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Introduction
Apache Spark [1] is an alternative open-source distributed computing platform of 
MapReduce [2] for large-scale data processing. Spark introduces Resilient Distributed 
Data set (RDD) [3] with high fault-tolerance, fast processing speed, and scalability 
to improve real-time performance. Moreover, Spark offers various data analysis tools 
and modules such as Spark SQL, MLlib, and Graphs [4]. The execution time of Spark 
application is a significant factor in measuring real-time processing. Users need to 
allocate multiple resources, efficient memory allocation, adequate data partition, and 
an optimized cluster configuration based on the desired execution time. Cluster users 
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and administrators can benefit from accurate models, which provide a quick predic-
tion for runtime of a certain job.

In recent years, researchers have published works on the prediction of the perfor-
mance of big data processing platforms such as Spark [5–12]. Virtually all the publica-
tions make use of machine learning models to predict runtime and other performance 
characteristics. However, machine learning models require large sampling sets to 
work accurately. Moreover, these models are not very good at interpolating perfor-
mance data if the samples are not dense enough. Also, even though machine learning 
models can be very effective, they do not necessarily explain why the performance 
shows a certain pattern [13].

In order to mitigate these issues, we propose a new parallelisation model based on 
finding a pattern for the parallelisable and the non-parallelisable portions of a generic 
job. Any algorithm can be parallelised, but not all algorithms can run efficiently in 
parallel machines such as a cluster. The parallel performance depends mostly on how 
the algorithm operates.

For example, some algorithms are embarassingly parallel (a term coined in the 90s) 
[14], meaning that no extra work is needed when the job is parallelised. In this case, 
the speedup is proportional to the number of processors available. In other cases, the 
speedup can be superlinear, as in the case of searching algorithms running in parallel. 
Unfortunately, there are also groups of algorithms that do not present this optimistic 
speedup.

The main reason for a degraded performance is the fact that the nature of the algo-
rithm requires extra communication and I/O operations that are inherently serial in 
nature. This was understood by Amdahl in the 60s, when he published his findings 
with an equation that became known as Amdahl’s law [15]. Later, in the 80s, Gustaf-
son observed that Amdahl’s law was a special case of performance because Amdahl’s 
assumption was that any job needs a fixed portion of serialised work that cannot 
be parallelised [16]. Gustafson came up with an alternative assumption that could 
explain why some of the jobs he was running were performing better (better speedup) 
than what Amdahl’s equation was predicting.

Both Amdahl and Gustafson did not generalised their models to predict the per-
formance for any job, but only for jobs for which their assumptions are true. In this 
paper, our main target is to understand the relationship between execution time 
(runtime) and the number of executors used in Spark jobs. To the best of our knowl-
edge, none of the previous studies have come up with a simple model that can fit the 
data for different workloads. Indeed, the proposed technique will significantly help 
researchers, cluster users, operators, and system administrators. Moreover, the pro-
posed model can be implemented in any large scale Hadoop physical cluster, either 
in industries or academic research. This would be helpful for system administrators, 
system architects, and data engineers to predict the possible system parameters, spe-
cifically the number of executors, for any Spark job on Hadoop physical cluster. In 
particular, the model can help to find insights about the pattern for the parallelisable 
and non-parallelisable portions of a generic jobs. The model will present a precise 
generic equation for a cluster relying on a very limited number of experiments. The 
key contributions of this paper are as follows:
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•	 A very effective model is introduced that can explain various HiBench jobs’ per-
formance patterns as a function of the number of executors. The model achieves a 
good accuracy for different workloads, treating the implementation as a black box, 
i.e., without any knowledge of the internal workings of communication between the 
executors or the I/O involved in running the jobs (via HDFS).

•	 Accomplished extensive experimental work of Spark application on the physical clus-
ter environment. The experiments present the various aspects of cluster performance 
overheads. We considered five HiBenchmark workloads for testing the system’s effi-
ciency, where the fixed data sets are changed with different executors.

•	 Using the proposed model, we consider the problem and determine the experiment’s 
scalability by repeating the experiment three times, getting the average execution 
time for each job.

The paper is organised as follows. "Apache Spark environment" section describes the 
Apache Spark environment. In "Related work" section we review a number of works 
that are related to the performance prediction of Spark running on a Hadoop cluster. In 
"Modelling of a 2D plate parallel application" sectiom we propose our model based on 
a 2D configuration of executors, and discuss the motivation for this model. In "Experi-
mental setup" section the experimental setup is discussed, detailing how we obtained the 
empirical data. "Findings from the analytical model" section presents several workloads 
and show how the main equation for the model fits the data. Finally, in "Conclusion" sec-
tion we present our conclusions with a discussion on the future developments for the 
model.

Apache Spark environment
Spark offers numerous advantages for developers to build big data applications. Apache 
Spark proposed two important concepts: Resilient Distributed Datasets (RDD) and 
Directed Acyclic Graph (DAG) [3]. A new abstraction method called Resilient Distrib-
uted Datasets (RDD) is used to increase the data uses efficiently for a wide range of 
applications. The RDD is designed in such a way that it can provide efficient fault toler-
ance. For fault tolerance, RDD is used as an interface based on coarse-grained transfor-
mations (i.e., map, filter, and join) for various data items. The DAG scheduler [17] system 
expresses the dependencies of RDDs. Each spark job will create a DAG, and the sched-
uler will drive the graph into the different stages of tasks, then the tasks will be launched 
to the cluster. The DAG will be created in both maps and reduce stages to express the 
dependencies fully. These two techniques work together perfectly and accelerate Spark 
up to twenty times with iterative application and ten times faster than Hadoop under 
certain circumstances. In normal conditions, it only achieves a performance two to three 
times faster than MapReduce. It supports multiple sources that have a fault tolerance 
mechanism that can be cached and supports parallel operations. Besides, it can rep-
resent a single data set with multiple partitions. Spark consists of master and worker 
nodes where it can hold either single or multiple interactive jobs. When Spark runs on 
the Hadoop cluster, RDDs will be created on the HDFS in many formats supported by 
Hadoop, as well as text and sequence files. In Spark, a job is executed into one or mul-
tiple physical units, and the jobs are divided into a smaller set of tasks that are on the 
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stage. A single spark job can trigger a number of jobs that are dependent on the parent 
stage. So, the submitted job can be executed in parallel. Spark executes submitted jobs in 
two stages: ShuffleMapStage and ResultStages. The ShuffleMapStage is an intermediate 
stage where the output data is stored for the input data for the following stages in the 
DAG. The ResultStages is the final stage of this process that assigns a function on one or 
multiple partitions of the target RDD. In Spark, executors run on a worker node in the 
cluster. The executors start their processes once the system receives the input file and 
continue until the job is completed. In this case, the executors keep themselves active 
for the entire workload time and use multiple CPU threads for the task parallelly. For 
any given work, the executor size, numbers, and threads play a vital role in the perfor-
mance [18]. The block manager acts as a cache storage for a user’s program when execu-
tors allocate memory storage for the RDDs. Spark runs on Hadoop cluster with Apache 
YARN (Yet Another Resource Negotiator) [19] as a framework for resource manage-
ment and job scheduling or monitoring into separate demons and Apache Ambari, an 
open source tool which manage, monitor and profile the individual workloads running 
Hadoop cluster. Figure 1 shows a typical Spark cluster architecture.

Related work
In this section, we discuss relevant published works in the area of performance predic-
tion for Hadoop clusters running Spark. A simulation-based prediction model is pro-
posed by Kewen Wang [20]. The model simulates the execution of the main job by using 
only a fraction of input data and collects execution traces to predict job performance for 
each execution stage separately. They have proposed a standalone cluster mode on top 
of the Hadoop Distributed File System (HDFS) with default 64 MB block settings. They 

Fig. 1  A typical Spark cluster architecture
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have evaluated this framework using four real-world applications and claimed that this 
model is capable of predicting execution time for an individual stage with high accuracy.

Singhal and Singh [21] addressed the Spark platform’s challenges to process huge 
data sizes. They found that as the data size increases, the Spark performance reduces 
significantly. To overcome this challenge, they ensured that the system would perform 
on a higher scale. They proposed two techniques, namely, black box and analytical 
approaches. In the black-box technique, the Multi Linear Regression (MLR- Quadratic) 
and Support Vector Machine (SVM) are used to determine the accuracy of the predic-
tion model and the analytical approach to predict an application execution time. They 
found that Spark parameter selection is very complex to identify the suitable parameters 
which impact an application execution time for varying data and cluster sizes. Therefore, 
they carefully selected parameters that could be changed during an application execu-
tion time and analyze the performance sensitivity for several parameters, which are very 
important for the feature selection. In the integrated performance prediction model with 
an optimization algorithm, the system performance improvement showed 94%. Finally, 
they summarized that machine learning algorithm requires more resources and data col-
lection time.

Maros [22] conducted a cost-benefit analysis of a supervised machine learning model 
for Spark performance prediction and compared their results with Ernest [23]. In this 
investigation, they considered the black box and gray box techniques. For the black box 
technique, they considered four ML algorithms such as Linear Regression (LR), Decision 
Tree (DT), Random Forest (RF), and L1-Regularized Linear Regression (RLR). The gray 
box technique is used to capture the features of the execution time. In this approach, not 
a single machine learning algorithm outperforms others. To chose the best model, differ-
ent techniques are required to evaluate the individual scenario.

Hani et al. [24] proposed a methodology based on gray box model for Spark runtime 
prediction. This model works with white box and black box models, and the models 
focus not only on impact data size but also on platform configuration settings, I/O over-
head, network bandwidth, and allocated resources. This model methodology can pre-
dict the runtime by taking the consideration both the previous factors and application 
parameters. They achieved a high matching accuracy of about 83–94% between average 
and actual runtime applications. Based on this model methodology, the Spark runtime 
would be predicted accurately.

Cheng [25] proposed a performance model based on Adaboost at stage-level for Spark 
runtime prediction. They considered a classic projective sampling and data mining tech-
nique such as projective sampling and advanced sampling to reduce the model’s over-
head. They claimed that projective sampling would offer optimum sample size without 
any prior assumption between configuration parameters, thus enhancing the entire pre-
diction process’s utility.

Gulino [26] proposed a data-driven workflow approach based on DAGs in which the 
execution time is predicted of Spark operation. In this approach, they combined ana-
lytical and machine learning models and trained on small DAGs. They found that pre-
diction accuracy of the proposed approach is better than the black box and gray box 
technique. Nevertheless, they did not present how this approach will work for iterative 
and machine learning workloads. This approach only considers SQL type queries.
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Gounaris et al. [6] proposed a trial-and-error methodology in their previous work, but 
in this paper [27], they considered shuffling and serialization and investigated the impact 
of Spark parameters. They addressed that the number of cores of Spark executor has 
the most impact on maximising performance improvement, and the level of parallelism, 
for example, the number of partitions per participating core, plays a crucial role. They 
focused on 12 parameters related to shuffling, compression, and serialization. It is an 
iterative technique; the lower parts’ configurations can be tested only after the upper 
parts’ completion. Three real-world case studies are considered to investigate the meth-
odology efficiency. Due to no-iterative methodology, the run time decreased between 
21.4% and 28.89%. They also found that the significant speed-up achievement yields at 
least 20% lower running times. They concluded that the methodology is robust concern-
ing the changes of its configurable parameters.

Amannejad et al. [28] proposed an approach for Spark execution time prediction with 
less prior executions of the applications based on Amdahl’s law [15]. This approach is 
capable of predicting the execution time within a short period. This approach requires 
two reference files at the same data size and different resource settings to predict the 
execution time. They considered relatively small data sets and a limited application setup 
which do not have complex dependencies and parallel stages. They found that the pro-
posed technique shows good accuracy. The average prediction error of the workloads is 
about 4.8%, except Linear Regression (LR) which is 10%. One of the limitations of this 
work is that they validated this approach only with a single node cluster, not on a real 
cluster environment. Amannejad and Shah extended their previous work [28] and pro-
posed an alternative model called PERIDOT [29] for quick execution time prediction 
with limited cluster resource settings and a small subset of input data. They analysed the 
logs from both of the executions and checked the internal dependencies between the 
internal stages. Based on their observations, the data partitions, the number of execu-
tors’ impact, and data size play a critical role. Therefore, they used eight different work-
loads with a small data set and claimed that apart from naive prediction techniques, the 
models show significant improvement by overall mean prediction error by 6.6% for all 
the workloads.

Amdahl’s law and Gustafson’s law

It is important to determine the benefits of adding processors to run a certain job. In 
this section, we will use the words processor and executor as synonymously, although 
there is a distinction when considering a certain context. In Spark for example, the word 
executor is used to indicate that CPU resources are allocated via a certain physical node. 
Generally, a single executor is launched in the physical nodes and stays with the physical 
node. Each of the CPU cores are aligned with the physical nodes [30].

The executor can use one or several cores, which would be analogous to say that sev-
eral processors are being used per executor. However, as the executors only use cores 
within a physical node, we consider the number of executors as the variable for our 
model. In section 5, the experiments were carried out with each executor using three 
cores. Changing the number of cores obviously changes the parameters of the equation, 
but the family of equations remain valid for the model. This simplification of the terms 
is valid because the executors within a node share memory, and any communication 
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between them would be much faster than any communication between executors run-
ning in different physical nodes.

If no communication between the various executors is needed to run a job, the job is 
called “embarassingly parallel” [14]. The implication of having no need to communicate 
between different executors is that the speed up is proportional to the number of execu-
tors, i.e., if one executors takes time t, then n executors will take time tn . However, any 
small portion of the job that is not parallelisable can bring major consequences for paral-
lel performance.In this case, the linear speedup achieved by adding more executors (in 
the form of CPUs or cores, or separate node) declines sharply.

Amdahl came up with a generic equation to predict the speedup factor of a parallel 
application as a function of the number of processors [15]. The equation considers that 
parts of the application (or job, or workload) would be inherently serial in nature and 
would not be parallelisable. He arrived at the following equation for the speedup factor 
S():

where nexec is the number of processors (or executors) and f is the percentage of the job 
that cannot be parallelised (because of its serial characteristic). Figure 2 shows that the 
speedup gets worse with an increasing factor f.

In practise, an increasing number of executors has to make economical sense, and an 
ideal number of executors can be found given a target improvement in the speedup. The 
factor f (the serial percentage of the job) depends entirely on the algorithm and on the 
platform it is running under. If the serial portion is representing I/O or networking, it 
may have different influences in percentage f. Perfect linear speedups only happen when 
f = 0.

From Eq. 1, and considering that a single processor takes time t to run a certain work-
load, the predicted runtime running on multiple processors would be:

(1)S(nexec) =
nexec

1+ (nexec − 1) f

Fig. 2  Amdahl’s law with various percentages of serial work
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where t is a hypothetical runtime needed to run a job in a single executor. As an exam-
ple, if the job takes 100 s to run on a single executor, then Fig. 3 shows how the runtime 
is going to decrease with the additional executors depending on how much of the job is 
serial.

Initially the runtime decreases sharply with the increase of executors, until the runt-
ime converges at some point with infinite executors. It is clear from Figs. 2 and 3 that 
this is a very pessimistic view of the potential that parallel systems offer.

A few years after Amdahl’s publication, Gustafson argued that the percentage of the 
serial part of a job is rarely fixed for different problem sizes [16]. In Amdahl’s even a 
small percentage of serial work can be detrimental to the potential speedup after adding 
more executors. Gustafson noticed that for many practical problems the serial portion 
would not grow with an increase problem size. For example, the serial portion of the 
job could be a simple communication to establish the initial parameters for a simula-
tion, or it could be I/O to read some data that is independent of the problem size of the 
algorithm.

He came up with a scaled version of Amdahl’s speedup equation. Gustafson’s speedup 
equation is:

The speedup for different serial portions f using Gustafson’s law are shown in Fig. 4. In 
Fig. 5 several curves were plotted to show the runtime trends considering that for a sin-
gle executor the time would be 100 s.

(2)runtime =
(1− f ) t

nexec
+ f t

(3)S(nexec) =nexec + (1− nexec) f

(4)runtime =
t

nexec + (1− nexec) f

Fig. 3  Amdahl’s law for various percentages of serial work
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Gustafson’s law is much more optimistic than Amdahl’s law. Indeed, Gustafson showed 
that the speedup for certain algorithms could be achieved with the results based on Eq. 3. 
However, for many other applications and algorithm implementations, the true picture can 
be even more pessimistic than Amdahl’s. That does not mean that we should not attempt 
to parallelise these algorithms, but one needs to be aware of the performance consequences 
of adding more executors. In the next section we will show that some of the HiBench work-
loads [31] fall into this category.

Fig. 4  Gustafson’s law for various percentages of serial work

Fig. 5  Gustafson’s law for various percentages of serial work
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Modelling of a 2D plate parallel application
In this section we discuss the modelling of parallel applications where the serial por-
tion of the job grows faster than expected. As discussed in the literature review in 
"Related work" section, the performance of every parallel application is dependent on 
the number of executors, be that in the form of CPUs or cores, and its communica-
tion pattern.

For many workloads, the behaviour of the runtime can be predicted by Amdahl’s 
Law or Gustafson’s Law. For example, WordCount gains performance by adding exec-
utors, until adding more executors makes little difference and brings no new gains in 
performance. This can be clearly appreciated in Fig. 6.

However, many other workloads behave in a very strange way. Initially, adding more 
executors results in a better performance. But after a certain number of executors, 
the performance degrades to such an extent that the runtime is longer than that using 
very few executors. For example, running jobs on the Pagerank (HiBench [31]) for a 
certain problem size shows performance as depicted in Fig. 7. After analysing Fig. 7 
we realised that a new modelling for the runtime is needed for these applications. 
This pattern of getting worse performance by adding executors is not unknown, and 
happens when the communication between each parallel portion of a job grows faster 
than the benefit of having additional executors.

Finding a model as a function of the number of executors

The serial portion of a job is responsible for the drop in an otherwise perfect speed 
up. Among the causes for unparallelizable portions of a job, we can consider the two 
most important ones:

Fig. 6  A WordCount workload running on different number of executors
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•	 I/O: in a Hadoop cluster, the data is scattered among the nodes, and sometimes a 
node will need to read data only available on other nodes. HDFS is responsible for 
this process in a Hadoop cluster.

•	 Communication: even if there is no additional need for I/Os, the application may 
require that data computed on another node updates its own computations. The 
communication performance is driven by the networking infrastructure available 
to the cluster. Typically communication between nodes in a parallel computer can 
be: one to one, one to all (aka broadcasting), all to all and all to one (aka reduc-
tion) [14].

The distinction between Hadoop cluster I/O related to HDFS and the Communica-
tion is important. Every workload will uses the first one to access data, as the location 
of the data can be anywhere in some of the nodes. The cluster used in these experi-
ments use a replication factor of 3 (the default). The communication factor in this 
scope refers specifically to the application communications, i.e., where the data com-
puted by one node is needed to complete the computation on another node.

For example, an embarassingly parallel application would have no communication 
between nodes for its own purpose, but still would need to use the same network 
infrastructure to access data via HDFS if portion of data happen to be located on 
other nodes. On the other hand, an application that would compute heat flow using 
the 2D plate model would require extra communication between certain executors 
that is independent of the HDFS access to data. Moreover, in that case a delayed exec-
utor can hold the computation on other executors, as these would be waiting for new 
boundary data to be available. We start the building up of the model with the concept 
of a 2D plate. This concept can be used for simulating heat distribution simulations in 
parallel machines, as discussed by [14]. In their simulation, each point of a 2D plate 
has its temperature computed as a function of its four neighbours. In order to paral-
lelise any job, one needs to consider the serial and the parallel parts of the runtime:

Fig. 7  Page rank workload running on different number of executors
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where t is the time to run the application in a single executor, nexec is the number of 
executors and tserial is the extra time needed to make the communication between the 
executors and additional I/O. If tserial is zero, i.e., no extra communication or I/O is 
needed, then the runtime is inversely proportional to the number of executors.

The crucial aspect of Eq.  5 is the tserial . Without any knowledge about the internal 
implementation of the algorithms of the application, it is difficult to model it correctly. 
Assuming that the serial part grows as a function of the number of executors, we can 
start by approximating the function to that of parallelising a 2D plate algorithm. We can 
make some assumptions about the communication and I/O boundaries.

Figure 8 shows a 2D plate that has 256 points ( N = 16 ). For this 2D plate, each point 
has to be computed iteratively. Each point’s computation is interdependent with its four 
neighbours, as it needs the current state from each neighbour.

No communication is needed when the entire set of points is computed by a single 
executor. As soon as more executors are used, then some communication activity needs 
to be carried out between the boundaries. Figure  9 shows the idea of the boundaries 
when using 4 executors. Now there is a communication boundary that adds extra runt-
ime due to networking communication between two different nodes. In this case, the 
boundary size is proportional to 2N.

In Fig. 10 two cases are shown, one with 4 executors, and another with 16 executors. 
The sum of the boundary in the 4 executors job is 2N, and in the 16 executors it is 6N. 
We could try to generalise it for any number of executors. However, to get a smooth 
growth we should only use square divisions of the 2D plate contained NxN points. 
Therefore, nexec is restricted to the sequence 1, 4, 9, 16, 25... Moreover, we assume that 
N is sufficiently large to offset the differences between the executors data when N is not 
exactly divisible by nexec.

One problem with this simplistic model is that the communication is not necessar-
ily homogeneous among the executors. For example, an executor on the left top corner 
of the 2D plate may be carrying out half of the communication that an executor in the 

(5)runtime =
t

nexec
+ tserial

Fig. 8  A 2D plate model running on a single executor



Page 13 of 28Ahmed et al. J Big Data           (2021) 8:107 	

middle of the plate needs to carry out. One way to consider that possibility is to assume 
that every executor has 4 neighbouring executors. It is the equivalent of having the 2D 
plate folded like a cylinder over each dimension simultaneously (Fig. 11).

Looking at Table  1, it is apparent that the boundary size grows at a rate of 
(2 (

√
nexec − 1))N  . If we consider that all executors have the same boundary, then the 

boundary grows as (2 (
√
nexec − 1)+ 2)N .

We do not know if the serial time is going to be exactly that amount, as the communica-
tion pattern inside the Hadoop cluster can be very complex. For example, executors may 
have to communicate between them, but also get data via HDFS from other nodes. Also, 
there is some parallelism implied in the communication, as pairs of nodes would be able to 
communicate with each other without interfering much with the communication between 
other pairs. This could cause the parallel and serial portions of the job in each executor to 
be misaligned, causing executors to temporarily stop computing because they are waiting 

Fig. 9  A 2D plate model running on 4 executors

Fig. 10  Boundaries for different number of executors
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for data from the neighbours or from Hadoop Distributed File System (HDFS). Making the 
assumption that the growth of the boundary is proportional to the communication time 
and that the serial portion is also proportional to the problem size width N as per Table 1, 
Eq. 5 becomes:

where n is a constant.
Assuming that the time t is proportional to number of points N 2 of the entire plate, we 

can simplify Eq. 6 to:

simplified to:

(6)runtime =
t

nexec
+ n N (2 (

√
nexec − 1)+ 2)

(7)runtime =
m N 2

nexec
+ 2 n N (

√
nexec − 1+ 1)

(8)runtime =
m N 2

nexec
+ 2 n N (

√
nexec)

Fig. 11  Two (2) extra boundaries per plate for homogeneous communication amongst nodes

Table 1  Boundary versus nexec, showing the size as a function of N 

Number of executors (nexec) Boundary size for simple 2D Boundary size for 
homogeneous 
communication

1 0 0

4 2N 4N

9 4N 6N

16 6N 8N

25 8N 10N

36 10N 12N

49 12N 14N
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For a certain (fixed) problem size N 2 , we can replace m N 2 by a constant a and replace 
2 n N  by a constant b:

Now we arrived at a model that can explain the strange behaviour of having a peak per-
formance at a certain number of executors, and have a degraded runtime with more 
executors being added. One can visualise the effects of the growth of the serial portion 
of the jobs by examining Fig. 12. Depending on the constants a, b, some curves resemble 
Amdahl’s, while other curves have the serial portion growing faster, to the point where 
adding more executors make the runtime longer than with a single executor. When the 
influence of the boundary is smaller (with a corresponding low value for b), then the 
curves are more similar to Amdahl’s law or Gustafson’s law. For larger values of b, the 
speedup falls rapidly with the addition of more executors.

There is another aspect to the modelling regarding the problem size. The assumption 
for Eq. 9 is that the runtime is proportional to N 2 , but this would not be the case for 
many algorithms, where the complexity would be different than linear in relation to the 
total number of points (or quadratic if one considers width or height as the problem 
size). In fact, the final runtime would depend completely on two functions f(N) and g(N) 
that would only be known if one has more information about the internal implementa-
tion of the algorithm running the job. The first function, f(N) would rule the growth of 
the runtime t for one executor, analogous to its time complexity for the algorithm, con-
sidering a large N. The second function, g(N), would rule the growth of the communica-
tion needs once more than one executor is used for the job.

Consequently, Eq. 9 can only predict runtime if the constants a and b are known for 
a certain problem size. A separate model has to be found for the growth of the runtime 
and the communication boundary as a function of the problem size. Nonetheless, such a 
simple model can still be of great value for runtime prediction by running a few jobs and 

(9)runtime =
a

nexec
+ b

√
nexec

Fig. 12  Equation 9 for various b values



Page 16 of 28Ahmed et al. J Big Data           (2021) 8:107 

forecasting the ideal number of processors for that kind of job. In the next section, we 
experiment with various workloads to see whether this model can fit some of the empiri-
cal data.

Experimental setup
The experimental cluster has its dedicated networking infrastructure, with dedicated 
switches. The cluster was designed and deployed by a group of experienced academics 
who previously built Beowulf clusters with optimised performance [32]. This infrastruc-
ture is isolated from any other machine to reduce unwanted competition for network 
resources. The cluster is configured with 1 master node and nine 9-slave nodes. The 
cluster hardware configuration is presented in Table 2 and a simple schematic is shown 
in Fig. 13.

Performance evaluation applications

HiBench Benchmark suite [31] comes from the Hadoop testing program to evaluate 
the cluster’s performance. In the following section, the benchmark workloads that are 
used in this experiment for the Spark performances are shown in Table 3. There are five 
benchmark workloads from four different categories: Micro Benchmark, Web Search, 
Graph, and Machine Learning.

Table 2  Experimental Hadoop cluster

Server configuration Processor 2.9 GHz

Main memory 64 GB

Local storage 10 TB

Node configuration CPU Specification Intel(R) Xeon(R) CPU 
E3-1231 v3 @ 3.40 
GHz

Main memory 32 GB

Number of nodes 10

Local storage 6 TB each, 60 TB total

CPU cores 8 each, 80 total

Software Operating System Ubuntu 16.04.2 
(GNU/Linux 
4.13.0-37-generic 
x86 64)

JDK 1.7.0

Hadoop 2.4.0

Spark 2.1.0

Fig. 13  The Hadoop cluster used in the experiments



Page 17 of 28Ahmed et al. J Big Data           (2021) 8:107 	

The WordCount workload is a map-dependent, and in the data set, it counts the num-
ber of occurrences of separate words from text or sequence file. The function of Sort 
takes the input file as a text by key. Each word in the input data, which is generated using 
RandomTextWriter.

NWeight is an iterative graph-parallel algorithm implemented by Spark GraphX and 
pregel. The algorithm computes associations between two vertices that are n-hop away. 
The input data consist of more than 1 million edges.

PageRank is a search page ranking algorithm where every single page comes with a 
numerical value, and each page is ranked as par vote. It counts a vote when one page is 
linked with the other page. Normally, a page linked with many other pages considered as 
the higher PageRank. The data source is generated from Web data whose hyperlinks fol-
low the Zipfian distribution. We used different sets of input data which consist of more 
than a million samples.

K-means is a very popular and well-known algorithm which is used to group data 
points into clusters. The input data set is generated by GenKMeansDataset based on 
Uniform Distribution and Gaussian Distribution. We used different sets of input data, 
and each set of data contain more than 5 million samples.

Support Vector Machine (SVM) is a standard method for large-scale classification 
tasks. This workload is implemented in spark.mllib, and the input data set is generated 
by SVM DataGenerator, which consists of more than 1 million samples.

Cluster parameters configuration

Spark parameter selection and tuning is a challenging task. Every single parameter has 
an impact on the system performance of the cluster. Hence, the configuration of these 
parameters needs to be investigated according to the applications, data size, and cluster 
architecture. To validate our cluster, we try to select the most impactful parameters that 
have a crucial factor in the system’s performance. Generally, Spark configuration param-
eters can be categorized into 16 classes [33]: 

	 1.	 Application properties

Table 3  Spark HiBenchmark workload considered in this study

Benchmark categories Application Input data size Input samples

Micro Benchmark WordCount 313 MB, 940 MB, 5.9 GB, 8.8 
GB, and 19.2 GB

-

Machine learning K-means (small job) 1.3 MB, 2.7 MB, 4 MB, 5.3 MB, 
and 13.3 MB

3000, 5000, 7000 (sample), 1 
and 3 (million samples)

K-means (large job) 19 GB, 56 GB, 94 GB, 130 GB, 
and 168 GB

10, 30, 50, 70, and 90 (million 
samples)

SVM 34 MB, 60 MB, 1.2 GB, 1.8 GB, 
and 2 GB

2100, 2600, 3600, 4100, and 
5100 (samples)

Web search PageRank (small job) 3.8 MB, 5.7 MB, 8 MB, 10 MB, 
and 12.2 MB

1, 15, 20, 25, and 30 (thousand 
of samples)

PageRank (large job) 507 MB, 1.6 GB, 2.8 GB, 4 GB, 
and 5 GB

1, 3, 5, 7, and 9 (million of 
pages)

Graph Nweight 37 MB, 70 MB, 129 MB, 155 
MB, and 211 MB

1, 2, 4, 5, and 7 (million of 
edges)
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	 2.	 Runtime environment
	 3.	 Shuffle behavior
	 4.	 Spark user interface (UI)
	 5.	 Compression & serialization
	 6.	 Memory management
	 7.	 Execution behavior
	 8.	 Execution metrics
	 9.	 Networking
	10.	 Scheduling
	11.	 Barrier execution mode
	12.	 Dynamic allocation
	13.	 Streaming
	14.	 SparkSQL
	15.	 SparkR
	16.	 Thread configuration.

The selected parameters in Table  4 are closely related to the Spark system perfor-
mance. The default and range column presents the system default values and tuned 
values used in this experiment. The listed configuration parameters are chosen for 
two reasons; firstly, these parameters have a greater impact on the Spark runtime 
performance, such as runtime environment, shuffle behavior, compression and seri-
alization, memory management, execution behavior [31], and the performance of 
these key aspects ultimately determine the performance of the Spark application.

Generally, the selection extensive parameters and their configurations are based 
on memory distribution, I/O optimization, task parallelism, and data compression 
[34]. A noteworthy phenomenon is that the input RDD partition and the allocated 
memory affect the rate of data spill to disk where the core of assigned executors run 
concurrently and share their resources. So, the prediction model would be signifi-
cantly affected without sufficient memory and partitions [24].

Secondly, the impact of these parameters can occupy all available resources, such 
as CPU, disk read and write, and memory. The selected Spark HiBench application 
characteristics are presented in Table  5. The applications consist of a number of 
jobs, number of stages, Directed Acyclic Graph (DAG) architectures and the opera-
tions that are used. Most of the selected applications have covered the pattern com-
munication in Spark such as Collect, Shuffle, Serialization, Deserialization and Tree 
Aggregation.

Findings from the analytical model
In this section, we present the results obtained from the experiments that were car-
ried out with five different workloads, different sizes and number of executors. For 
accuracy and reproducibility of results, each experiment was repeated three times 
and considered the average runtime to produce each graph. In this case, we have col-
lected log files from the Spark history server and execute a script to get the execu-
tion time.



Page 19 of 28Ahmed et al. J Big Data           (2021) 8:107 	

Fitting and metrics

For every set of data acquired by running the workloads in the Hadoop cluster, we 
found which are the best parameters a and b in Eq. 9. In order to find the parameters 
for the equation, we used Gnuplot’s fitting function [35] to fit empirical data to the 
equation.

Table 4  Selected Spark configuration parameters

Parameters Description Default Range

Spark.executor.memory Amount of memory to use per executor 
process, in GB

1 12

Spark.executor.cores The number of cores to use on each executor # 2–12

Spark.driver.memory Amount of memory to use for the driver 
process, in GB

1 4

Spark.driver.cores The Number of cores to use for the driver 
process.

1 3

Spark.shuffle.file.buffer Size of the in-memory buffer for each shuffle 
file output stream, in KB

32 48

Spark.reducer.maxSizeInFlight Maximum size of map outputs to fetch simul-
taneously from each reduce task, in MB

48 96

Spark.default.parallelism The default number of partitions in RDDs 
returned by transformations like join, 
reduceByKey, and parallelize when not set 
by the user

# 8–100

Spark.python.worker.memory Amount of memory to use per python worker 
process during aggregation, in MB

512 512–1024

Spark.python.worker.reuse Reuse Python worker or not True True

Spark.rdd.compress Whether to compress serialized RDD parti-
tions

False True/False

Spark.serializer Class to use for serializing objects that will be 
sent over the network or need to be cached 
in serialized form

Java Java

Spark.memory.fraction Fraction of heap space used for execution and 
storage

0.6 0.1–0.4

Spark.memory.storageFraction Amount of storage memory immune to 
eviction expressed as a fraction of the size 
of the region

0.5 0.1–0.4

Spark.task.maxFailures Number of failures of any particular task 
before giving up on the job

4 5

Spark.speculation If set to "true", performs speculative execution 
of tasks

False True/False

Spark.rpc.message.maxSize Maximum message size to allow in "control 
plane" communication, in MB

128 256

Spark.io.compression.codec Compress map output files snappy lz4/lzf/snappy

Spark.io.compression.snappy.blockSize Block size in Snappy compression, in KB 32 32–128

Table 5  Workload application characteristics

Workloads Stages Parallel Stages Collect Serialization Deserialization Shuffle Aggregate

WC 2 Yes Yes – – Yes –

SVM 209 Yes Yes No Yes Yes Yes

Nweight 9 Yes – No Yes Yes –

K-means 20 Yes Yes Yes Yes Yes –

Pagerank 5 Yes – No Yes Yes –
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Once the parameters a and b are computed for each size series, it is possible to 
compute a fitting metric. One can compute what the runtime for the fitted equation 
is and compare to the empirical data. We adopted the R-squared values, which is also 
known as coefficient of determination. R-squared is computed using the following 
equation [36]:

where SSres is the sum of the squares of the residuals and SStot is the sum of the squares 
relative to the mean of the data. For a perfect fitting, SSres = 0 and R2 = 1 . Generally, the 
closer R2 is to one, the better the fitting.

The results

Firstly, we present how a and b in Eq. 9 are different for each curve with fixed prob-
lem sizes.

In Figs. 14, 15 and 16 the model fits the empirical data reasonably well. For both the 
Wordcount and Graphs,the curves are smoothing out the runtime as the number of 
executors grows. In the SVM case (Fig. 16), the model fits nicely and it shows that the 
performance reaches a peak for a certain number of executors. This is exactly the case 
that the model explains. It seems that for these three workloads the serial part growth 
follows Eq. 9 very closely.

For workloads Pagerank and Kmeans, the model does not fit very well (Figs. 17 and 
18). This is the case when the sizes are too small, and the runtime is relatively short. 
For these workloads, the overheads related to the Hadoop cluster overshadows the 
model.

(10)R2 = 1−
SSres

SStot

Fig. 14  Fitting the 2D plate model to Wordcount
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For these two workloads, we have experimented with a different equation. We have 
seen that in Eq.  9, the boundary grows at a rate proportional to the square root of 
nexec. We then adjusted this function to a different exponent, making it:

It is important to note that Eq. 9 is a special case of Eq. 11, where c = 0.5 . Interestingly, 
after fitting Eq. 11 via Gnuplot [35], we found that for a value of c = 0.14 , the data used 
in Fig. 17 fitted much more accurately, as shown in Fig. 19. In this figure, the R-squared 
valued achieved a maximum of 0.870 for size 8 MB and a minimum of 0.497 for size 3.8 
MB. For the other three sizes 5.7 MB, 10 MB and 12.2 MB, the R-squared values were 
0.560, 0.744 and 0.619 respectively.

(11)runtime =
a

nexec
+ b nexecc

Fig. 15  Fitting the 2D plate model to NWeight (Graph)

Fig. 16  Fitting the 2D plate model to SVM
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This shows that an exponential function explains the same behaviour that we targeted 
in this work, i.e., the runtime reaches a peak performance for a certain number of execu-
tors, and then the runtime keeps growing, degrading the performance even when more 
executors are added to run the job.

For Pagerank and Kmeans, we repeated the experiments with larger problem sizes. For 
larger sizes, Pagerank fits the original Eq. 9 (Fig. 20). Kmeans also shows a better fit to 
Eq. 9 (Fig. 21).

This shows that the relationship between the serial part and the problem size can also 
vary. It seems that the constant c works well for Wordcount, SVM and NWeight for 
c = 0.5 (which is the c value in the original Eq. 9).

Fig. 17  Fitting the 2D plate model to Pagerank

Fig. 18  Fitting the 2D plate model to Kmeans
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For Pagerank and Kmeans it shows that the constant c can vary with the problem 
size. The explanation is that the unpredictable overheads may overshadow the pattern 
of the runtime when the sizes are too small, and the jobs run in just a few seconds. 
Longer jobs are more stable, and the pattern of the growth of the boundaries (serial 
part) can be found more easily. More work needs to be done for the other workloads.

Fitting errors and comparison with Amdahl’s and Gustafson’s laws

The figures in "Findings from the analytical model" section showed the fitting results 
for the proposed model. Although we have compared each one of the curves with 
Amdahl’s and Gustafson’s Laws, in this section we only show three examples. In the 

Fig. 19  Fitting Eq. 11 to Pagerank jobs, with c=0.14

Fig. 20  Fitting the 2D plate model to Pagerank with larger problem sizes



Page 24 of 28Ahmed et al. J Big Data           (2021) 8:107 

majority of the curves, the proposed model fits the empirical data more accurately. 
However, in a few cases Amdahl’s or Gustafson’s fit better. Figure  22 shows three 
graphs.

The first graph shows that the empirical data fits accurately for all three models. The 
R-squared value for the proposed model is 0.999, for Amdahl’s is 0.998, and for Gustaf-
son’s it is very close, 0.997.

The second graph in Fig.  22 shows that Gustafson’s Law has the best fit, but with a 
low R-squared of 0.849. The R-squared values for the proposed model and Amdahl’s are 
0.649 and 0.840 respectively.

Finally, the third graph in Fig. 22 shows that the proposed model achieved the best fit. 
The R-squared values were 0.962 for the proposed model, 0.611 for Amdahl’s model and 
0.198 for Gustafson’s model. We can state that in applications where the runtime goes 
down and up again with increasing executors, our model will work better than Amdahl’s 
or Gustafson’s. For the cases where the runtime keeps going down until it converges to a 
fixed value, all three models may work.

The R-squared values for all the curves fitted from Figs. 14 to 21 are shown in Table 6. 
These results show that generally our model fits the data better than Amhdal’s or Gustaf-
son’s equations. Among the 35 rows in Table 6, 25 indicate that our model worked better, 
while 4 rows worked better for Amdahl’s equation and 6 worked better for Gustafson’s 
equation.

Conclusion
This paper has proposed a new parallelisation model for different workloads of Spark 
Big Data applications running on Hadoop clusters. The proposed model can predict the 
runtime for generic workloads as a function of the number of executors without neces-
sarily knowing how the algorithms were implemented, with a relatively small number of 
experiments to determine the parameters for the model’s equation. The main focus is 
to provide a quick insight into the system’s parameters and reduce the runtime to help 

Fig. 21  Fitting the 2D plate model to Kmeans with larger problem sizes



Page 25 of 28Ahmed et al. J Big Data           (2021) 8:107 	

Fig. 22  Comparison for the fitting accuracy using the proposed model, Amdahl’s law and Gustafson’s law
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users, operators, and administrators to optimise the application performance. We have 
used a physical cluster and various HiBench workloads of Spark applications on the pro-
posed performance model.

The results show that a particular runtime pattern emerged when adding more execu-
tors to run a certain job. This pattern is driven by a growth of the serial portion of jobs, 
found to be proportional to the square root of the number of executors.

For some workloads, the runtime reached a low point, growing again despite the 
fact that more executors were added. This phenomenon is predicted by the proposed 
model of parallelisation. We have found that for three workloads, WordCount, SVM 
and Nweight, the runtime versus executors fit the model’s equation very well. However, 

Table 6  R-squared estimates for all the workloads

Workloads Size (MB/GB) R-squared 
proposed model

R-squared 
Amdahl

R-squared 
Gustafson

WordCount (Fig. 14) 313.6 MB 0.945 0.743 0.344

940 MB 0.874 0.937 0.641

5.9 GB 0.999 0.992 0.956

8.8 GB 0.996 0.995 0.981

19.2 GB 0.997 0.997 0.995

SVM (Fig. 16) 34 MB 0.958 0.586 0.175

60 MB 0.962 0.596 0.184

1.2 GB 0.971 0.662 0.249

1.8 GB 0.962 0.611 0.198

2 GB 0.956 0.925 0.827

NWeight (Fig. 15) 37 MB 0.823 0.912 0.706

73 MB 0.973 0.997 0.917

119 MB 0.886 0.936 0.970
155 MB 0.893 0.890 0.843

211 MB 0.967 0.966 0.934

K-means (large job) (Fig. 21) 19 GB 0.943 0.912 0.974
56 GB 0.999 0.998 0.979

94 GB 0.999 0.999 0.986

130 GB 0.997 0.997 0.971

168 GB 0.999 0.998 0.997

K-means (small job) (Fig. 18) 1.3 MB 0.670 0.233 0.007

2.73 MB 0.941 0.338 0.024

4 MB 0.803 0.750 0.425

5.30 MB 0.087 0.346 0.400
13.3 MB 0.649 0.840 0.849

Pagerank (large job) (Fig. 20) 507 MB 0.992 0.994 0.997
1.6 GB 0.974 0.983 0.997
2.8 GB 0.991 0.990 0.990

4 GB 0.995 0.995 0.995

5 GB 0.996 0.996 0.990

Pagerank (small job) (Fig. 17) 3.8 MB 0.664 0.137 0.001

5.7 MB 0.535 0.372 0.105

8 MB 0.897 0.670 0.253

10 MB 0.541 0.730 0.474

12.2 MB 0.668 0.144 0.000
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for the workloads Pagerank and Kmeans the model only works well for large data jobs. 
Finally, we can conclude that the results are satisfactory, considering the job sizes and 
parameters we chose. The proposed model can give precise recommendations for the 
number of executors for a certain problem size, so it is beneficial in terms of perfor-
mance tuning.

For future work, the model will be tested for most of the HiBench workloads to deter-
mine which one works well with the model, or to find an alternative equation that can fit 
the data. For each workload, larger problem sizes should be used, with a wider range of 
sizes as well. This would allow for a more accurate prediction of the runtime for a certain 
physical cluster, with a minimum number of experiments to determine the two most 
important parameters for runtime, number of executors and problem sizes.
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