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Introduction
Since the first case of SARS-Cov-2 infection was detected and confirmed in China, there 
has been a huge increase in the number of confirmed cases worldwide. As of March 20, 
2021, there were 121,759,000 confirmed cases worldwide, including 2,690,731 deaths, 
according to data of World Health Organization (WHO). As of 18 March 2021, a total 
of 364,184,603 vaccine doses have been administered. The significant scale of infections 
and the rapid spread of the virus in the environment have led the WHO to consider this 
epidemic to be a pandemic that has affected the entire international community. Despite 
the efforts of various international and national organizations, including pandemic gov-
ernments, medical services, medical laboratories, universities and research centers, so 
far it has proved impossible to significantly limit the increase of Covid-19 cases. For this 
reason, understanding the existing relationship between the spread of the virus and the 
mobility of people is crucial to mitigate the global negative effects of the pandemic from 
the perspective of society and the world economy.

Abstract 

The Covid-19 pandemic that began in the city of Wuhan in China has caused a huge 
number of deaths worldwide. Countries have introduced spatial restrictions on move-
ment and social distancing in response to the rapid rate of SARS-Cov-2 transmission 
among its populations. Research originality lies in the taken global perspective reveal-
ing indication of significant relationships between changes in mobility and the number 
of Covid-19 cases. The study uncovers a time offset between the two applied data-
bases, Google Mobility and John Hopkins University, influencing correlations between 
mobility and pandemic development. Analyses reveals a link between the introduction 
of lockdown and the number of new Covid-19 cases. Types of mobility with the most 
significant impact on the development of the pandemic are “retail and recreation 
areas", "transit stations", "workplaces" "groceries and pharmacies”. The difference in the 
correlation between the lockdown introduced and the number of SARS-COV-2 cases is 
81%, when using a 14-day weighted average compared to the 7-day average. Moreo-
ver, the study reveals a strong geographical diversity in human mobility and its impact 
on the number of new Covid-19 cases.
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The first studies were conducted in countries affected by the Covid-19 pandemic, 
such as China, South Korea and Italy. The governments’ restrictions introduced in these 
countries in the form of lockdown, contact tracing and quarantine have reduced the 
number of people infected. However, the global nature of the pandemic requires a broad 
view of the problem of virus transmission using big data for all world regions and coun-
tries. Our research is the first to explain the relationship between changes in mobility 
and the spread of the Covid-19 pandemic from a global perspective.

Since the onset of the Covid-19 pandemic in January 2020, few research results have 
been available to explain the relationship between human mobility and Covid-19 trans-
mission using a variety of sources and datasets. Initially, as we mentioned, these studies 
were conducted in countries that were the first to face the specter of the uncontrolled 
Covid-19 spread. These studies mainly used national data sources on mobility changes in 
different space–time systems, relating to regions and cities in a given country. For exam-
ple, a study conducted in China by Haimeng Liu, Chuanglin Fang and Qian Gao was 
based on the Health Index of Cities (HIC) using two types of human mobility data from 
Baidu to construct the HIC. Baidu is one of the largest map service providers in China. 
In contrast, confirmed COVID-19 cases come from the National Health Commission of 
China (http://​www.​nhc.​gov.​cn/​xcs/​yqtb/​list_​gzbd.​shtml ) [1]. A similar approach based 
on national data sources was used by Marino Gatto et  al. [2] in a study conducted in 
Italy which estimated the parameters of metacommunity Susceptible-Exposed-Infected-
Recovered (SEIR)-like transmission model. The study covered 107 provinces connected 
by mobility. The model includes sequential restrictions introduced by the Italian Gov-
ernment broken down by provinces, which resulted in partial or complete lockdown 
and mobility restrictions. Similar, space-oriented national or regional study results 
using human mobility data are also available for places such as the USA, Japan, China or 
Hong-Kong [3–8].

Previous studies have limitations that do not permit a comprehensive look at the 
impact of changes in different types of mobility on the development of the Covid-19 
pandemic worldwide. First of all, the conclusions are drawn on the basis of a short period 
covering the first months since the beginning of the pandemic, e.g. [9], which refers to 
the lockdown of spring 2020. Some are focused on exploring the interdependencies of 
government measures under the Covid-19 anti-transmission policy [10]. Others used 
the Oxford COVID-19 Government Response Tracker (OxCGRT) database COVID-19 
and The Global Health Security Index (GHSI) as the basis for the formulation of policy 
responses [11, 12]. However, these research approaches do not provide a full opportu-
nity to demonstrate the relationship between changes in mobility and the development 
of the current pandemic.

For the first time in the history of mobility research, thanks to the availability of data, 
it is possible to show the impact of global phenomena, such as a pandemic, on global 
mobility. In our research, we have adopted a big data approach to illustrate the relation-
ship between lockdown and mobility, which lifts any limitations in the spatial scope of 
the analysis.

The use of a data integration approach in epidemiological research has a long his-
tory.  A common approach is applying the Bradford Hill Criteria (strength of associa-
tion, consistency, specificity, temporality, biological gradient, plausibility, coherence, 

http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
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experiment, and analogy) to determine causality in exposure–response associations in 
human disease [13]. However, our research is primarily aimed at determining whether 
there is a relationship between the development of the Covid-19 pandemic and mobility 
without clearly indicating the cause-and-effect nature of the relationship.

The contribution of our research to the current scientific discourse is threefold. Firstly, 
the time range adopted for the study covers the full period from the beginning of the 
pandemic to the start of the first vaccination campaign in the UK. Secondly, the analyses 
conducted and conclusions regarding the impact of mobility changes in different areas of 
activity concern 137 countries and 50 U.S. states included in the Google Mobility survey, 
which gives a global perspective on the possible effects of lockdown on regional, national 
and smaller spatial unit level (Appendix A, Table 5). Thirdly, our contribution lies in the 
in-depth presentation of methodologies for the processing and integration of databases, 
which can also be used in further research on Covid-19. The conceptual model used in 
the studies assumes a correlation between different types of mobility and SARS-Cov-2 
transmission.

This has also given a dynamic view of the mobility changes caused by the lockdown. 
The contribution of this research lies in its global perspective on the relationship 
between mobility and the spread of Covid-19. This requires the use of data that describe 
all countries, which allows comparisons and gives rise to the initial generalization of the 
results obtained. The results of our research are universal and can be used at the level of 
various international, national and regional institutions to assess and revise the existing 
lockdown policies.

The Covid-19 pandemic, which caused the global lockdown, has greatly affected 
changes in mobility around the world, regardless of the country and region’s position in 
the global labor division. In our research, we have shown the extent to which the Covid-
19 pandemic has influenced changes in global mobility. In different countries, govern-
ments have adopted different approaches to lockdown, from liberal ones, like in Italy 
and Sweden, to very restrictive ones, like in China. It is worth noting that the mobil-
ity restrictions are introduced in each country in a different way—most often, gradually, 
depending on the changes in the number of Covid-19 active cases. However, regardless 
of the nature of the lockdown, there have been significant changes in public activity and 
total mobility in all countries.

In this study, we have used cellular data from Google on six types of mobility result-
ing from the need to maintain social distance. These data were made public during the 
Covid-19 pandemic period. Google data include: retail & recreation areas, groceries & 
pharmacies, parks, transit stations, workplaces and residential areas. They allow for an 
in-depth dynamic analysis of mobility changes across these categories in the context of 
the Covid-19 global pandemic. We use these data to consider the effect this lockdown 
and mobility limitations have had on the number of Covid-19 cases.

This research analyzes the effect of the lockdowns in the studied countries in regards 
of type of lockdown. It directs attention to the organizational setting of lockdown as 
societally organized locations: retail & recreation areas, groceries & pharmacies, parks, 
transit stations, workplaces and residential areas. Furthermore, lockdown is adminis-
tered over time, and the feature of timing the lockdown in the number of days is also 
considered.
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Fundamentally, an inductive approach is applied based on the assumptions of the 
grounded theory where a theory is systematically generated from data [14]. Due to the 
lack of studies on links between mobility and the Covid-19 pandemic, we have described 
our approach as loose and emerging, which fosters active testing of all possible inter-
dependencies. However, the studies carried out are quantitative and based on many 
algorithms that have been used to process the data. Due to the lack of possibility to pre-
determine the quality of the results of the integration of the Google Mobility and John 
Hopkins University databases, the grounded theory provides an opportunity to modify 
the theoretical framework of the research [15]. The following literature review provides 
an overview of the Covid-19 impact on global mobility followed by a section covering 
the applied approach on Big Data in mobility studies.

The structure of this paper consists of five parts apart form the introduction. In 
Sect. "Literature review/theoretical background" the theoretical background of the study 
is introduced. This section offers an in-depth discussion on the impact of Covid-19 on 
global mobility and Big data’s approach to mobility studies. The next Sect.  "Research 
methodology" presents the applied methodology. This involves using the Covid-19 John 
Hopkins University database and Google Mobility database as grounds for analyzing. 
Section  "Results" describes combining data into the Mobility-Covid-19 database and 
human mobility impact on Covid-19 transmission. In Sect.  5 findings in the form of 
results are presented. In the final section general conclusions and further research direc-
tions are briefly discussed. The appendix provides the more detailed empirical findings.

Literature review/theoretical background
Covid‑19 impact on global mobility

Global mobility is characterized by relatively constant patterns of human behavior across 
countries, regions and cities. This situation relates to periods of social and economic sta-
bility not disturbed by economic crises, social conflicts, wars, natural and technological 
disasters and other phenomena which give rise to changes in mobility [16]. The impact 
of factors affecting mobility varies greatly and is most often limited to countries and 
regions, as in the case of natural disasters such as the tsunami in Japan, the earthquakes 
in Turkey, or the MERS in the Middle East and SARS pandemics in Wuhan [17]. It is 
extremely rare to see factors affecting mobility have a global reach and strike all coun-
tries and regions at the same time, causing a simultaneous global lockdown of societies 
and economies.

The theoretical framework of our research refers to the paradigm of mobilities 
proposed by Urry to study social phenomena related to human activity in the field 
of movement [18–20]. The first theoretical trend to which we refer in our article 
concerns the specificities and patterns in the theory of mobility across countries and 
regions, which directly affected the rate and directions of the spread of Covid-19. 
The originality of our research consists in dynamic tracking of the changes in global 
mobility across internal territorial units such as counties, states, countries, regions, 
and, eventually, the entire world. The second theoretical trend is related to the use 
of big data in the area of mobility to track changes in people’s movement patterns. 
This trend is associated with human dynamics. Pandemics are phenomena that have 
affected current global mobility, causing significant changes in the behavior of the 
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world community [21]. While studying them, it is possible to use a location-based 
approach to monitor urban movements [22–24]. This approach can be used on a 
broader scale to include changes in mobility at national and regional levels.

In our research, we agree with van Cranenburgh [25] that a substantial change 
is an unconventional change that directly or indirectly causes an "enduring" change 
in at least one principal indicator of mobility at least 5% on a supranational scale. 
According to substantial typology of changes presented in the study of van Cranen-
burgh (2012), Covid-19 is classified into the category of disasters (abrupt substantial 
changes in the biosphere), just as SARS, MERS, H1N1, avian flu or swine flu were in 
the past. However, given the level and geographical scope of impact and the effect 
on society and the economy, we should consider whether the 5% level of change can 
determine the relevance of future mobility changes.

Spatial mobility is contemplated on the basis of various research trends and 
related theoretical concepts [26, 27]. In the area of sociology, Urry (2007) gives defi-
nitions of types of mobility calling them simply mobilities, and links them to social 
life in late modernity. He distinguishes various types among them, such as medical 
travel, visiting friends and relatives, work-related travel including commuting, ’trail-
ing travel’ of children, partners, other relatives and domestic servants. These types 
are the quickest to respond to disruptions in the form of disasters such as Covid-19. 
Others, such as tourism travel, react to social distancing and lockdown caused by 
the pandemic at a slower pace [28, 29].

Sheller (2016) points to the interdependence between disease mobilities and trans-
portation, indicating deeper consequences for countries and regions, triggered by 
the spread of the epidemic from a historical perspective [30]. Disease mobilities 
are understood as more-than-human mobilities, which requires the adoption of a 
research approach that will capture the mechanism of transmission of infectious dis-
eases [31]. The spread of Covid-19 differs significantly from previous epidemics in 
both transmission rate and geographical scope. The problem also lies in the asymp-
tomatic nature of many cases, which affects the fluctuations in the number of con-
firmed cases and the validity of the decision on lockdown.

However, after a certain period into the pandemic, all mobility, regardless of its 
type, changes, leading to a shift in its valorization by the society. Work-related 
travel is replaced by remote work, which leads to a restriction of the movement of 
employees.

Few partial results from studies on changes in spatial mobility caused by Covid-
19 indicate that Italy saw a decrease in mobility by around 50% between March 10 
and April 1 [32]. The studies cited were used as a research tool for an application 
originally designed to provide real-time seismic monitoring on a sample of 20,000 
Italian app users. These and similar research results at a national level do not permit 
a global view of the actual impact of Covid-19 on mobility. Moreover, due to time 
constraints, human dynamics associated with the reaction to lockdown cannot be 
illustrated.

Changes in human mobility caused by the Covid-19 pandemic also stem from 
recent research on policy stringency and trust for governments of countries that 
introduced a total or partial lockdown [33].
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Big data in mobility studies

Thanks to the use of big data, studies on mobility are changing in nature and vary from 
those carried out in the past. This applies to both increasing the scope of spatial analy-
ses and the volume of data that can be analyzed in real time. This leads to an increased 
number of quantitative studies that use algorithms to enable in-depth analysis of GPS 
data from mobile phone users [34]. We believe, similarly to Brockmann [35], that the 
understanding of human mobility and the development of qualitative models as well as 
quantitative theories for it is of key importance in the research of human infectious dis-
ease dynamics on large geographical scales. However, this does not solve the problem 
of mapping the difference between the speed of movement of persons and the rate of 
development of epidemics or natural disasters [36]. This is particularly important for the 
effectiveness of the actions taken at institutional levels.

Nevertheless, researchers have been lately discussing the following question: How 
can qualitative fieldwork support big-data research? [37] This is significant, especially 
as some point out that the "ease of collecting, storing, and processing" large volumes of 
high-resolution spatiotemporal data leads to the "fourth paradigm of science" [38].

A hybrid approach combining quantitative and qualitative data sources has been 
adopted in studies using the aforementioned Government Response Stringency Index 
which was first introduced by the Oxford COVID-19 Government Response Tracker. It 
codes qualitative policies into numbers and then takes the average of these specific poli-
cies such as school closure, business closure or public event cancelation.

The current availability of big data gives particular importance to algorithms that allow 
for the creation of geographical knowledge, referred to as algorithm-driven geographies 
(or algorithmic geographies) rather than data-driven geography [39]. In human mobility 
studies, the use of large datasets by providers such as Google, Apple or Huawei allows 
simultaneous observation of mobility changes [40]. This is significant, because even 
though the content-oriented approach to mobility research has allowed for an in-depth 
view of spatiotemporal changes, it did so with considerable limitations in the scope of 
the study.

Much of the research on mobility relates to urban studies, due to the high quality of 
geolocation data in urban areas and the data density associated with the number of users 
of mobile technologies [41–44]. Although the big data approach has already entered the 
mainstream in urban studies, a multidimensional look at these issues is required due 
to new real problems emerging in urban spaces [45]. This means that many different 
data sources need to be combined, which allows scientists to conduct research and solve 
problems in urban studies. The heterogeneity of data sources enables better spatial map-
ping of mobility and increases the number of contexts in which data can be analyzed 
[46].

This approach to showing changes in human mobility has been used in studies pre-
senting human movement patterns in the Covid-19 context based on geotagged Twitter 
data [47]. The processing and visualization of these data in space, combined with the 
analysis of other databases, showed a significant decrease in the number of trips caused 
by the introduction of further constraints related to combating the pandemic. Similar 
observations confirm the results of studies for bike-sharing usage during the Covid-19 
pandemic [48].
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Our contribution to mobility studies is to show the path that has been used to inte-
grate and validate two publicly available large datasets, shared by Google [https://​www.​
google.​com/​covid​19/​mobil​ity/] [49] and John Hopkins University [https://​github.​com/​
CSSEG​ISand​Data/​COVID-​19/​tree/​master/​csse_​covid_​19_​data/​csse_​covid_​19_​daily_​
repor​ts] [50], which fulfill the conditions of big data. The quantitative approach, meth-
odology and steps we have adopted in the research are universal and can be used by 
researchers to present any phenomena in different areas of mobility studies.

Research methodology
Covid‑19 John Hopkins University database processing

Our study uses data on Covid-19 provided by John Hopkins University. The data were 
processed according to the diagram shown in Fig.  1. John Hopkins University source 
data (file 1: f1_Covid19-Hopkins_Source.csv) are the only dataset that can still be edited 
in MS Excel. Although the number of rows of source data exceeds 1 million, the number 
of rows still falls within the limit (1,048,576 rows) of MS Excel rows.

The information concerns the history of Covid-19 and has the form of CSV files for 
each day of analysis. The data were retrieved as separate files from each day (338 files), 
cleaned and combined into a single collection with an additional column containing the 

Fig. 1  John Hopkins University data processing process

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports
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date of the file from which the data originate. Even though the data contain a time clas-
sification column (date—time), we introduced another date column to track the daily 
variability of the data based on the name of the files from which they originate.

The variables used for the analysis refer to data containing the sum of the daily "con-
firmed" cases, the sum of “active” cases, the sum of “deaths” and the sum of people who 
have "recovered” from the disease. At the same time, for further research, we introduced 
another dynamic variable "cases" defined as a theoretical number of cases based on the 
number of deaths at a given mortality rate: cases = deaths*death_rate (initially adopt-
ing the mortality rate as 1%). The data were cleaned by replacing values in the database 
based on Table 1.

Changes can be divided into three groups. The first group is the conversion of clas-
sification values to the same corresponding values in all databases used in the research. 
For example, we treated Puerto Rico as a separate country, not part of the United States, 
or converted value from "US" to "United States”. We have used three databases, two pub-
licly available and one original. The second group of changes concerned the removal 
of various markings of missing data. For example, we have replaced "Unassigned" or 
"Unknown" with an empty cell.

The third group of modifications concerns the harmonization of the attribution of 
Covid-19 cases to specific passenger ships, regardless of their mooring location, and 
excluding them from the total number of cases for particular countries. Due to the 
presence of location data (longitude and latitude), the missing FIPS codes for the same 
locations could be completed. At the same time, location data were supplemented with 
longitude and latitude values with the highest accuracy, defined as the largest number of 
characters for a given combination of a country, province, state, district or city.

Table 1  John Hopkins University data replacing table

John Hopkins University data replacing table

Before After Before After

French Guiana France West Bank and Gaza Palestine

Guadeloupe France Taiwan* Taiwan

Vatican City Holy See Hong Kong SAR Hong Kong

Korea, South South Korea Diamond Princess Ships

Martinique France Congo (Brazzaville) Congo-Brazzaville

Mayotte France Congo (Kinshasa) Congo-Kinshasa

MS Zaandam Ships occupied Palestinian territory Palestine

Republic of Moldova Moldova UK United Kingdom

Republic of the Congo Congo-Brazzaville US United States

Saint Barthelemy France Viet Nam Vietnam

The Bahamas Bahamas Burma Myanmar

The Gambia Gambia Cabo Verde Cape Verde

Jersey United Kingdom Channel Islands United Kingdom

Georgia Georgia US Timor-Leste East Timor

occupied Palestinian territory Palestine Faroe Islands Faroe Islands

New York City, NY New York New york city New York

New York County, NY New York New york New York

Grand Princess Ships
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We sought to limit the number of potential countries with small populations that 
could distort the results because of their uniqueness. On the other hand, we wanted as 
large a population as possible to be indicative of the results, so instead of removing ter-
ritories politically dependent on a major country, we combined them, assuming that the 
response of individual governments to Covid-19 is consistent across the territory under 
the same political control. We also assumed that dependent territories, even located far 
away from the main territory, share a common culture.

The post-cleaning source data included a time frame between January 22, 2020 and 
December 24, 2020, for 199 countries (column: Country) and 667 provinces or states 
in these countries (column: Province_State), and 1957 unique districts or cities in these 
provinces or states (column: Admin2). The data show a detailed breakdown within the 
United States. The three above classification columns (countries, provinces, districts or 
cities) were translated into 4131 combinations.

The combined and initially cleaned data were further processed in the value column by 
converting negative active cases (“active”) into a positive number of cured cases (“recov-
ered”). This was due to the misallocation of the number of recovered cases into the col-
umn of active cases in the processed John Hopkins University database.

To show U.S. states as the equivalents of countries, the country classification column 
and the province or state column have been swapped. The same was done by shifting the 
districts to the place of the provinces or states. Another classification column has been 
added to highlight the location of the shift to preserve the possibility of grouping indi-
vidual states.

Subsequently, we added further classification columns with information on countries 
or states based on countries and regions database (file 2: f2_Country_regions.xlsx). This 
provided information on the two-letter designation of the country (ISO code) or state 
(the first two FIPS digits), the population of the country or state, and the region of the 
world to which the country belongs. The following were specified: Asia and the Pacific 
countries: "ASIA", Western Europe: “WE", the remaining countries of Europe, Africa and 
Asia Minor not belonging to Western Europe: "EEMEA", South America: "SAM", North 
and Central America: "NAM & CAM".

For countries or states, 100,000 multiplicities were calculated to two decimal places 
based on the population column. This allowed us to show data from the John Hopkins 
University database against the background of the population size of any spatial unit. 
On this basis, the values were converted into the population size of the country or state. 
Then, for the column containing values, the daily increments of all variables were calcu-
lated as differences between this day’s valued and the previous day’s value. Daily incre-
ments per 100,000 inhabitants were also calculated for countries or states.

The rolling averages of 7 and 14 days were calculated for all five variables for each col-
umn: daily Covid-19 values, values per population and daily increments of both figures. 
For a symmetrical window size of 14 days, the value was placed next to the last value 
of the first half of the window. We also added the classification column to filter out the 
missing days of the data range end, the last 3 days for the 7-day average and 7 days for 
the 14-day average, respectively.

Based on the date of publication of the source files, we created time classification col-
umns: month (number), month (text), week of the year, day count from the beginning 
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of data for a given area (defined as: country or state—province—district or city), week 
count from the beginning of data for a given area, day of the year, day of the week (num-
ber), and day of the week (text).

Summing up the John Hopkins University database data processing path shown, we 
obtained the total database of 5,579,680 rows and 46 columns: 256,665,280 data cells 
(file 3: f3_Covid19_Hopkins.csv).

Google Mobility database processing

The second base we used in the research was the Google Mobility database which was 
made available for research by the company Alphabet. The data for a given day include 
the sum of daily mobility decreases compared to base mobility divided by type of mobili-
ties. These include: “retail & recreation areas, "groceries & pharmacies", "parks", "transit 
stations", "workplaces” and "residential areas". The data were cleaned by replacing values 
in the database based on Table 2.

Google Mobility database uses differentially-private analysis which adds noise to 
results to anonymize the location data of individual mobile phones. This ensures that the 
data do not show individual activity patterns while preserving the usefulness of the data 
at scale. These reports are intended to show the changes that have taken place around 
the world, following the introduction of restrictions regarding the Covid-19 pandemic.

At the same time, for further research, we have introduced a variable "Combined" 
defined as the resultant of the weighted average of some of the mobility types we con-
sider key, with the following weights in order of importance: 0.4 for "retail & recreation 
areas", 0.3 for "transit stations", 0.2 for "workplaces", 0.1 for "groceries & pharmacies" 
and 0 for "residential areas" and "parks". The adopted "Combined" weights were an edu-
cated guess based on an analysis of the positive-to-negative correlations between differ-
ent types of activity resulting from a preliminary analysis made on the first 179 days of 
data from the Google Mobility database. The above weights have been adopted a priori, 
but a more accurate determination of the optimal weights is possible on the basis of an 
analysis of the different options. We searched for the maximum square value of Pearson’s 
correlations of the highest daily mobility decreases offset in time towards the daily incre-
ments in new Covid-19 cases detected.

Although the Python version 3 programming environment was used to process the 
source data of both databases, we used the CORREL(X,Y) function of MS Excel to calcu-
late the correlation of the resulting data.

As with the John Hopkins University database, the data were cleaned by swapping 4 
values to convert classification values to the same corresponding values from the cor-
responding databases.

Table 2  Google Mobility data replacing table

Google Mobility data replacing table

Before After Before After

Côte d’Ivoire Cote d’Ivoire Réunion Reunion

Myanmar (Burma) Myanmar Georgia Georgia US
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The post-cleaning source data included a time frame between February 15, 2020 and 
December 11, 2020, for 135 countries and 1,860 provinces or states in these countries, 
and 9914 unique districts or cities in these provinces or states and additional 65 met-
ropolitan areas. The three above classification columns translated into 13,269 combi-
nations. Data in the wide format accounted for 3,468,548 rows, which, with 7 variables 
(including the dynamically calculated “Combined”), translated into 24,279,836 rows in 
the long format.

The data end on December 11, because after this period in some countries (e.g. USA 
or the UK) a mass SARS-Cov-2 vaccination campaign was launched, which is why activ-
ity data after this period will be characterized by systemic disorder. Vaccinated individu-
als will be able to be active with minimal impact on the number of Covid-19 cases. In 
addition, universal vaccination programs are large-scale logistic operations, carried out 
mainly by medical staff using strict personal protection measures, which increases the 
level of activity of societies with minimal impact on the number of Covid-19 cases.

To show U.S. states as the equivalents of countries, the country classification column 
and the province or state column have been swapped. The same was done by shifting the 
districts to the place of the provinces or states. Another classification column has been 
added to highlight the location of the shift to preserve the possibility of grouping indi-
vidual states.

For the column containing values, the daily increments were calculated as differences 
between this day’s value and the previous day’s value. In addition, the data from the 
Google Mobility database were offset in time in relation to the John Hopkins University 
database. The offset level can be changed dynamically. For the analysis of the relation-
ship between mobility and the spread of the pandemic, the original time data were also 
preserved.

The rolling averages of 7 and 14 days were calculated for all seven variables for each 
column: daily mobility values, offset values and daily increments of both figures. For a 
symmetrical window size of 14 days, the value was placed next to the last value of the 
first half of the window. As with the John Hopkins University Covid-19 database, we 
also added the classification column to filter out the missing days of the data range end 
(3 days for the 7-day average and 7 days for the 14-day average, respectively).

The data operations performed gave a total base size of 24,279,836 rows and 33 col-
umns: 801,234,588 data cells. The above mobility database has been loaded into a 
business intelligence type software (MS PowerBI dashboard shown in Fig. 2) for more 
convenient data visualization (file 4: f4_Google_Mobility.pbix).

We chose Australia because of the representativeness of the characterization of activ-
ity changes allowing us to illustrate phenomena frequently occurring during the lock-
down, which makes it impossible to simply take the lockdown center as if it were a 
point of minimal activity throughout the year. However, we could not show the average 
because of the different lockdown time ranges for each country.

Our assumptions about the location of the lockdown center are debatable and we 
hope that other researchers will use the data we collected to better locate lockdowns 
using other algorithms. Our preference to use the data without comparing them to the 
dates of legislation sanctioning lockdowns results from the fact that in some countries 
regulations have been repeatedly changed and updated. The unique case of Sweden 
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further illustrates that lockdown can be introduced as a voluntary recommendation 
made at a press conference rather than a legal obligation. Actual population activ-
ity data derived directly from the data take precedence over legal considerations that 
only give an idea of population activity recommendations, not their implementation.

In Appendix A, Table  6, we presented the lockdown taxonomy based on mobility 
changes. In addition, Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30 contain visualizations for the countries we included in the taxonomy.

Results
Combining data into the Mobility‑Covid‑19 database

The combination of both databases, the John Hopkins University Covid-19 database 
and Google Mobility database, takes place at the level of the larger base, namely, the 
Google Mobility base with 13,269 combinations of spatial markers. The data were 
processed according to the diagram shown in Fig.  3. They refer to countries, prov-
inces or states in these countries and unique districts or cities. The Covid-19 data-
base of John Hopkins University contains 4,131 combinations. This research approach 
stems from the adopted assumption that human mobility has impact on the spread of 
the pandemic.

One variable can be linked to the Google Mobility database each time, e.g. the num-
ber of daily “confirmed” cases or the number of “deaths” from the Covid-19 database 
(5,579,680 rows), corresponding to the same combinations and time series days.

In our study, we limited the Mobility-Covid-19 result base to overlapping combina-
tions of countries and individual U.S. states (185 cases). This is because these were the 
only combinations for which we had population size data that could be used to weigh 
the correlations between the values from both bases. The second reason for this inter-
vention was the need to limit the analysis to large population groups. This eliminates 
the disruption of daily increments caused by local outbreaks of the disease. This has 

Fig. 2  Google Mobility for Australia visualized in MS PowerBI dashboard
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reduced their impact on statistics in a given group in  situations of rapidly increas-
ing incidence in places where people are forced to reside in confined spaces, such as 
locked facilities or nursing homes.

From the combined Mobility-Covid-19 database, the following columns were 
exported: mobility type, country or state, country or U.S. state it belongs to, popula-
tion size, region of the world it belongs to, offset mobility value for the rolling aver-
age, value of daily case increments for the rolling average, and day count from the 
start date. To show the regional diversity of lockdown, the study highlighted 5 geo-
graphical regions.

Fig. 3  Google Mobility and John Hopkins University data processing process
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For the 7-day and 14-day rolling averages, a 50-fold database data export operation 
was performed for different values of the mobility time offset intervals, with offset values 
from 1 to 25 days (1 export for each offset separately for 7-day and 14-day rolling aver-
ages—50 in total).

The operation was then repeated for a subgroup of the first 150 days and subsequent 
151 days, which translated into 150 exports. In addition to the combined data set, we 
used the first and second half as they include different waves of the virus propagation—
spring and autumn wave. The argument for analyzing the additional two databases in the 
form of the first and second half of the dataset is that it describes different variations of 
the virus. The first SARS-CoV-2 variant that triggered the spring wave (in line with evo-
lutionary pressures preferring lower mortality and higher contagiousness) in the autumn 
already had an admixture of new virus varieties with a higher R0 (number of people 
infected by one infectious individual). Moreover, a virus with a lower mortality rate may 
have a different incubation period. By comparing the values of the offsets with the high-
est correlation from the first and second waves, we can determine whether the incuba-
tion period is lengthened or shortened. Previous studies have assumed that the average 
incubation period for this virus is 7–14 days and the time required for the recovery or 
death to occur is about 10 days based on several factors, such as weather, environmental 
conditions, average ages of people and natural immunity against viral diseases [51].

An additional argument for separating the base was the fact that the spring wave fea-
tured a greater degree of reduction of activity. The maximums from the combined base 
mostly include maximum reductions of spring activity, which largely disregards the 
characteristics of the autumn lockdowns.

In this way, for further analysis, we obtained three result datasets for “confirmed” 
cases. First dataset contains all 301 days of mobility data combined with the number of 
confirmed cases. These data translated into 63,768 rows and 610 columns: 38,898,480 
data cells. Additionally, we created separate dataset for the first 150 days of mobility data 
which translated into 63,768 rows and 308 columns: 19,640,544 data cells. Eventually, we 
created a separate set for the last 151 days of mobility data which translated into 62,726 
rows and 310 columns: 19,445,060 data cells (file 5: f5_Results_25_Confirmed.xlsx). 
These three datasets are mirrored by another three for “deaths” but those results were 
not presented because maximum offset of 25 days did not cover the maximum correla-
tion between offset mobility data and Covid-19 data (file 6: f6_Results_25_Deaths.xlsx).

Human mobility impact on Covid‑19 transmission

Based on the created Mobility-Covid-19 database, we analyzed the correlations between 
the decrease of mobility for all variables according to the Google Mobility database and 
the increment of daily cases for the variable "confirmed”, according to the Covid-19 
database. We also determined the optimal mobility time offset interval for the Covid-19 
database.

During the database analysis, frequent asymmetric situations were detected against 
the maximum values on the global chart of daily increments of Covid-19 cases. This 
occurred when the initial dynamic increase in the number of daily new cases (after 
exceeding the maximum) was followed by a slow decline in the number of cases, while 
maintaining a steady level of low population mobility. Moreover, it is likely that with the 
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loosening of restrictions, the increasing fatigue of the society and a high level of mobility 
decline, we can observe a slow return to a higher degree of mobility in many cases. At 
the same time, we are observing a further decline in daily Covid-19 increments, result-
ing in a negative correlation between population mobility levels and daily increments in 
new cases after exceeding the maximum.

Theoretically, the maximum lockdown point should be the point with the lowest activ-
ity—the global minimum for a given type of activity (Fig. 2 point: A). However, as soon 
as the level of activity reduction is reached, at which (after the incubation period) the 
number of cases will decrease, the upward trend will reverse. Free propagation of lock-
down information in society is the reason why lockdown is never instantaneous and 
is characterized by an exponential increase in the daily percentage decrease in activ-
ity, reaching its maximum and an exponential percentage decrease in activity decline 
(Fig. 2). Moreover, sometimes the maximum point is reached very steadily (Fig. 2 point: 
C) and only after many weeks, the activity reaches the minimum. This is why the growth 
inflection point—the decrease in the number of cases—can be exceeded long before the 
activity reaches the global minimum.

For this reason we decided to define the maximum lockdown as the largest decrease in 
activity defined by the largest daily increment in activity drop percentage. In the charts 
in the PowerBI dashboard, this will be the largest angle of decrease of activity (Fig.  2 
point: B). As a result, the lockdown window is referred to the date on which such a maxi-
mum percentage decrease occurs by subtracting and adding a certain number of days to 
the correlation analysis.

Taking this into account, we have decided to study the global maximums of the decline 
in mobility. They represent the highest daily mobility increments expressed as a percent-
age across the time series against daily increments in Covid-19 cases. In other words, the 
lockdown’s impact was investigated on the assumption that during its course (usually 
half through), the maximum daily decrease of population mobility occurred (calculated 
as a percentage compared to the average level of mobility in a given area).

The time series analyzed was limited to the time window set by the global maximum 
daily population mobility declines in each type of mobility and the number of analyzed 
days. In our analysis, we examined 13 different window sizes (from 5 to 29  days with 
2  day increment) associated with different numbers of days of lockdown analysis in 
terms of the average square of correlation. The maximum occurred half way through the 
interval.

Then we selected the window size which translated into the maximum values of the 
average square of correlation of all of over 63,768 cases studied in 13 different window 
size variants. The number of cases results from all combinations of mobility types, coun-
tries and states in two versions of data smoothing, with a 7-day and 14-day rolling aver-
age, tested in 25 variants of offset in relation to the John Hopkins University database.

The analysis of the results from the full scope of 301 days of data is shown in the graph 
(Fig. 4) as the average of the square of correlation and as the weighted average of the 
population size of each country or state. The promising window size is 17 days.

The level of the average square of correlation of the selected test window for 63,768 
cases was verified over the entire range of possible intervals of offsetting data on 
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population mobility decline relative to the Covid-19 new cases, as shown in the graph 
(Fig. 5). The most promising window size: 17 days, is highlighted in larger bolded font.

Based on the results, the 17-day window size was selected. After choosing the size of 
the window, the correlation was measured on a full base of 301  days until December 
11, as well as on the first half of the base of the first 150 days covering the spring wave 
of Covid-19 and the second half of the base of the subsequent 151  days covering the 
autumn wave of Covid-19.

For each of over 63,768 cases, the average square of correlation was then analyzed to 
determine the number of days of the time offset of the Google Mobility database in rela-
tion to the John Hopkins University database. Figure 6 represents the average square of 
correlation along with the trendline (Polynomial: order 2) for the first data collection 
which included all 301 days of analysis. In the chart, we showed the average square of 
correlation and the average weighted by the population size. The trendline refers to the 
weighted average.

Fig. 4  Correlation by window size for all data

Fig. 5  Square of correlation by window size split by offset days



Page 17 of 33Sadowski et al. J Big Data            (2021) 8:78 	

Figure 7 represents the average square of correlation along with the trendline (Polyno-
mial: order 2) for the second data collection which included the first 150 days of analy-
sis—the spring wave.

Figure 8 represents the average square of correlation along with the trendline (Polyno-
mial: order 2) for the third data collection which included the last 151 days of analysis—
the autumn wave.

The overall trend determines the highest value of the average square of correla-
tion with a 16-day offset. Based on all 301 days of analysis, Fig. 9 represents the aver-
age square of correlation with a 16-day offset of mobility types by countries of a specific 
region.

With the exception of the average for South American countries (group “SAM”), fur-
ther studies testing different weights for individual mobility factors may answer the 
question of whether South American countries have a different relationship between 
activity declines and daily increments of Covid-19 cases, or whether it is a question of 
suboptimal pre-determination of weights in the studies conducted.

Fig. 6  Square of correlation by number of offset days—all 301 days of analysis

Fig. 7  Square of correlation by number of offset days—first 150 days of analysis
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At the same time, the above summary occasionally indicates serious differences 
between the values of square of correlation for different regions of the world. This may 
be due to differences in terms of the wealth of societies and levels of social communica-
tion, as the differences between the best-researched “WE” and “USA” regions are minor. 
This can be explained by the similar level of human mobility of both societies and cul-
tural affinity. In addition to the above observations, we can distinguish relatively con-
stant correlation characteristics for a given type of mobility, although further research is 
required to explain the major differences in individual regions.

Another observation on the average levels of the square of correlation is to examine 
which smoothing degree affects the level of the average square of correlation. Based 
on all 301 days of analysis, Table 3 shows the results of calculations by the level of data 
smoothing.

The level of results improvement (the difference between the results in relation to 
the 7-day average result) for all types of mobility varies from 51 to 170% depending on 
the type of average (normal or weighted) and region. Even though only two levels of 

Fig. 8  Square of correlation by number of offset days—last 151 days of analysis

Fig. 9  Square of correlation with a 16-day offset of mobility types by region
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smoothing have been studied, the above results suggest that the commonly used level of 
smoothing in the Covid-19 studies [52] in the form of a 7-day rolling average may not be 
optimal and should be replaced by a higher value.

Table 3  Square of correlation by rolling window of mobility type by region

Square of correlation by rolling window of mobility type by region table

Rolling Activity Countries Countries Countries USA Countries Countries Total 
Weighted 
Corr^2ASIA EEMEA NAM & 

CAM
NAM & 
CAM

SAM WE

Mean of 
7 days

Com-
bined

24% 19% 13% 4% 12% 24% 15%

Mean of 
7 days

Groceries 
& phar-
macies

17% 14% 19% 28% 19% 13% 19%

Mean of 
7 days

Parks 15% 15% 8% 15% 16% 15% 14%

Mean of 
7 days

Residen-
tial 
areas

9% 14% 6% 5% 2% 9% 9%

Mean of 
7 days

Retail & 
rec-
reation 
areas

19% 18% 9% 5% 18% 28% 15%

Mean of 
7 days

Transit 
sta-
tions

21% 19% 14% 23% 21% 33% 22%

Mean of 
7 days

Work-
places

15% 11% 11% 6% 20% 16% 11%

Mean of 
7 days 
Total

17% 16% 11% 12% 15% 20% 15%

Mean of 
14 days

Com-
bined

33% 32% 28% 42% 46% 43% 36%

Mean of 
14 days

Groceries 
& phar-
macies

32% 23% 26% 32% 29% 23% 27%

Mean of 
14 days

Parks 21% 25% 28% 22% 32% 13% 23%

Mean of 
14 days

Residen-
tial 
areas

12% 11% 13% 3% 19% 8% 9%

Mean of 
14 days

Retail & 
rec-
reation 
areas

35% 29% 37% 38% 45% 40% 35%

Mean of 
14 days

Transit 
sta-
tions

26% 30% 30% 46% 44% 43% 36%

Mean of 
14 days

Work-
places

22% 19% 28% 15% 25% 38% 22%

Mean of 
14 days 
Total

26% 24% 27% 28% 34% 30% 27%

Grand Total 22% 20% 19% 20% 25% 25% 21%

Difference: 
(Mean14 
-Mean 7)/
Mean 7

51% 56% 137% 132% 123% 50% 81%
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The main results of our study based on all 301 days of analysis concern the flexibility of 
individual activities and their combination against the number of Covid-19 cases based 
on an analysis of the ratio of positive to negative correlations. For activity in places of 
residence, "residential areas", negative correlations (101 to 69) prevail. This is the only 
type of activity with a negative correlation. This could be expected, as the reduction in 
the number of Covid-19 cases should depend on increased activity in places of resi-
dence. Other activities have a positive relationship between reducing activity and reduc-
ing the number of Covid-19 cases (result base extract for a 16-day time offset, only with 
14-day smoothing) (Table 4).

The prevalence of positive correlation is the smallest (except “residential areas”) in 
green areas, "parks", with a positive to negative ratio of 205%. The question "Can the 
differences in the proportion between positive and negative correlations be used to better 
determine weights for "Combined" resultant activity (which has reached a proportion of 
427%, however, “retail & recreation areas” are still higher with a proportion of 474%)?" 
requires further research focused on correlation distributions, and not only positive–
negative analysis.

Discussion
The study analyses location features of the impact of human mobility on the spread of 
Covid-19 at a global level.

Lockdown in our study is defined as the highest percentage of activity reduction over a 
time series extended by an appropriate number of preceding days and the same number 
of days following the maximum reduction date. An adequate number of days showing 
the highest level of correlation was indicated after searching a wide range of possibilities. 
The level of data smoothing in the Covid-19 and Mobility databases, on the other hand, 
included a 7- and 14-day moving average. This has allowed us to exclude frequent indi-
cations of a single day with a large reduction in activity as a temporary lockdown center. 
Therefore, due to the inclusion of the actual strongest reductions in population activity, 
the study refers to all possible types of lockdown. The global approach to lockdown elim-
inates the impact of political considerations and ways of communication or lack thereof 
(as in Sweden) in individual countries or states of the USA.

Table 4  Positive to negative ratios by type of activity

Positive to negative ratios by type of activity table

Type of activity No. of correlations Ratio of 
( +) to 
(−)Positive Negative

Groceries & pharmacies 125 53 236%

Parks 119 58 205%

Residential areas 69 101 68%

Retail & recreation areas 147 31 474%

Transit stations 142 35 406%

Workplaces 132 45 293%

Combined 141 33 427%

Total 875 356 246%
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Our research has revealed that it is more relevant to look for a relationship between 
human mobility and Covid-19 transmission adopting a 14-day moving average. This 
observation is important, because much of the previous research into the impact of 
mobility reduction on Covid-19 transmission was based on smoothing data streams by 
using the 7-days rolling averaged mobility, leading to a significant difference in correla-
tion analysis results [53, 54]. This also applies to the sample size, which for the men-
tioned studies was 52 countries.

The impact of population activity limitation on the reduction of new cases of the 
Covid-19 virus has been demonstrated on the example of a large number of countries, 
including individually studied U.S. states. However, it does not apply to residential areas. 
The positive correlation remains high regardless of the level of wealth of the countries 
and the cultural characteristics of a given region of the world.

The time range of our study includes changes in daily activity and the number of 
Covid-19 cases in the first half of the pandemic, from January 22 to December 11, 2020. 
It includes the occurrence of the first wave of Covid-19 for most countries of the world. 
Furthermore, updating the activity data and the number of Covid-19 cases for the fol-
lowing months may no longer translate into significant changes in the location of the 
maximum activity reduction for the countries surveyed. The rate of reduction in popu-
lation activity may not be as rapid in the future as it was in the case of the emotional 
response of the population to the first wave. The evolutionary pressure exerted on the 
virus causes the effect over time in the form of lower mortality while increasing the 
contagiousness of the virus, hence future reductions of activities. They are likely to be 
milder due to the lower risk for individuals, which will translate into a subjective sense 
of lesser danger. However, the risk will not necessarily be lower for the society as a whole 
due to the possible increase in the number of contagions.

The study can be further developed by adding countries (not just entire geographical 
regions) on the basis of various additional criteria e.g. geographical, social or medical. 
Due to the possibility of cross-comparison of regions with similar levels of funding and 
efficiency of the health service (e.g. the USA and the rich countries of Europe), Western 
Europe (WE) has been separated from the larger region of Europe. The remaining coun-
tries have been included in the East EMEA (Europe, the Middle East and Africa) group, 
covering Russia, Ukraine, Belarus, Romania, Greece, Serbia, Bulgaria, Croatia, Moldova, 
Bosnia and Herzegovina, Georgia, Albania, Slovenia, Malta and Kosovo.

The accepted scope of research made it possible to determine the overall relationships 
in the division by regions, countries, and, in the case of the United States, also states.

The research demonstrates the impact of the Google Mobility database on the John 
Hopkins University base at the right time offset. The master database is the Google 
Mobility base in which we have included the number of Covid-19 cases. We have proven 
that a certain offset in days for mobility data correlates highly with Covid-19 transmis-
sion data. Our data also confirm that certain types of economic activity are more cor-
related than others. This proves not only that lockdowns are suppressing diffusion of 
Covid-19. Those results suggest that a selective lockdown strategy focused only on activ-
ities with the highest correlation could be more beneficial than a total lockdown strategy. 
This conclusion stands in contrast to the strategy adopted for dealing with the epidemic 
in Sweden and other countries where no lockdown has been introduced. Our results 
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strongly suggest that retail & recreation areas type of activity has the highest contribu-
tion to Covid-19 transmission. Additionally, the most economically productive type of 
activity in workplaces is not the highest in the correlation ranking (Table 4) and it is far 
below retail & recreation areas activity. Because of that, we suggest that workplaces lock-
down has the lowest Covid-19 suppression benefit to economical cost ratio so it should 
be applied as an action of last resort.

We have proven that the correlation coefficient is negative for home activity (“resi-
dential areas”) and positive in all other ones. With the manually defined "Combined" 
mobility resultant confirmed by a very high correlation. Based on the results obtained 
(Table 4), the following types of mobility are of utmost importance in the reduction of 
the Covid-19 spread, respectively: “retail and recreation areas”, “transit stations”, “work-
places” (surprisingly in the third place), “groceries and pharmacies” and “parks”. This 
proposal is particularly significant for government agencies which decide to impose 
mobility restrictions under lockdown policies. It identifies critical areas for prevention, 
monitoring and limitation of human mobility.

Conclusion
Big data analytics, and in particular the use of multiple databases, including copyright, 
requires a clear and precise determination of the links between the data sources being 
processed. We see the need to document the next steps and stages in the studies so that 
they can be reproduced and repeated by researchers in the future. Our contribution is to 
present a framework for the integration of databases taking into account the topicality of 
the coronavirus pandemic issue.

The analysis covered all the resultants of both the Google Mobility and John Hopkins 
University databases, including an expanded range of common parts to include indi-
vidual U.S. states. Extreme data were not filtered or adjusted to averages in the value 
range, so the authors avoided multiple sampling errors that could lead to biased con-
clusions. The results presented are derived from the processing of raw data, as the only 
source data that have only been filtered are those relating to entire countries or states of 
the USA and have not been subjected to any statistical processing prior to the correla-
tion analysis. Analyzing more than 180 correlations and applying aggregations to large 
populations (entire countries or U.S. states) allowed us to obtain statistically significant 
results.

Studies have shown that smoothing greater than 7 days gives better results in case of a 
correlation between the percentage value of daily activity reduction with reference to the 
baseline and daily increments in new confirmed cases of Covid-19 during lockdowns. 
The highest correlation coefficient values were obtained for the 14-day smoothing level. 
The biggest differences reached 137% compared to the 7-day smoothing level. We sug-
gest increasing the smoothing level to over 7 days, which is often used in research on 
Covid-19.

We have proven the link between the two bases measured by correlation force. The 
effect of the time offset of mobility change on the number of Covid-19 cases is practi-
cal in the current analysis of the effects of epidemic restrictions and whether they are 
sufficient or should be extended. An in-depth analysis of how many days should elapse 
to see the reduction in the number of cases is required to confirm the effectiveness 
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of preventive actions. At the same time, first, through the percentage of positive cor-
relations, we indirectly show which types of activity most strongly translate into the 
reduction of the number of cases, so that governments of countries know what activ-
ities should be focused on first (1: “retail and recreation areas”, 2: “transit stations”, 3: 
“workplaces”).

We have also calculated by how many days the Covid-19 base should be offset 
(16 days) so that this link would be the strongest for percentage declines in activity lev-
els. Then, in the view of the fact that for the Covid-19 PCR diagnostic tests (real-time 
reverse transcription-PCR), the results are sometimes given a few days after the swab 
[55], our results fall within the incubation period of the Covid-19 virus, for which the 
median of the first symptoms occurred after 5.2 days, and 95% at 12.5 days [56].

Our research is limited. Out of the 185 cases analyzed, 51 are from the US, resulting in 
a large tendency towards the over-representation of US data. At the same time, this does 
not cause a distortion of the results due to the large population in each state and the fact 
that a similar number of tests have been performed in individual countries. The second 
limitation is not including China in the studies, for which mobility data are not available 
in the Google database. Thanks to this methodology, we have strengthened analyses and 
inferences through more samples in the form of spatial units.

Our future research will focus on the analysis of the offset with the highest correlation 
level for fatal cases (“deaths”), taking into account the range of shifts from 1 to a mini-
mum of 60 days. In addition, regions of other countries with a high number of Covid-19 
cases and a large population should be added to the analysis of those identified as the 
most statistically significant due to the large population.

Appendix A
See Tables 5 and 6 and Figures 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30
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Table 5  Countries and States that have been included in the studies

ASIA EEMEA NAM & CAM SAM WE

Countries Countries Countries Countries U.S. States Countries Countries

Afghanistan
Australia
Bangladesh
Cambodia
Fiji
Hong Kong
India
Indonesia
Japan
Laos
Malaysia
Mongolia
Myanmar
Nepal
New Zealand
Pakistan
Papua New 

Guinea
Philippines
Singapore
South Korea
Sri Lanka
Taiwan
Tajikistan
Thailand
Vietnam

Angola
Bahrain
Belarus
Benin
Bosnia and 

Herzegovina
Botswana
Bulgaria
Burkina Faso
Cameroon
Cote d’Ivoire
Croatia
Egypt
Gabon
Georgia
Ghana
Greece
Guinea-Bissau
Iraq
Israel
Jordan
Kazakhstan
Kenya
Kuwait
Kyrgyzstan
Lebanon
Libya
Mali
Malta

Mauritius
Moldova
Morocco
Mozambique
Namibia
Niger
Nigeria
North Macedo-

nia
Oman
Qatar
Reunion
Romania
Russia
Rwanda
Saudi Arabia
Senegal
Serbia
Slovenia
South Africa
Tanzania
Togo
Turkey
Uganda
Ukraine
United Arab 

Emirates
Yemen
Zambia
Zimbabwe

Antigua and 
Barbuda

Aruba
Barbados
Belize
Canada
Cape Verde
Colombia
Costa Rica
Dominican 

Republic
Ecuador
El Salvador
Guatemala
Haiti
Honduras
Jamaica
Mexico
Nicaragua
Panama
Peru
Puerto Rico
Trinidad and 

Tobago
United States
Venezuela

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia US
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hamp-

shire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

Argentina
Bolivia
Brazil
Chile
Paraguay
Uruguay

Austria
Belgium
Czechia
Denmark
Estonia
Finland
France
Germany
Hungary
Ireland
Italy
Latvia
Liechtenstein
Lithuania
Luxembourg
Netherlands
Norway
Poland
Portugal
Slovakia
Spain
Sweden
Switzerland
United King-

dom
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Table 6  Covid-19 Lockdown’s Taxonomy based on three economy-related types of activities in 2020 
(1. groceries & pharmacies 2. retail & recreation areas 3. workplaces)

Lockdown type Key features Representative case

Cyclic type lockdown Intense few-day long lockdown 
reoccurring every second or third 
month with more than four in a year

Argentina: (Fig. 10)

(Several) Distinct type lockdown Less than four few-day long 
lockdowns (randomly distributed 
except spring and autumn win-
dows) with more than two in a year

Australia: (Fig. 11)

Gradual return to full activity Single intense spring time lockdown 
with very slow recovery pattern 
throughout the entire year

Bangladesh: (Fig. 12)

Main lockdown followed by selective 
workplaces reduction

All types of activity lockdown 
followed by second selective lock-
down with reduction only in the 
workplaces

Cameroon: (Fig. 13)

Minimal but steady reduction of 
activity

Except initial spring time, a more 
intense reduction lockdown limited 
mainly to workplaces with reduced 
activity throughout the year with 
mediocre intensity between 20 
and 30% (compared to normal) 
and an additional selective autumn 
lockdown for retail and recreational 
areas

Germany: (Fig. 14) Spain: (Fig. 15)

Retail and Recreation type lockdown Big focus on intense reduction of 
activity in retail and recreational 
areas. Workplaces lockdown limited 
throughout the year with significant 
reduction only in the main spring 
time lockdown. Groceries and phar-
macies activity normal or even high, 
except spring time total lockdown

India: (Fig. 16)

Two main lockdowns with additional 
short drop in activity

Two main lockdowns (spring and 
autumn) with additional shorter 
randomly distributed third lock-
down

Israel: (Fig. 17)
Turkey: (Fig. 18)

Two main lockdowns with summer 
work activity decrease

Two main lockdown (spring and 
autumn) with additional shorter 
workplaces activity reduction in the 
summer. It is combined with extra 
activity in retail and recreational 
areas as well as groceries and 
pharmacies

Italy: (Fig. 19)
Poland: (Fig. 20)

Single intense lockdown Single intense spring time lockdown 
with almost normal activity in the 
rest of the year except one or two 
outliers which last for only few days 
(NZ accomplished total eradication 
of the virus)

Mauritius: (Fig. 21)
New Zealand: (Fig. 22)

Two intense lockdowns Two very intense lockdowns (spring 
and autumn) of comparable dura-
tion and intensity

Myanmar: (Fig. 23)

Summer time lockdown Second lockdown is in the middle 
of the year, with overall intensity 
higher than in the initial spring time 
lockdown

Norway: (Fig. 24)
Sweden: (Fig. 25)

Full year intense lockdown Full year very intense lockdown with 
comparable intensity throughout 
the year except spring time total 
lockdown

Philippines: (Fig. 26)
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Table 6  (continued)

Lockdown type Key features Representative case

Second half of the year lockdown Main lockdown in the second half 
of the year (usually autumn) with 
additional minimal lockdown in the 
spring

Tanzania: (Fig. 27)

Full year lockdown with medium 
intensity

Spring time total lockdown with 
additional workplaces activity 
reduction throughout the year and 
medium intensity of between 35 
and 40% (compared to normal) 
with additional full year minimal 
reduction of activity for retail and 
recreational areas

USA: (Fig. 28)
Russia: (Fig. 29)

Medium intensity lockdown with 
unusual workplaces activity increase

Spring time total lockdown with 
additional selective reduction 
of activity for retail and recrea-
tional areas throughout the year. 
Workplaces activity increased in 
weeks prior to main lockdown and 
higher than normal in the following 
months (with normal activity in 
the rest of the year). This unusual 
activity pattern can be found only 
in one country or state (out of those 
analyzed by Google): Vietnam

Vietnam: (Fig. 30)

Fig. 10  Cyclic type lockdown

Fig. 11  (Several) Distinct type lockdown
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Fig. 12  Trended gradual return to full activity

Fig. 13  Main lockdown followed by selective workplaces reduction

Fig. 14  Minimal but steady reduction of activity

Fig. 15  Minimal but steady reduction of activity
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Fig. 16  Retail and Recreation type lockdown

Fig. 17  Two main with additional short duration drop in activity

Fig. 18  Two main with additional short duration drop in activity

Fig. 19  Two main with summer work activity decrease
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Fig. 20  Two main with summer work activity decrease

Fig. 21  Single intense lockdown

Fig. 22  Single intense lockdown

Fig. 23  Two intense lockdowns
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Fig. 24  Summer time lockdown

Fig. 25  Summer time lockdown

Fig. 26  Full year intense lockdown

Fig. 27  Second half of the year lockdown
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