Form-based approaches, such 
as K-Search, SemFacet, and PepeSearch, fall under this category.

In this category, the query-language expressiveness is limited to the direct properties 
of the concepts in focus. In order to formulate complex queries, users have to navigate 
through several concepts and properties, which has been identified as more laborious to 
use than other approaches [21].

Composition approaches present an unambiguous mapping from the configuration of 
elements in the user’s input to the underlying formal query language. In the most trivial 
case, a query composed in a text editor is submitted directly to the data store, resulting 
the highest possible expressiveness for the query interface. Graph-based approaches typ-
ically translate nodes and edges into RDF resources and predicates respectively. How-
ever, representing certain constructs (e.g. filters, functions, or disjunctions) may not be 
supported, or may lead to the inclusion of graphic elements that are not intuitive for 
the user. Despite this potential loss of expressiveness, previous studies remark on the good 
capabilities of visual languages to formulate complex queries [21]; for this reason VQA 
adopts a composition approach for its query-interpretation step.

Approximate mapping is based on the idea of inferring the semantic structure of the 
query, by applying NLP techniques such as named-entity recognition. These approaches 
have varying levels of complexity, ranging from naïve techniques that use minimal nat-
ural-language processing (e.g. NLP-Reduce) to more sophisticated approaches that can 
generate triple structures involving disjunctions and aggregations (e.g. SPARQL2NL). 
Although these approaches lead the user to believe that the system fully understands the 
input language, only a subset of the language is correctly identified by the system, which is 
commonly referred in the literature as the ‘habitability problem’ [31]. This results in low 
response accuracy, or forces these systems to limit the expressiveness of the queries or to 
rely on large amounts of background domain knowledge.

Usability

Although the primary objective of the aforementioned tools is to support users to for-
mulate SPARQL queries, only a few have addressed the perceived ease-of-use and effec-
tiveness. The results of their usability studies can be analyzed taking into consideration 
two different types of users: casual and expert users.

Casual users are characterized by their lack training in formal query languages, and 
unfamiliarity with the details of the internal organization of the query system. Previous 
research has investigated the effectiveness of natural-language approaches (NLP-Reduce, 
Querix, Ginseng), and more formal approaches, such as form-based (PepeSearch) and 
visual interfaces (OptiqueVQS, Semantic Crystal, Affective Graphs) with casual users 
[23, 32, 33]. These studies indicate that casual users favor form-based approaches over 
graph-based visualization approaches, spending less time with the tool and finding a sat-
isfactory trade-off between the complexity of the query and difficulty of the interaction. 
Despite their preference for form-based approaches over graph-based approaches, cas-
ual users seemed to find NLIs most intuitive, even when the language is restricted. How-
ever, the habitability problem of these interfaces causes dissatisfaction with the answers 
they return.
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Expert users are the target users of LRA. They possess a broad set of skills on program-
ming languages and database-management systems that are indirectly associated with 
Linked-Data query systems.

Elbedweihy  et  al. [21] conducted a study where they distinguished between casual 
and expert users when comparing five different approaches (NLP-Reduce, Ginseng, 
K-Search, Semantic-Crystal and Affective Graphs). In that study, the expert users pre-
ferred graph-based approaches, followed closely by form-based approaches, arguing that 
these approaches allowed them to formulate more complex queries than NLIs. Unlike 
casual users, the restrictions imposed by the restricted NLI approach were regarded as 
annoying, and were seen as an impediment to constructing expressive queries. Similar 
to casual users, experts found free-form NLIs, such as NLP-Reduce, more intuitive, but 
found the results unacceptable.

Structural‑discovery support

Considering the difficulties involved in composing complex queries, some approaches 
provide assistance by generating suggestions, based on the structure of the data graph. 
The support offered by the systems to discover structural relationships are grouped into 
three categories.

Ontology browsers facilitate the query-formulation process by providing users with 
a starting point for their query, presenting the classes and relationships that constitute 
the ‘schema’ of the stored data. Approaches, such as PepeSearch and MashQL present 
simply a list of the top classes available in the dataset. Yet other approaches, such as 
K-Search, Nitelight, and Semantic Crystal, employ more sophisticated techniques and 
communicate information about the data ontology through tree-views and ontology 
graphs. Ontology browsers are quite useful for simple ontologies, but their visualizations 
do not scale as the ontologies become more complex [34].

Step-recommendation methods explore the neighboring classes and predicates that 
may be reached from a focus object, and suggest a list of plausible query elements. For 
example, YASGUI provides an autocomplete feature that predicts the rest of a predicate 
or class a user is typing, based on the prefixes added to the query. Visual approaches, 
such as QueryVOWL, also use autocomplete to search for available instances and acces-
sible predicates, which subsequently insert nodes and edges in the graph visualization. 
The approaches that follow a faceted-search interface use the step-recommendation fea-
ture to create navigation links and produce filters. VQA adopts a step-recommendation 
support mechanism, by showing the immediate predicates available from and to a focus 
entity, facilitating the exploration, which has been detected as one of the strengths of form-
based approaches.

Path discovery helps to find connections between two resources, where an immedi-
ate relationship may not exist. This strategy attempts to find paths between resources, 
by exploring the data graph and obtaining chains of properties that connect the two 
resources. From the approaches reviewed, only SPARQLBuilder proposes a path discov-
ery methodology, by preprocessing the datasets and extracting the necessary metadata 
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to construct a class graph, which is then used to find all the possible paths between two 
classes8. VQA improves upon previously proposed approaches by incorporating semantic 
knowledge into the emergent schema and ranking the paths based on proximity.

Results rendering

The presentation of the information returned is also an important component of the 
query system. Elbedweihy et al.[21] found that organizing answers in a table or having 
a visually-appealing display has a direct impact on results readability and clarity and, in 
turn, user satisfaction. Accordingly, query systems usually present the results by means 
of a table.

However, taking into account the context of the data, an appropriate diagram of the 
query results, such as a map or a timeline, would allow users to better capture the rela-
tionships amongst the output data. In the reviewed systems, results from K-Search can 
be visualized as 2-D charts, and, YASGUI incorporates YASR [15], which supports visu-
alization via Google Charts. VQA uses a combination of graphic and tabular representa-
tions, which has been found to yield a better ‘view’ of the data and therefore produce more 
accurate comprehension of it [35].

The LRAWbench

This section presents the development environment and the components that facilitate 
the automation of discovery, composition and enactments of external web services, pro-
vided by LRA.

The Query Console

For experienced users, direct manipulation of SPARQL queries is provided through a 
Query Console (Fig.  1a), similar to other SPARQL query editors. The Query Console 
provides the following three alternative representations of the responses: (a) a table ren-
derer for the projected variables in the SELECT clause, along with a column that speci-
fies the data sources of the row (Fig. 1a-I); (b) the raw JSON-LD response as it would 
be consumed by third-party applications using LRA as a service; and (c) graph visuali-
zations that represent entities as nodes, and their relationships as edges (Fig. 1a-II and 
a-III).

The graph visualizations assist users in their exploration of the returned result. The 
first visualization offers a force directed layout (Fig.  1a-II) to produce visual densities 
that facilitate the detection of clusters. This representation can be considered as a direct 
analogy to the underlying data model, which may help developers to get familiar with 
the graph data model. The second visualization represents a parallel-coordinates layout 
(Fig. 1-III), which is a visualization technique suitable for exploration and analysis, where 
each dimension represents a class of entities, and the nodes in the result are assigned to 
one of the classes. Parallel coordinates have been found to be effective in exploratory 
data analysis, like in the diagnosis of marginal densities, correlations among attributes, 
and clustering [36].

8  It is worth noting that SPARQL Builder does not provide a reference implementation or a demo of their path-discovery 
interface.
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The Visual‑Query Assistant (VQA)

In this section, we describe the visual model used by VQA in order to provide the 
semantics to support an effective semantic matching between developers’ information 
needs and the LRA model.

Graphical notation

VQA’s notation consists of symbols and rules for connecting them, following the triple-
based structure of RDF models, representing entities and literal values as nodes, and 
predicates as links, thus establishing a direct correspondence between visual query 

(a) LRA Query Console.

(b) Visual Query Assistant.

Fig. 1  LRA development environment
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expressions and the underlying SPARQL language. We hypothesize that this mapping 
between the query-editing graphical notation and the SPARQL syntax may support 
learning which, may eventually enable the users’ transition to using the textual SPARQL 
editor.

The design of the Visual Query Assistant is guided by the three key laws of Gestalt 
Theory in Visual Screen Design [37]: simplicity, similarity, and proximity. The simplicity 
law in VQA is represented by its visual-language constructs, composed by circles rep-
resenting nodes, and lines representing links among such nodes, each of them with a 
label that differentiates its role in the query. This prevents the information overload of 
other approaches, such as AffectiveGraphs, which has a large number of combinations 
of distinctive features. The similarity law in VQA is depicted by the color and size of 
the circles, which distinguish class instances, properties and filters, as shown in Fig. 1b-
IV. More specifically, class instances are represented with large blue circles, since they 
determine the main structure of the query; properties are represented as small circles, 
whose fill and stroke color change to indicate whether they are used as input (pink fill) 
or output (blue stroke) properties; and filters are smaller red circles attached to the fil-
tered property, emphasizing with the color their importance for the result of the query. 
Approaches such as iSPARQL and Nitelight make all elements look alike, and fail to 
capitalize on the opportunity to visually distinguish them. Finally, the proximity law in 
VQA is represented by the link distances, which are strategically designed to group class 
instances and their properties into a congruent cluster, and keep other class instances 
and properties at a distance that enables users to perceive inter-class relationships, 
without interfering with the visual clusters. In contrast, most of the visual approaches, 
including iSPARQL and Nitelight, do not take into account the distance among elements 
as an important part of their graphic representations.

Emergent schema for structure discovery

VQA relies on the underlying structure of the data provided by the LRA services, which 
we call emergent schema, in order to build a model to assist users with no knowledge of 
SPARQL and the specific dataset structure. The emergent schema is a specialized graph, 
based on other approaches [16, 38], whose nodes and edges correspond to classes (or 
data types) and predicates, respectively.

Given a set of triples from LRA service descriptions, denoted as R, we define the emer-
gent schema as a directed labeled graph G = (V ,E, ℓ) such that, the set of vertices V 
represent classes and value types; the set of directed edges E of the form l(u, v), where 
u ∈ V  , v ∈ V  and l ∈ ℓ , denote predicates between resources; and the labels ℓ are predi-
cate names or labels. An edge of the form l(u, v) represents the RDF triple (u,  l, v). In 
order to extract the set of initial class nodes of the emergent schema, VQA adds all the 
classes c, such that c appears in triples of R of the form (s,rdf:type, c) . To obtain the 
set of initial edges, VQA adds all the edges p(c1, c2) such that there exists three triples in 
R of the form (s1,rdf:type, c1) , (s2,rdf:type, c2) , and (s1, p, s2).

In addition, we noted that semantic properties, such as subsumption, may provide 
more efficient ways to represent the relationship between classes. For example, a devel-
oper querying scholarly APIs, instead of referring to the individual types of publications, 
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like blogs, papers, or patents, may aggregate all the publications by referring to docu-
ments. Nevertheless, including all the superclasses of V would lead to superfluous classes 
and a cluttered user interface. VQA only includes the superclasses that cover more than 
one class from the initial set of classes. Then, for each pair of class nodes u and v, it 
adds their lowest common ancestor in the class hierarchy to the set of classes V. Accord-
ingly, the added superclasses will take part in the edges where their subclasses have rela-
tionships. More formally, VQA adds an edge l(c′

1
, c′

2
) to the set E, if there exists an edge 

l(c1, c2) such that c1 ⊆ c′
1
 and c2 ⊆ c′

2
 , where c ⊆ c′ indicates that class c is a subclass or 

the same as c′.
Once the emergent schema has been constructed, when a user adds a new class 

instance in the VQA query graph, the system computes the possible relationships 
between the new class and the existing classes in the query, by exploring the emergent 
schema. The relationship options are ranked giving priority to short path lengths, which 
intuitively emphasizes more direct relationships (Fig. 1b-I). This improves the interac-
tion presented in other graph-based approaches, where the user required explicit knowl-
edge of the relationships between classes. The selection of one of the options results 
in the creation of graph elements in the query (Fig. 1b-II), which then can be used to 
add properties to the elements (Fig. 1b-III and b-IV). Once a query graph has been cre-
ated, an expression generator component traverses the graph and gradually constructs a 
SPARQL query that comprises all the restrictions defined in the graph.

Usability evaluation of the LRAWbench

We conducted an empirical study that seeks to address our first research question: Does 
the LRAWbench  improve the effectiveness of developers formulating LRA-complaint que-
ries? We decided to compare our tool against YASGUI, because, besides providing struc-
tural discovery support, syntactic assistance, and being actively maintained, it is one of 
the most widely used SPARQL query interfaces, being incorporated into RDF frame-
works and projects, such as Apache Jena-Fuseki, HealthData.gov, and the Smithsonian 
American Art museum.

Study protocol

For the study, we recruited 20 software developers and computer-science students, with 
more than 1 year of experience in software development and SQL, and no previous expe-
rience in SPARQL. The participants were divided randomly in two groups of equal size: 
one group was assigned to use VQA, and the other was given YASGUI. The participants 
were trained through a series of interactive video lessons, based on material from [39].

In order to design a representative set of query-formulation tasks, we considered three 
factors: complexity of real-world queries, existing SPARQL benchmarks, and related 
usability studies. For the complexity of real-world queries, we examined the charac-
terization extracted by Gallego et al. [40] from logs of the DBPedia and Semantic Web 
Dog Food public endpoints. For our study, we considered the query complexity indica-
tors found by the authors: number of joins, type of operators, patterns of triples, and 
topology of the pattern. In addition, we considered SPARQL performance benchmarks, 
such as SP2Bench [41], but their queries were discarded from our study, since they were 
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not representative of the real-world complexity indicators mentioned above, and their 
domains may be too intricate to understand for our test subjects. We also reviewed com-
parable usability studies, such as [21, 23], and found they were based on a small dataset 
containing geographical information about the US9, which also contains predefined Eng-
lish language questions. For our study, besides using the same dataset, we considered the 
questions that these studies selected and their SPARQL translation. The above consid-
erations resulted in the following query-specification tasks. 

1.	 Which are capitals (name and population) of the USA?
2.	 What are the cities (names) in states through which the Mississippi river runs?
3.	 Which are the lakes (names and area, if available) in states bordering Minnesota?
4.	 Which rivers (name and length) run the states that border the state with the capital 

Atlanta?
5.	 Which states (names) have a city named Springfield with a city population over 

100,000?

Questions 1, 2, and 5 correspond to questions found in [21]. Questions 3 and 4 were 
formulated to make use of optional operators and complex relationships, representing 
the higher complexity observed in real-world queries, which have not been exercised in 
other usability studies.

Data collection

The queries were presented to the participants one at a time in the same order, and both 
tools allowed the execution of the queries, and presentation of results against the geo-
graphic dataset. Subjects were asked to formulate each of the five queries in turn, using 
the assigned tool’s interface.

In order to compare the usability of the tools, we collected quantitative and qualita-
tive data. The set of quantitative data we collected is based on information-retrieval and 
human-computer interaction literature, and includes: (a) the time required to formulate 
the query, (b) the number of attempts, and (c) the accuracy of the answer, represented by 
the F-measure that combines precision and recall. After the tasks were completed, we 
asked the participants to reflect on their experience and provide feedback using a free 
form text area for comments, and the System Usability Scale (SUS) questionnaire [42], a 
standardized usability test that has proven to be very useful when investigating interface 
usability [43].

The working sessions were instrumented with LimeSurvey10, a popular open-source 
tool for online surveys. The survey presents one task at the time until all tasks in the 
questionnaire are answered. The application was configured to disallow participants 
to return to a task once it has been completed. The survey application measures the 
total time spent by the participant in each task. The total time is calculated as the time 
between a task is presented to the participant, and the time a final answer is submitted. 

10  https://​www.​limes​urvey.​org/.

9  The Mooney Natural Language Learning Data, available at http://​www.​cs.​utexas.​edu/​users/​ml/​nldata/​geoqu​ery.​html.

https://www.limesurvey.org/
http://www.cs.utexas.edu/users/ml/nldata/geoquery.html
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Each tool was instrumented to log the queries submitted to the system, which is then 
used to extract the number of attempts per task. The accuracy of the query was evalu-
ated using the precision and recall of the returned records against the expected record 
set, which is summarized in the F1-measure.

Results and discussion

The results for both tools, VQA and YASGUI, are presented in Table 2. The first two col-
umns present the evaluation criterion and the name of the query, the following two col-
umns report the average results for VQA and YASGUI respectively, and the last column 
shows the probability values after applying a t-test, in order to evaluate if the difference 
between the two samples is statistically significant.

The results show that VQA users took significantly less time overall and required 
fewer attempts to formulate the queries than YASGUI users (95% confidence). In addi-
tion, queries formulated through VQA were more accurate than queries created with 
YASGUI, although the difference was not statistically significant. Furthermore, VQA 
presents higher usability ratings than YASGUI.

Our results are not directly comparable to the results of other graph-based approaches 
using the same dataset [21, 23], due to differences in experiment design and background 
of test subjects. Nevertheless, we found similarities in the required number of attempts 
and an increase in accuracy, perceived usability, and average time with VQA. Com-
pared to these studies, however, there is a seemingly unfavorable increase in the average 
time that VQA users required relative to AffectiveGraphs users. We hypothesize that 
this may be due to the learning effect [44] phenomenon, which may have affected the 
aforementioned studies; in the above studies, the experimental protocol had participants 
answering the same question in several interfaces, significantly increasing the potential 

Table 2  Results of the VQA usability evaluation

Criterion Question VQA YASGUI p-value

Time (s) 1 156 729 0.0017

2 204 1077 0.0162

3 334 842 0.0250

4 193 518 0.0282

5 119 534 0.0083

Average 201 740 0.0048

F-measure 1 1.000 0.857 0.3559

2 1.000 0.833 0.1723

3 0.750 0.555 0.2274

4 0.888 0.422 0.2033

5 1.000 0.666 0.0781

Average 0.927 0.695 0.0978

Num. Attempts 1 1.000 4.571 0.0323

2 1.000 11.857 0.0111

3 1.125 9.285 0.0151

4 1.625 3.857 0.2033

5 1.125 8.000 0.0690

Average 1.175 7.257 0.0048

SUS Average 79.062 55.357 0.0015
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to become familiar with the ontology and the questions from one interface to the next, 
thus improving their performance over time, and reducing the overall average.

We also noted that the visual representation of the query facilitated the inspection 
of the semantic correctness of the query, which is one of the reason why VQA users 
required fewer attempts to formulate the query. On the other hand, many of the YAS-
GUI users submitted erroneous queries (e.g., typos in variables, non-existing predicates), 
or created the query by incrementally executing partial query patterns. Most of the erro-
neous queries supplied by YASGUI users were due to inconsistent variable naming and 
absence of links between classes, which are two of the main assistive features in VQA.

The difficulty to formulate queries resulted in an increase in time for YASGUI users, 
when compared to VQA users. In the experiment, despite providing several exam-
ples and covering the necessary query constructs, at some point, some YASGUI users 
declared they felt frustrated devising syntactically and semantically correct SPARQL 
queries, especially when the query demands joining chain patterns. This also resonated 
in the accuracy of the queries, where VQA users achieved 92.7% and YASGUI users only 
69.5%. Particularly, we noted that YASGUI users have a relatively good accuracy for sim-
ple queries (above 66% in queries 1, 2, and 5), but for the complex queries, the accuracy 
drops considerably below 55%, while for VQA users it remains above 75%.

In summary, VQA provides a favorable environment to introduce LRA developers into 
SPARQL, since it offers an interface that reduces the time to formulate a query, while 
maintaining high accuracy. Additionally, the interface restricts the compositions to valid 
SPARQL queries, that can be visually inspected for semantic errors, which increases the 
perceived usability of the tool. However, it is important to note that YASGUI provides a 
valuable user interface, that allows more flexibility and expressiveness, but requires sig-
nificant experience in SPARQL.

Effectiveness evaluation of the LRAWbench

After evaluating the user interface of the development workbench, we turned our atten-
tion to assessing the usability of LRA as a framework that automates the process of reus-
ing services in software applications and reduces the manual work required by software 
developers. Particularly, we conducted an empirical study to answer our second research 
question: Does the use of the LRA environment result in improvements of developers’ 
efficiency and code quality? In this study, we hypothesize that enabling developers to 
retrieve data from multiple Web APIs by using a declarative language can significantly 
improve not only their performance, but also the quality of code artifacts. In order to 
determine the differences in performance and quality, we designed an evaluation study 
around a realistic use case of software-engineering teams building applications that inte-
grate multiple web services, using the approach followed by Brueckmann et al. [45]. In 
this use case, a developer, who has previously identified a set of relevant service provid-
ers, formulates a service workflow that produces functionality needed in the application 
under development.
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The use case involves the implementation of a test web application, called The Music 
Time Machine (MTM). In essence, MTM shows detailed information about songs that 
were popular at an specific date, provided by the end-user. The application is similar to 
other applications, such as The Billboard Hot 10011, My Birthday Hits12, or Playback.fm’s 
Birthday Song13.

The MTM application comprises 4 software components. The first component ( T1 ) 
contains a date picker and a button, which loads the top-10 songs at the specified date 
(Fig. 2a-1). The second component ( T2 ) shows information related to the song, such as 
the title, artist, release date and more (Fig. 2b-2). The third component ( T3 ) presents a 
line graph showing the ranks of the song over time (Fig. 2b-3). And the fourth compo-
nent ( T4 ) displays links to images and videos related to the song or the artist (Fig. 2b-4).

The data for the components is provided by 4 data sources. Billboard14 provides his-
torical information about song ranks, Spotify15 contains detailed information of songs, 
albums, and artists, IMVDb16 contains data about music videos, and Google CSE17 was 
configured to provide images related to music. Additionally, the provided LRA semantic 

(a) Home page (b) Details page

(c) Expected composition chains

Fig. 2  The Music Time Machine (MTM) test application

11  http://​www.​billb​oard.​com/​charts/​hot-​100.
12  https://​www.​mybir​thday​hits.​com/.
13  http://​playb​ack.​fm/​birth​day-​song.
14  http://​billb​oard.​modulo.​site/.
15  https://​devel​oper.​spoti​fy.​com/​web-​api/.
16  https://​imvdb.​com/​devel​opers/​api.
17  https://​devel​opers.​google.​com/​custom-​search/.

http://www.billboard.com/charts/hot-100
https://www.mybirthdayhits.com/
http://playback.fm/birthday-song
http://billboard.modulo.site/
https://developer.spotify.com/web-api/
https://imvdb.com/developers/api
https://developers.google.com/custom-search/
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descriptions of the aforementioned data sources use schema.org, which has been widely 
adopted to annotate the semantics of music-related data for search engines.

In order to test the performance and quality of the application, we used the previously 
mentioned components, and the characterization of composition patterns proposed by 
Jaeger et al. [46], to create a set of tasks that aim at understanding how developers pro-
duce service compositions using different tool treatments. These tasks evaluate three 
prevalent composition structural patterns: discovery, sequential composition, and par-
allel composition. Discovery refers to binding a consumer to a single service that can 
provide all the required data. This pattern is used to retrieve data for T1 and T3 . Sequen-
tial specifies a composition where the execution of services follows a logical order, and 
subsequent services depend on the results extracted from previous service invocations. 
Hence, the discovery pattern is also a special case of sequential pattern, whose length is 
limited to one service. The sequential structural pattern corresponds to the workflow in 
T2 . Finally, Parallel refers to compositions where the result of one or more independent 
composition chains are eventually merged. More specifically, this pattern corresponds to 
a parallel flow with AND split and join [46]. This pattern is used for T4 . Figure 2c shows 
diagrammatically the workflows for each component.

Study protocol

The study involved 32 students of Computing Science at the University of Alberta. All 
participants were enrolled in the fourth-year course “Software Process and Product 
Management”, which includes lessons on service systems. This course also includes lab 
sessions, where the students apply the concepts learned in class by incrementally devel-
oping software applications. The lab sessions account for 5% of the final course grade, 
thus participation in the sessions is mandatory; however, the students were asked for 
their consent prior to the data collection for our study.

All of the participants reported having used the programming language (Javascript). 
The reason to use a single programming language is to reduce the variability in struc-
tural complexity that may be attributed to the inherent properties of the language model. 
Furthermore, none of the participants had experience with the selected Web APIs prior 
to this course, which does not give an unfair advantage to some of the participants.

The protocol of the study was divided in three stages:
Stage 1 (Preparation sessions) involved two 2-h leveling sessions covering topics 

related to version control systems, front-end programming, and service-oriented archi-
tectures. The students worked in pairs, which is a regular practice in the course, and has 
demonstrated higher effectiveness in industrial and academic scenarios [47, 48]. At the 
end of this stage, all the students had a working version of MTM that uses a local Web 
API as the data provider, in such a way that subsequent stages can be focused on data 
management and integration, instead of the presentational aspects of the application.

Stage 2 (Training session) introduced the LRA approach, including a description of the 
semantics in the API specifications. This session included a laboratory workshop that 
provided hands-on experience with the LRA environment, where T1 is used to illustrate 
the differences between the traditional approach and LRA. Then, the students were 
asked for their voluntary participation, emphasizing that their consent to participate has 
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no repercussions on the course grades. At the end of this session, the participant pairs 
were divided randomly in two groups of equal size, one of them assigned to use LRA, 
and the other to traditional HTTP requests to individual service providers.

Stage 3 (Working session) involved a session with a maximum time restriction of 2.5 h. 
This session was instrumented by a survey that presents one task at a time, in the same 
order, until all tasks in the questionnaire are answered. The linear questionnaire strategy 
followed in our study has been used in similar state-of-the art software development and 
comprehension studies, such as in [49, 50]. In the survey, the students were asked to sub-
mit the commit hash, in order to have a history that allows to audit the times and code 
changes. After the tasks were completed, the software repositories were collected, and 
the participants were asked to reflect on their experience using the SUS questionnaire, 
like in our previous study.

Data collection

In order to asses the performance of developers and the quality of the code, we col-
lected the following quantitative data: (a) the time required to develop the task, (b) 
the execution time to render the task component, (c) the size of the response, (d) 
the structural complexity metrics derived from the code, and (e) the accuracy of the 
answer.

The development time for each task is calculated as the time between a task is pre-
sented to the participant, and the time an answer is submitted. The size of the response 
is the total amount of bytes transferred to the client application from direct service 
calls. The execution time for each task is calculated as the page load time with only the 
task component, where each measurement corresponds to the average time of five load 
times, and the first two load times were discarded. For the collection of execution times, 
the LRA framework was configured to perform exploration of maximum length of l = 3 , 
and caching of query plans and service responses were disabled.

Since the variations of partial implementations is considerable, rather than try to enu-
merate them all, we designed a 3-level scoring mechanism to evaluate the accuracy. Each 
task assigns a score of 1 if all the entities and their attributes are included in the answer; 
0.5 if some, but not all the entities and their attributes are included in the answer; and 0 
if the task was not implemented or does not return the expected answer. This approach 
provides ease of explanation of the grading rubric, while allowing for variability in par-
ticipants’ solutions. It is important to note that participants are capable of identifying 
goal states correctly, since the only difference with the application created in Stage 1 is 
the data source.

Structural complexity metrics are based on the program’s intrinsic attributes, such 
as the syntactic structure and program size. In this category, lines of code, Halstead’s 
software science [51] and McCabe’s complexity [52] are the most popular complexity 
metrics. Although some authors have questioned the consistency of the aforementioned 
metrics [53], many researchers accept these attributes as significant indicators of effort, 
maintainability, and defectibility [54–58], and they are still widely used in industrial 
scenarios, and have been incorporated in popular IDEs, like Visual Studio and Eclipse. 
We excluded from this study the object-oriented complexity measures, such as depth 
of inheritance tree, since the tasks were planned in a way that answers do not require 
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significant considerations regarding the object-oriented design. In addition, we also 
excluded extrinsic metrics, such as readability, since they depend on individual style 
and preference, and in most of the cases can be avoided. In summary, the complexity 

Table 3  Results of the effectiveness evaluation of LRA

LRA Traditional p-value

Criteria T2 T3 T4 T2 T3 T4 T2 T3 T4

LOC 13.25 16.60 16.80 30.00 15.67 31.80 1.0E−6 1.1E−1 2.4E−3

Vocabulary 45.25 45.20 44.20 51.88 36.50 55.00 4.7E−5 5.7E−4 4.9E−3

Length 107.00 100.40 106.60 193.00 88.67 205.00 4.0E−6 9.5E−3 7.0E−3

Volume 588.59 542.24 582.94 1100.18 460.34 1188.63 5.0E−6 5.7E−3 7.6E−3

Difficulty 13.79 14.00 14.19 16.64 13.22 16.71 3.5E−4 5.0E−2 8.1E−2

Effort 8117.51 7599.75 8269.45 18415.75 6090.06 20369.58 3.5E−5 6.1E−3 1.9E−2

Est. Bugs 0.20 0.18 0.19 0.37 0.15 0.40 5.0E−6 5.7E−3 7.6E−3

Cyclomatic 2.00 2.00 2.00 3.75 2.00 3.60 1.3E−5 - 2.8E−3

Maintainability 55.87 53.99 53.67 46.05 55.03 45.40 2.0E−8 3.6E−2 7.9E−4

Accuracy 1.00 0.63 0.56 0.81 0.75 0.50 1.9E−1 6.1E−1 7.9e−1

Size (B) 3389.88 3220.20 6654.00 3273.63 692.00 12440.80 9.2E−1 1.0E−7 9.3E−2

Exec. Time (s) 1.63 1.61 1.82 1.58 1.56 1.79 4.9E−4 1.0E−1 3.7E−1

Dev. Time (min) 40.25 13.40 8.00 66.00 7.00 55.00 5.9E−3 9.9E−2 4.2E−3

SUS 42.68 59.56 0.020860

(a) SUS (b) Lines of Code (c) Vocabulary (d) Length

(e) Volume (f) Difficulty (g) Effort (h) Estimated bugs

(i) Cyclomatic (j) Maintainability (k) Accuracy (l) Size

(m) Dev. Time (n) Execution time

Fig. 3  Boxplots representing the data analyzed for the effectiveness metrics
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metrics considered in this study are: effective lines of code, Halstead’s software science 
[51] (vocabulary, length, volume, difficulty, effort, and estimated bugs), cyclomatic com-
plexity [52], and maintainability index [59].

Results

In Table 3, we present the results of the performance and complexity metrics for each 
task. The first column presents the evaluation criteria, and the following two sets of col-
umns show the average of each task using the two approaches. The last set of columns 
present the probability values after applying a t-test, in order to evaluate if the differ-
ence between the two approaches is statistically significant. Furthermore, Fig. 3 presents 
fourteen box and whisker diagrams that portray the distribution of the recorded meas-
urements for each task in both approaches under consideration. Since T1 was used to 
illustrate the differences between LRA and the traditional approach, the data collected for 
this task was not used in the analysis.

The task T2 seeks to explore the differences of the approaches under a sequential ser-
vice composition pattern. The second component ideally combines one operation from 
Billboard, and two from Spotify. The results show that all the structural complexity meas-
ures favor the LRA approach with statistical significance. For example, the lines of code 
used with the traditional approach averaged 30 lines, while LRA only required an aver-
age of 13.25 lines. The time to develop the functionality for the second task was signifi-
cantly lower for LRA developers, showing an average of 40.25 min, in contrast with the 
60 min spent in average by developers using the traditional approach. The execution time 
and response size give an advantage to the traditional approach, but the difference is not 
considerable.

The goal of task T3 is to investigate the differences of the traditional and LRA approach, 
in service discovery, which is the basic operation of service-oriented systems. In principle, 
this operation selects and invokes one single service from Billboard. When performing 
this task, although there were no considerable differences regarding structural com-
plexity, the traditional approach showed slightly less complexity. For example, the aver-
age estimated bugs in the traditional approach is 0.15, while in LRA is 0.18. In terms of 
performance, only the difference in size of the returned response was statistically signifi-
cant, with an average of 3220 bytes for LRA, and 692 bytes for the traditional approach. 
This difference is caused by the overhead of LRA, which includes information about 
the request, such as status codes, query URLs, and detailed description of the services 
invoked, while the service response from Billboard is concise in its format.

The task T4 investigates the differences of the approaches under a parallel service com-
position pattern. This composition is designed to request information from Billboard, 
and then split its execution flow into requests to IMVDb and Google CSE, which is sub-
sequently merged. The results for this task are similar to the results for the task T2 . The 
structural complexity measures significantly benefit software artifacts created using LRA, 
and although there are differences in execution time and response size, the difference 
does not seem considerable. Likewise, the development time was significantly lower for 
LRA developers, with an average of 8 min, as opposed to the 55 min in average spent by 
developers using the traditional approach.



Page 22 of 26Serrano and Stroulia ﻿J Big Data           (2021) 8:123 

It is important to note that there were no statistically significant differences in accuracy. 
However, there is a marginally higher accuracy in favor of LRA developers, with an aver-
age of 0.73, when compared with developers using the traditional approach, who aver-
aged 0.69. When only correct implementations are considered, LRA developers properly 
implemented 17 (out of 24) components, while traditional developers implemented 15 
components.

In the subjective evaluation, instrumented with the SUS questionnaire [42], the results 
show that the traditional approach outperformed the LRA approach significantly. The 
average usability score of the traditional approach was 59.56, while for the LRA approach 
it was 42.68, which are are considered as OK and Poor, respectively, according to the 
adjective ratings introduced by [60].

Discussion

The results of this study show that complex workflows, involving service compositions, ben-
efit from the structural complexity abstraction provided by LRA, since software applications 
only need to invoke a single endpoint, which in turn, automates the dynamic binding of the 
consumer application to multiple service endpoints. Despite the overhead incurred due to the 
service composition at runtime of LRA, it does not seem to affect the performance consider-
ably, in terms of execution time, when compared to the traditional approach.

Nevertheless, for simple workflows, involving only service discovery, the results indicate 
that the structural complexity and performance of the two approaches is comparable. This 
result can be explained by the similarity of the two approaches, when the task is simple, since 
both are reduced to a single request to an endpoint. In addition, we hypothesize that for our 
study, given the limited number of relevant Web APIs and semantic concepts, the task of 
browsing Web API documentations and finding a single service can be regarded as equiva-
lent as scanning through the ontology documentation and formulating queries in a domain-
specific (visual) language.

Likewise, LRA developers spent less time implementing the composition workflows, when 
compared to developers using the traditional approach, and comparable times for the discov-
ery workflow. However, in this aspect, it can be seen that LRA developers take a considerable 
amount of time in the first task T2 , which is then amortized significantly for subsequent tasks, 
showing clear signs of the effect of learning to use the approach. While LRA developers spent 
in average 40.25 min in the second task, they spent only 13.4 and 8 min in the following tasks.

Nevertheless, the perceived usability of the traditional approach was considered higher than 
LRA. This phenomenon, where the benefits seem attractive, but end-users express opposi-
tion to new technologies, is known as innovation resistance, and has been studied extensively 
in the literature [61, 62]. Previous research found that resistance to technological changes by 
end users is to be expected, and that one of the causes may be the perceived lack of ability or 
skill to successfully perform a given task. In particular, the LRA developers stated they per-
ceived the tasks as more difficult, because they had to learn about the use of new tools, such as 
VQA and schema.org, while the traditional developers did not have to use the new knowledge 
to solve their tasks. Hence, a successful implementation of LRA should consider appropriate 
strategies for dealing with different forms of endogenous and exogenous factors of resistance.
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Limitations

The limited number of participants and their limited expertise on web-based technologies is a 
concern for the external validity of the study. However, this study was conducted with a pool 
of participants with significant programming experience, and an intensive training in service-
oriented architectures. In addition, the relative inexperience of the participants with the par-
ticular technologies used in the study guarantee that preconceived bias towards the traditional 
approach do not result in biased-blocking effects on the technologies under evaluation [63].

We are aware that the learning curve of the approaches under consideration may impact 
the developers performance. In order to minimize the impact of this threat to validity, we 
included stages for preparation and training in our protocol, which provided hands on experi-
ence with the development environment.

Participants were not allowed to return to a task once it was completed, which might fail 
to account for the exploratory and non-linearity nature of software development. Limiting 
our survey application to a strictly linear answering mechanism was motivated by our desire 
to precisely measure the time spent by developers implementing individual tasks. We mini-
mize this threat to validity by thoroughly exploring the case studies during the preparation 
and training stages, and by designing the development tasks in such a way that coupling is 
minimal. Although our participants did not report the need to reconsider previous answers, 
more sophisticated mechanisms are desirable to allow a more flexible answering strategy, and 
increasing the generality of our results. The linear questionnaire strategy followed in our study 
has been used in similar state-of-the art software development and comprehension studies, 
such as in [49, 50]

The study was divided in three stages in a span of 3 weeks in order to minimize the fatigue 
of developers. Additionally, our protocol was designed to gradually increase the familiarity 
with the system, allowing participants to review the training material in between sessions. 
Finally, LRA’s user interface had been tested previously, as described in “Usability evaluation 
of the LRAWbench” section, which allowed us to improve accessibility and intuitiveness of the 
users’ interactions with LRA queries.

The test application used in this study was desgined and developed for research purposes. 
Although we identified several real-world applications that provide similar functionality, we 
can not claim that the results in this study can be generalized to industrial ecosystems. Con-
sidering the scope of our research, we believe that the results of this study provide substan-
tial insights on how developers produce applications that integrate data from multiple service 
providers, via Web APIs.

Even though the number of tasks considered in the study are limited, they investigated the 
performance of developers dealing with the most common structural patterns. Indeed, the 
results of this study can be generalized to the performance of developers dealing with simple 
service discovery, as well as in non-trivial service compositions.

Conclusions
This paper builds on the previously proposed conceptual framework of Linked REST APIs, 
a methodology for semantically specifying and automatically composing Web APIs [1]. The 
LRA methodology aims to move the process of web-service composition from the current 
state, where interpretation of natural-language service documentation and manual program-
ming of client code for service invocation are the norm, to a new model-driven engineering 
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process, relying on declarative RDF-annotated, REST-service specifications. This methodo-
logical shift necessitates the use of SPARQL to reason about these RDF-annotated, REST-ser-
vice specifications, and, in spite of the process-efficiency and system-quality improvements 
that it promises, the use of SPARQL as the query language creates barriers to the adoption of 
the LRA approach for traditional software developers.

This need, to mitigate the challenges that software developers face when they have to use 
SPARQL, has motivated the development of the LRAWbench . This tool exploits the underly-
ing graph model implied by RDF and infers an emergent schema of the dataset to present to 
developers the data elements and relations, relevant to their current focal element. Accord-
ingly, developers create SPARQL queries, corresponding to their desired composition, 
through the exploration of possible connections between query entities, in the emergent 
schema.

In this paper, we have described the LRAWbenchand we have reported on two studies 
designed to evaluate (a) its usability and (b) its effectiveness in supporting software devel-
opment. We first designed a collection of tasks that aim at evaluating the performance of 
developers when producing LRA-compliant queries. We evaluated the developers’ per-
formance in terms of three objective measures, namely (a) accuracy, (b) the number of 
attempts, and (c) the overall time needed to produce a query. We also collected feedback 
from our participants on their perceptions of the system’s ease of use. In all these measures 
VQA, the visual SPARQL-query composition tool of the LRAWbench , was found to be supe-
rior to YASGUI, and, in most of them, significantly so. Next, we examined the developers’ 
performance and quality of their code when asked to create applications that retrieve and 
integrate data from multiple Web APIs. In this study, we examined the following five indi-
cators: (a) the time required to develop the task, (b) the execution time, (c) the size of the 
response, (d) the structural complexity of the code, and (e) the accuracy of the answer. We 
observed that developers using LRA for complex compositions produce code with better 
structural complexity, in less time, than developers using classic development approaches. 
Furthermore, the study revealed that, for service discovery, the performance and code 
quality of developers is comparable. The study also shows that the overhead incurred by 
the LRA middleware is not considerable.

In our future research agenda, we plan to investigate the relations found in textual 
descriptions of web services, in order to automatically map input and output relationships 
to ontology elements, which would simplify the the development life cycle with semanti-
cally-enhanced web services.
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