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Abstract 

Background: The design used to create labelled data for training prediction models 
from observational healthcare databases (e.g., case-control and cohort) may impact 
the clinical usefulness. We aim to investigate hypothetical design issues and determine 
how the design impacts prediction model performance.

Aim: To empirically investigate differences between models developed using a case-
control design and a cohort design.

Methods: Using a US claims database, we replicated two published prediction models 
(dementia and type 2 diabetes) which were developed using a case-control design, 
and trained models for the same prediction questions using cohort designs. We vali-
dated each model on data mimicking the point in time the models would be applied 
in clinical practice. We calculated the models’ discrimination and calibration-in-the-
large performances.

Results: The dementia models obtained area under the receiver operating character-
istics of 0.560 and 0.897 for the case-control and cohort designs respectively. The type 
2 diabetes models obtained area under the receiver operating characteristics of 0.733 
and 0.727 for the case-control and cohort designs respectively. The dementia and dia-
betes case-control models were both poorly calibrated, whereas the dementia cohort 
model achieved good calibration. We show that careful construction of a case-control 
design can lead to comparable discriminative performance as a cohort design, but 
case-control designs over-represent the outcome class leading to miscalibration.

Conclusions: Any case-control design can be converted to a cohort design. We rec-
ommend that researchers with observational data use the less subjective and generally 
better calibrated cohort design when extracting labelled data. However, if a carefully 
constructed case-control design is used, then the model must be prospectively vali-
dated using a cohort design for fair evaluation and be recalibrated.
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Background
It is widely known in medicine that prevention is better than cure. Prognostic models 
that can determine a personalized risk of some future illness could be used to identify 
high risk individuals that would benefit from interventions. Making decisions based on 
personalized risk could improve patient care [1]. Big observational healthcare databases, 
such as electronic health records or insurance claims data, are potential data sources 
that could be used to develop patient-level prediction models. A recent review of prog-
nostic models for cardiovascular outcomes showed that the number of models being 
published is increasing over time, but most published models have issues (e.g., meth-
odology details missing in publication, lack of external validation and standard perfor-
mance measures not used) [2]. This problem is observed across outcomes where many 
models fail to adhere to best practices for model development and reporting [2–4]. In 
addition, many published models have not been widely tested on diverse populations, 
so the models may perform poorly when transported to different patients such as low-
income populations [4]. There may be even bigger problems with some prognostic mod-
els developed on observational data due to the process used to create labelled data for 
the machine learning algorithms.

Observational healthcare databases contain time-stamped medical events (e.g., drugs 
prescribed or administrated, medical diagnoses and symptom observations) for a collec-
tion of patients who are included in the data. These are often large databases containing 
millions of patients’ data and could be utilized by machine learning models [5]. The first 
stage in developing prognostic models is processing the time-stamped data into labelled 
data consisting of a set of features (aka predictors) for each patient and class labels indi-
cating whether each patient has the outcome during the time at risk. After extracting 
the label data, supervised machine learning algorithms are then applied to the labelled 
data to learn associations between the features and the class label. The idea is that these 
associations will generalize to new data (e.g., when models are applied in a clinical set-
ting) [6]. It is widely known that if you provide junk data to machine learning algorithms 
you will get useless models returned [7]. The process used to extract labelled data when 
developing prognostic models using observational databases is subjective, but this 
choice impacts the labelled data quality, and therefore the model quality. Furthermore, if 
a model is only internally validated (using held out data such as a test set) then the data 
used for validation is also problematic. If there are issues in the labelled data creation, 
then this is unlikely to be identified by internal validation, but the negative consequences 
may become apparent if the model is used in a real clinical setting.

There are two data extraction designs that are predominately used to extract labelled 
data from observational healthcare databases for prognostic model development: the 
cohort design [8] and the case-control design [9, 10]. Alternative designs are generally a 
mixture of the case-control and cohort designs, such as the nested case-control and the 
case-cohort design [11]. A nested case-control design is a cohort design where patients 
in the cohort who do not experience the outcome during the time-at-risk are sampled 
but all patients who experience the outcome are included. For the case-cohort design, a 
cohort of patients is defined and then a random sub-sample of the cohort is selected in 
addition to all patients who have the outcome during the time-at-risk. Both alternative 
designs are effectively cohort designs with under-sampling of the non-outcomes.
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Figure  1 illustrates the differences between the cohort and case-control designs. In 
Fig. 1, part A shows a set of patients and their medical timelines from birth to death. 
Healthcare databases often only capture a section of a patient’s medical observations. An 
index point in time is required when developing prediction models using observational 
data, where data prior to index are used to construct features and data after are used for 
class labelling. Part B illustrates that the index for a case-control is the outcome date and 
part C shows that for the cohort design the index date is when a patient satisfies some 
specified criteria (e.g., experiences some medical event while being outcome free).

In the cohort design the set of patients included in the labelled dataset is defined as the 
‘target population’ and each patient requires a well-defined target index date (a point in 
time where they satisfy some entrance criteria and do not currently have the outcome 
recorded [8]). Features per patient in the ‘target population’ are engineered using the 
patient’s medical event records in the database prior to (or on) the patient’s target index 
date. The patients are followed for some time-at-risk period post the target index date to 
identify whether they develop the outcome. Class labels (outcome vs no-outcome) are 
determined by identifying whether the outcome event is recorded during the time-at-
risk interval after the target index date. For example, to use a cohort design to create 
labelled data to predict stroke in patients with atrial fibrillation, the target population 
would be ‘patients newly diagnosed with atrial fibrillation’ with the target index of initial 
atrial fibrillation diagnosis, the outcome would be ‘stroke’ and the time-at-risk would be 
1 day to 5 years following index. Features are engineered using data recorded prior to (or 
on) the initial atrial fibrillation date and class labels are determined based on whether a 
patient has the stroke recorded during 1 day to 5 years after the initial atrial fibrillation 
date per patient. Alternatively, a case-control design [9, 10] picks the point in time when 

Fig. 1 llustration of how longitudinal data (part A) can be converted into labelled data using the 
case-control design (part B) and the cohort design (part C). The case-control design centers around the 
outcome date and uses data prior to this date to construct features. The cohort design centers around the 
date a patient satisfies criteria, using data prior to this to construct features and data post this to identify class 
labels
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a set of patients experience some outcome (cases), then finds some other patients (con-
trols) paired with a date that matches the cases on certain criteria (such as age and gen-
der) but have no record of the outcome. The design requires that the user specifies a time 
interval prior to the outcome event date (or each control’s matched date) to engineer fea-
tures for the patients. Class labels are based on whether the patient was a case (outcome) 
or matched control (non-outcome). For example, to predict stroke in patients with atrial 
fibrillation, the cases would be patients with stroke and a history of atrial fibrillation, and 
the controls would be patients with no stroke during a specified time period who have 
a history of atrial fibrillation and match the cases on certain criteria. The index is the 
stroke date for the cases and a randomly chosen date for the controls. Features could be 
engineered using all data recorded prior to the outcome date (or matched date) and class 
labels are whether they had the stroke or were a control.

Case-control designs are known to have numerous issues. It is widely known that case-
control designs are problematic when you wish to assess absolute risk [12]. A recent 
study argued that case-control designs have a temporal bias which impacts their ability 
to predict the future [13] and it is widely accepted that the design leads to miscalibrated 
predictions. Researchers have argued that external validation of case-control prognostic 
models using a cohort design is essential [14]. When researchers have access to elec-
tronic health records or other longitudinal healthcare datasets, they can choose what 
design to use. Unfortunately, prediction models developed using the case-control design 
are still being published even when the researchers could have used a cohort design [15–
17]. If the case-control design results in researchers extracting inappropriate labelled 
data, then the models developed using a case-control design may be invalid clinically 
even though they appear to perform well during model development (i.e., on the test 
set). There is a need to demonstrate that case-control designs are problematic and can 
be avoided when researchers have access to observational healthcare databases.

In this paper we empirically investigate various theoretical issues that can occur when 
using the case-control design to create labelled data used to develop prediction mod-
els using observational databases. We provide examples to show the case-control design 
can be avoided, when a researcher has access to observational data, since any prediction 
problem can be formed as a cohort design. We replicate two published patient-level pre-
diction studies that employed a case-control design and show that a cohort design could 
have been used to achieve equivalent or better discrimination and better calibration.

Issues with using a case‑control design to extract data

Table 1 highlights that the case-control design may be problematic due to the potential 
issue with selection bias and lack of a well-defined point in time to apply the model. 
These issues can be seen in Fig.  1. There are no well-defined criteria indicating when 
the case-control model should be applied clinically, as the development index date is the 
outcome date, but this date is unknown when the model is being applied to predict the 
outcome. A model developed using a cohort design model has a clear application date, 
the date when the index target population criteria is satisfied. The case-control design 
may have generalizability issues as controls could be very healthy patients compared to 
the cases. In addition, the case-control design often has an incorrect matching ratio and 
controls are under-sampled. This is likely to impact performance metrics such as the 
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area under the precision-recall curve and calibration and may lead to optimistic internal 
validation performance. It is important that a model’s predicted risks are correct when 
using prognostic models for decision making (i.e., if the model tells ten people they have 
a 10 % risk, then one of them should experience the outcome). If a model overestimates 
risk, then interventions may be given to people unnecessarily. If a model underestimates 
risk, then a patient who could benefit from an intervention may be missed. Over or 
under-sampling outcomes often leads to models that are miscalibrated for the clinical 
setting they will be implemented, this is a key issue with the case-control design.

Defining any prediction problem as a cohort design

We assert that any prediction problem, including those previously evaluated as case-con-
trol designs, can be appropriately implemented as a cohort design. In general, a cohort 
design will consist of a target population (patients you want to predict the outcome for) 
and an index event corresponding to when you want to predict the outcome occurring. 
We present the different types of prediction problems and provide example inclusion 
criteria and index dates for defining the problem as a cohort design, see Table 2.

Methods
Replication of case‑control patient‑level predictions and cohort comparison

We selected two published patient-level prediction models that used a case-control 
design to develop the models using observational healthcare data. These examples were 
chosen due to (i) the availability of similar data (US claims data containing patients 
across all ages), (ii) the papers defining the data extraction clearly, and (iii) due to the 
models’ medical applications (dementia [18] and diabetes [19]) being commonly used for 
in the field of prognostic model development.

The first predicted future Alzheimer’s risk [9] and the second predicted future type 2 
diabetes risk [10]. We replicated the two case-control models by following the published 
process, but because we do not have access to the same patient-level data, we instead 
use the Optum® De-Identified Clinformatics® Data Mart Database—Socio-Economic 
Status (Optum Claims), a US claims database. Optum Claims contains outpatient phar-
macy dispensing claims, inpatient and outpatient medical claims which provide proce-
dure codes and diagnosis codes. The data also contain selected laboratory test results 
for a non-random sample of the population. We used data prior to December 31 2014 to 
develop the Alzheimer’s model and data prior to November 30 2012 to develop the type 
2 diabetes model, to best match the data used in the published papers. We also devel-
oped equivalent cohort design models for both outcomes where the target population 
was patients with a healthcare visit and the outcomes were the same as those used in the 
development of the case-control.

The use of Optum Claims was reviewed by the New England Institutional Review 
Board (IRB) and were determined to be exempt from broad IRB approval.

Models were developed using a Least Absolute Shrinkage and Selection Operator 
(LASSO) logistic regression model [20] trained on 75% of the data and internally vali-
dated on the remaining 25% of the data. The optimal hyper-parameter (regularization 
value) was determined using 3-fold cross validation on the 75% data used to train the 
model.
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To fairly compare the performance of the two designs we applied the models when 
patients visit their healthcare provider and have not experienced the outcome before, 
but used data collected in a time period after the data used to develop the models. This 
was accomplished by applying the models to predict the 3-year risk of Alzheimer’s and 
type 2 diabetes at the point in time a patient visits their healthcare provider and is free of 
the disease being predicted. For this evaluation we used a ‘temporal’ validation set: visits 
post December 31 2014 for Alzheimer’s and post November 30 2012 for type 2 diabetes. 
This validation aims to mimic how the models would be used clinically.

Replication study 1: dementia

Case‑control data construction

Following the design by Albrecht et al. [9], cases were defined as patients aged 18 or older 
diagnosed with dementia or prescribed a dementia drug for the first time between 2008-
01-01 and 2014-12-31, with 1095 days prior observation and 180 days post observation. 
Patients must also have another record of dementia or dementia drug in the following 
180 days. Patients were excluded if they had a diagnosis for nutritional deficiencies or 
alcohol or substance dependency within 3 months of the index date, or had a hospice 
claim during the 6 months prior to index. Controls were selected based on matching 
on age, gender and having a visit within 30 days around the matched case index date 
but were excluded if they had a dementia drug or condition record, had a diagnosis for 

Table 2 Different types of prediction problems and examples of how they fit the cohort design

Prediction type Target population Outcome Example target cohort inclusion criteria 
and index

Target cohort 
criteria

Index

Disease onset General population Disease (e.g., depres-
sion)

A visit (outpatient or 
inpatient) during 
2010, > 365 days 
observation in 
database, age ≥ 8, 
no prior illness

First valid visit in 2010

Disease progression Early-stage disease 
patients

Advanced stage 
disease

Diagnosed with 
disease, > 365 days 
observation in 
database

Initial disease record 
date

Treatment choice Patients dispensed 
treatment 1 or 2

Treatment 1 Dispensed treat-
ment 1 or 2, > 365 
days observation 
in database

First recorded date of 
treatment 1 or 2

Treatment response Patients dispended a 
treatment

Desired effect (e.g., 
disease cured)

Dispensed treat-
ment at adequate 
therapeutic level, 
> 365 days obser-
vation in database

First recorded date of 
treatment

Treatment safety Patients dispended a 
treatment

An adverse event Dispensed treat-
ment, > 365 days 
observation in 
database

First recorded date of 
treatment

Treatment adher-
ence

Patients dispended a 
treatment

> X% days covered 
during some 
follow-up

Dispensed treat-
ment, > 365 days 
observation in 
database

First recorded date of 
treatment
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nutritional deficiencies or alcohol or substance dependency within 3 months of the 
index date, or had a hospice claim during the 6 months prior to index. Four controls 
were matched per case. The index date was the date of the initial dementia record for the 
cases and the matching visit date for the controls.

Candidate predictors were constructed using conditions, procedures, measurements, 
observations and visit counts recorded between 1095 and 730 days prior to index. We 
also included age at index and gender variables.

Cohort data construction

To reformulate the prediction problem as a cohort design, we defined the target popula-
tion as patients with a visit between 2008-01-01 and 2011-12-31 who were aged 18 or 
older with no prior dementia conditions or drug records and 365 days or more prior 
observation. Index date was the first valid visit. The outcome was the first record of 
dementia condition or drug with another dementia condition or drug recorded in the 
180 days following with no diagnosis for nutritional deficiencies or alcohol or substance 
dependency within 3 months prior and no hospice claim during the 6 months prior. 
For those in the target population we predicted who will have the outcome 1 day after 
index until 1095 days after index (within 3 years after index). There were many patients 
(12,861,202) with a valid visit, so we randomly sampled 1,000,000 patients from the tar-
get population for model development.

For consistency between designs, we used similar predictors constructed using condi-
tions, procedures, measurements, observations and visit counts recorded between 365 
days prior and 0 days prior to index. We also included age at index and gender variables.

Validation data construction

To evaluate how a model would perform in a realistic clinical setting, we picked a valida-
tion population consisting of eligible target patients: the first visit a patient had between 
2015-01-01 and 2015-12-31 satisfying a minimum of 365 days observation prior to 
index, aged 18 or older and no prior dementia condition or drug records. The outcome 
was the same as defined for the cohort data construction and we predicted whether the 
outcome would occur 1 day after index until 1095 days after index (within 3 years after 
index).

We then applied the models generated from the case-control and cohort designs to 
predict the risk for each patient in the validation data at their first valid visit and evalu-
ated the models’ performances in predicting the 3-year risk of dementia.

Replication study 2: type 2 diabetes

Following the design by McCoy et al. [10], we defined cases as patients aged 18 to 89 
diagnosed with type 2 diabetes or prescribed a type 2 diabetes drug for the first time 
between 2008-01-01 and 2012-11-30, with 1095 days prior observation. Patients must 
also have another record of type 2 diabetes condition or drug in the 180 days following 
the initial event. Patients were excluded if any of the following criteria were met:
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• They had a record of disorders of pancreatic internal secretion (ICD-9 code 251.8) 
within 1095 days prior to the index date.

• They had a record of poisoning by adrenal cortical steroids (ICD-9 code 962.0) 
within 1095 days prior to the index date.

• They had a record of secondary diabetes diagnosis (ICD-9 codes 249.x) any time 
prior.

Controls were selected based on matching on location and enrolment time. 10 
controls were matched per case without replacement from a pool of candidate eligi-
ble controls who were aged 18 to 89 and:

• No type 2 diabetes condition or drug recorded prior to 2012-11-30.
• No record of disorders of pancreatic internal secretion (ICD-9 code 251.8) within 

1095 days prior to the index date.
• No record of poisoning by adrenal cortical steroids (ICD-9 code 962.0) within 

1095 days prior to the index date.
• No record of secondary diabetes diagnosis (ICD-9 codes 249.x) any time prior.

.
The index date for cases was the date of the first record of type 2 diabetes condi-

tion or drug and the matched case’s index date for the controls. The authors also 
stated that they excluded patients with only routine care records or no encounters 
[10]. As it was not clear how this would be defined in our data, we chose to remove 
patients with less than 3 condition records to ensure cases and controls were active 
in the databases.

Candidate predictors were constructed using conditions and drugs recorded 
between 1095 and 1 days prior to index. We also included age at index, gender, eth-
nicity, and race variables.

Cohort data construction

Reformulated as a cohort design, the target population was defined to be patients 
with a visit between 2008-01-01 and 2009-11-30 who were aged between 18 and 
89 with no prior type 2 diabetes condition or drug records and 365 days or more 
prior observation. Patients were excluded if they had disorders of pancreatic internal 
secretion or poisoning by adrenal cortical steroids in the prior 365 days or secondary 
diabetes diagnosis any time prior to index. Index date was the first valid visit. The 
outcome was the first record of type 2 diabetes condition or drug with another type 
2 diabetes condition or drug recorded in the 180 days following. For those in the tar-
get population we predicted who will have the outcome 1 day after index until 1095 
days after index (within 3 years after index). There were 7,966,573 patients with a 
valid visit, so we randomly sampled 4,000,000 patients from the target population 
for model development. This sample size was chosen so that case-control and cohort 
designs had a similar number of outcomes.
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For consistency between designs, we used similar predictors constructed using 
conditions, and drugs recorded between 365 days prior and 0 days prior to index 
plus age at index, gender, ethnicity, and race.

Validation data construction

To evaluate the models in a realistic clinical setting we picked a validation population 
consisting of eligible target patients: the first visit a patient had between 2012-12-01 and 
2014-12-31 satisfying a minimum of 365 days observation prior to index, aged between 
18 and 89, no prior type 2 diabetes condition or drug records, no disorders of pancre-
atic internal secretion or poisoning by adrenal cortical steroids in the prior 365 days and 
no secondary diabetes diagnosis any time prior to index. The outcome was the same as 
defined for the cohort data construction and we predicted whether the outcome would 
occur 1 day after index until 1095 days after index (within 3 years after index).

We then applied the models from the case-control and cohort designs to predict the 
risk for each patient in the validation set at their first valid visit and evaluated the mod-
els’ performances in predicting the 3-year risk of type 2 diabetes.

Results
Dementia

For the case-control design we identified 118,694 eligible cases in Optum Claims. 
Restricting the cases to those with 4 or more matching controls left 11,016 cases and 
44,064 controls. We excluded 8671 ineligible controls (met exclusion criteria) to end up 
with a final dataset containing 11,016 cases and 35,393 controls in Optum claims. The 
case-control model was trained using the 46,409 patients with 11,016 dementia patients 
(~ 250 in 1000) and obtained an internal area under the receiver operating character-
istic curve (AUC) of 0.657. This was consistent with the original development paper’s 
reported performance of 0.65. The cohort model was trained using a 1,000,000 target 
patient sample with 4108 patients (~ 4 in 1000) diagnosed with dementia within 3 years 
of their visit. The cohort model obtained an internal AUC of 0.944 (0.937–0.950).

Inspecting the models showed that the case-control model lacked the age variables 
that were included in the cohort model. This is due to the cases being matched to con-
trols on age and gender, so neither of these will be predictive in the case-control design. 
Many other variables seemed to be included in both models (including amnesia, organic 
mental disorder, Parkinson’s disease, mood disorder, seizure and memory impairment).

 The validation data contained 12,264,784 patients with 103,518 (~ 8 in 1000) having 
dementia recorded within 3 years. The case-control model obtained an AUC of 0.560 
and the cohort model obtained an AUC of 0.897. The discrimination difference was due 
to age not being included in the case-control model. When evaluating both models on 
subsets of patients within each 5-year age group the cohort model discrimination per-
formance was still better than the case-control model, see Table 3. The mean observed 
dementia risk in the validation data was 0.84%. The cohort model’s mean predicted risk 
was 0.70%, indicating the cohort model slightly under-estimated risk. The case-control 
model’s mean predicted risk was 23.95 %, so it severely over-estimated risk. The discrim-
ination and calibration plots can be seen in Fig. 2.
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Type 2 diabetes

For the case-control model we found 65,991 eligible patients aged 18 to 89 diagnosed 
with type 2 diabetes or prescribed a type 2 diabetes drug for the first time between 
2008-01-01  and 2012-11-30, with 1095 days prior observation. Two-hundred and 
three patients were excluded due to pancreatic internal secretion, 3 were excluded 
due to poisoning by adrenal cortical steroids and 93 were excluded due to secondary 

Fig. 2 The ROC and calibration plots for the models predicting dementia on the validation dataset (cohort 
left and case-control right)

Table 3 The AUC performance of both models predicting dementia when applied to each subset 
of patients within each 5-year age group

Dementia temporal Validation AUC performance

Age group Cohort design Case‑
control 
design

ALL 0.897 0.560

Age group: 18–19 0.652 0.511

Age group: 20–24 0.668 0.547

Age group: 25–29 0.683 0.520

Age group: 30–34 0.684 0.595

Age group: 35–39 0.673 0.572

Age group: 40–44 0.699 0.604

Age group: 45–49 0.699 0.601

Age group: 50–54 0.712 0.629

Age group: 55–59 0.726 0.653

Age group: 60–64 0.720 0.671

Age group: 65–69 0.689 0.661

Age group: 70–74 0.666 0.642

Age group: 75–79 0.650 0.634

Age group: 80–84 0.631 0.629

Age group: 85–89 0.613 0.616
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diabetes. A further 952 were excluded due to having less than 3 condition records 
between 2008-01-01 and 2012-11-30. This left us with 64,730 cases. We identified 
5,974,383 patients aged 18–89 with no diabetes records prior to 2012-11-30 but with 
3 or more condition records during 2008-01-01and 2012-11-30. We excluded 2007 
patients with pancreatic internal secretion, 283 patients with poisoning by adrenal 
cortical steroids and 0 patients with secondary diabetes. This left us with 5,972,093 
candidate controls. We then matched on location and enrolment time to find 646,539 
controls. The case-control model trained using the case-control data, with 711,269 
patients and 64,730 patients having type 2 diabetes (~ 91 in 1000), obtained an inter-
nal AUC of 0.833. The cohort model was trained using a 3,993,438 target patient sam-
ple (4,000,000 were sampled but 6,562 of these left the database at index so had no 
time-at-risk and were excluded) with 54,898 patients (~ 14 in 1000) diagnosed with 
type 2 diabetes within 3 years of their visit. The cohort model obtained an internal 
AUC of 0.742.

The models appeared to contain similar predictors such as ‘polycystic ovaries’, 
‘abnormal glucose tolerance in mother complicating pregnancy’, ‘metabolic syndrome 
X’, ‘older age’, ‘hypoglycemic disorder’, ‘polyuria’, ‘chronic nonalcoholic liver disease’, 
being ‘Hispanic’ and ‘obesity’. The case-control model identified ‘glycosuria’, which 
may be a symptom of existing type 2 diabetes rather than a predictor of future risk.

 The validation data contained 8,939,289 patients with 251,659 (~ 28 in 1000) hav-
ing type 2 diabetes recorded within 3 years. The case-control model obtained an 
AUC of 0.733 and the cohort model obtained an AUC of 0.727. When evaluating the 
case-control and cohort models on the subset of patients in each 5-year age group, 
the models performed similarly in terms of discrimination, see Table  4. The mean 

Table 4 The AUC performance of both models predicting type 2 diabetes when applied to each 
subset of patients within each 5-year age group

Type 2 diabetes temporal Validation AUC performance

Age group Cohort design Case‑
control 
design

ALL 0.727 0.733

Age group: 18–19 0.701 0.712

Age group: 20–24 0.713 0.710

Age group: 25–29 0.707 0.704

Age group: 30–34 0.701 0.705

Age group: 35–39 0.709 0.716

Age group: 40–44 0.710 0.718

Age group: 45–49 0.708 0.715

Age group: 50–54 0.705 0.707

Age group: 55–59 0.693 0.696

Age group: 60–64 0.676 0.678

Age group: 65–69 0.623 0.628

Age group: 70–74 0.597 0.601

Age group: 75–79 0.572 0.574

Age group: 80–84 0.552 0.549

Age group: 85–89 0.549 0.551
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observed diabetes risk was 2.8 %. The cohort model mean predicted risk was 1.6 % 
(under-estimated risk) and the case-control mean predicted risk was 7.7 % (over-esti-
mating risk). The discrimination and calibration plots can be seen in Fig. 3.

Discussion
This study illustrated (i) that creating labeled data from observational healthcare data-
bases using a case-control design has many theoretical flaws, (ii) the case-control design 
results in miscalibrated prediction models and (iii) that any prediction problem trained 
using a case-control design can be transformed into a cohort design. We empirically 
compared two published prediction models trained using labelled data constructed from 
a case-control design against equivalent cohort designs to show that a cohort design 
could have been used to obtain similarly discriminative models. However, the cohort 
design model is more likely to be trained in a population representing the true target 
population and be better calibrated compared to the case-control design that often over 
represents the outcome in the labelled data.

For the cohort and case-control designs the mean predicted risk tended to be simi-
lar to the outcome proportion in the training data. This was problematic for the case-
control design as the outcome is often overrepresented (due to the non-outcomes being 
under-sampled) resulting in models that drastically over-estimated risk. For example, 
the case-control dementia design used a 1:4 match ratio, which resulted in ~ 25 % of 
the patients in the training data having the outcome. This caused calibration issues as 
only 0.84% of the target population patients had the outcome, so the case-control model 

Fig. 3 ROC and calibration plots for predicting type 2 diabetes models on the validation dataset (cohort left 
and case-control right)
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design resulted in very inaccurate risk estimates. Unless the case-control matching uses 
the true ratio (this is highly unlikely), any models developed using this design will be 
miscalibrated and will require an extra recalibration step to ensure risk estimates are 
accurate. The cohort design was not immune to miscalibration, as the outcome propor-
tion can change over time. This is the reason we saw slight to moderate under-estimation 
of risk in this study examples. This is a known issue and can be reduced by restricting 
the data used to develop the model to more recent data [21]. The temporal change in 
outcome proportion observed in this study may have been inflated by the data convert-
ing to ICD-10 from ICD-9 between the model development and validation dates due to 
improved diabetes coding. For example, type 2 diabetes patients may have had unspeci-
fied diabetes recorded in ICD-9 but when the coding became more granular, they may 
have had specific type 2 diabetes recorded in ICD-10.

Alternative designs for sampling the patients such as the nested case-control and the 
case-cohort under-sample the non-outcomes and would have the same calibration issues 
that were observed with the case-control design. Both designs would require recalibra-
tion after the model is trained and should be validated in data where the outcome class 
proportion matches reality.

The case-control design and cohort design models appeared to include similar vari-
ables. However, the case-control design model sometimes included variables that appear 
to be symptoms/early tests of the outcome. These are not useful if the model’s purpose is 
to predict new outcomes in patients who are outcome free. The inclusion of these vari-
ables did not seem to impact the performance in the type 2 diabetes model. The case-
control design model is also unable to include variables that are used to match cases and 
controls. The dementia model matched on age and gender, but this resulted in these var-
iables being missing from the model, which greatly impacted the overall discrimination. 
The authors recommended developing separate case-control design models for different 
age groups [9], but this strategy reduces the outcome count used for training each model 
and may not be possible for rare outcomes.

The case-control design model internal discriminative performance appears to be an 
overestimate of the true discrimination (dementia internal AUC of 0.66 but external 
AUC of 0.56 and type 2 diabetes internal AUC of 0.83 but external AUC of 0.72). Metrics 
that vary based on how unbalanced the data are, such as the precision, would be affected 
even more when the data becomes more imbalanced. Therefore, any model developed 
using a case-control design (or any design that over or under-samples one class) needs to 
be fairly evaluated on cohort design data.

The results show that a well specified case-control design can avoid selection bias 
issues and we did not see discriminative issues when applying the model at a random 
visit, even though the case-control design has an ill-defined application date. The case-
control matching is subjective, and a poorly designed matching strategy could in the-
ory limit the generalizability of the model. In addition, the case-control designed model 
needs to be validated using cohort design data to fairly evaluate its performance. Table 5 
summarizes the theoretical issues with the data extraction design we observed or did not 
observe in this study and how they could be avoided.

Limitations of this study are that we only replicated two case-control based models. 
The replications were done to demonstrate the known issue with case-control designs 
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and to investigate other hypothetical issues. Interestingly, the two examples replicated 
did not show evidence of issues with target population sample bias or the ill-defined 
time to apply the model, but these issues could occur for other prediction tasks when 
using a case-control design. As the case-control models we replicated were previously 
published, they may represent the prediction tasks where a case-control design is less 
problematic. However, given the theory showing case-control designs are problematic 
and the results of this study, a cohort design appears more reliable, and we show that it 
can be used in place of a case-control design.

Conclusions
In this paper we discussed potential issues when developing a prediction model from 
labelled data constructed using a case-control design from observational healthcare data. 
We argued that using a cohort design to extract labelled data for developing prediction 
models is preferred and overcomes bias and clinical application issues that can plague 
the case-control design. We replicated two published prediction models developed using 
a case-control design and showed that these models could have been developed with 
a cohort design. The cohort design models had equivalent discrimination compared to 

Table 5 Summary of issues observed and potential solutions

Issue Issues observed in study Solution

Cohort Case‑control

Subjective methodology 
choices

No Yes – the case-control 
designs used different 
matching criteria

Use a cohort design

Selection bias NA Did not appear to be a 
problem in the two pre-
dictions investigated

NA

Covariate issue NA 1. Symptoms appeared in 
the diabetes model but 
didn’t impact perfor-
mance.

2. The dementia model 
was unable to include 
variables used to match 
controls

Use covariates to stratify 
patients and develop 
separate models

Performance metric bias Yes—due to temporal 
changes the internal 
validation was slightly 
optimistic

Yes—due to incorrect 
matching ratios and 
potentially non-gener-
alizable development 
population the internal 
validation was very 
optimistic

Perform external 
validation with cohort 
design to fairly assess 
performance

Train models on more 
recent data

Recalibrate if necessary

Miscalibration Some—due to temporal 
changes the risk was 
under-estimated

Yes—due to incorrect 
matching ratios the risk 
was over-estimated in 
both examples

Ill-defined time to apply 
model

NA Not a problem for the two 
predictions investi-
gated—the models 
appeared to perform 
reasonably when applied 
at the validation index 
event (even though they 
were not developed using 
this index)

NA
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case-control design models when applied to data representing realistic clinical applica-
tions of the models. However, the cohort design models were better calibrated than the 
case-control design models. Calibration is important, as accurate individual risk esti-
mates are needed when using models clinically for decision making. The AUC discrim-
ination metric only provides a measure of how well a model can rank patients based 
on risk. A highly discriminative model could be harmful for decision making if it is not 
well calibrated. The case-control design is more difficult to implement since it requires 
the specification of often subjective matching criteria. This may have a big impact on 
the model’s generalizability. As a result, we recommend that other researchers either 
avoid using a case-control design when developing patient-level prediction models using 
observational healthcare data or ensure they validate any case-control design model on 
cohort design data and perform any recalibration if necessary. The cohort design ensures 
a well-defined point in time for applying the model, provides fairer performance metrics 
and results in a better calibrated model.

Appendix 1: Temporal change of data
See Figs. 4, 5.

Fig. 4 The outcome count per year (showing an increase during the years used to validate the models)
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