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Abstract 

Background:  New dipeptidyl peptidase-4 (DPP-4) inhibitors need to be developed to 
be used as agents with low adverse effects for the treatment of type 2 diabetes mel-
litus. This study aims to build quantitative structure-activity relationship (QSAR) models 
using the artificial intelligence paradigm. Rotation Forest and Deep Neural Network 
(DNN) are used to predict QSAR models. We compared principal component analysis 
(PCA) with sparse PCA (SPCA) as methods for transforming Rotation Forest. K-modes 
clustering with Levenshtein distance was used for the selection method of molecules, 
and CatBoost was used for the feature selection method.

Results:  The amount of the DPP-4 inhibitor molecules resulting from the selection 
process of molecules using K-Modes clustering algorithm is 1020 with logP range 
value of -1.6693 to 4.99044. Several fingerprint methods such as extended connectivity 
fingerprint and functional class fingerprint with diameters of 4 and 6 were used to con-
struct four fingerprint datasets, ECFP_4, ECFP_6, FCFP_4, and FCFP_6. There are 1024 
features from the four fingerprint datasets that are then selected using the CatBoost 
method. CatBoost can represent QSAR models with good performance for machine 
learning and deep learning methods respectively with evaluation metrics, such as 
Sensitivity, Specificity, Accuracy, and Matthew’s correlation coefficient, all valued above 
70% with a feature importance level of 60%, 70%, 80%, and 90%.

Conclusion:  The K-modes clustering algorithm can produce a representative subset of 
DPP-4 inhibitor molecules. Feature selection in the fingerprint dataset using CatBoost 
is best used before making QSAR Classification and QSAR Regression models. QSAR 
Classification using Machine Learning and QSAR Classification using Deep Learning, 
each of which has an accuracy of above 70%. The QSAR RFC-PCA and QSAR RFR-PCA 
models performed better than QSAR RFC-SPCA and QSAR RFR-SPCA models because 
QSAR RFC-PCA and QSAR RFR-PCA models have more effective time than the QSAR 
RFC-SPCA and QSAR RFR-SPCA models.
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Background
Type 2 diabetes is one of the fastest-growing chronic diseases due to decreased insu-
lin function and insulin secretion [1]. Recent treatment for type 2 diabetes mellitus has 
been developed to increase the effect of incretin, which can improve insulin function 
and secretion. DPP-4 inhibitors are drugs that work as agents that inhibit the dipeptidyl 
peptidase-4 enzyme, which can increase the effects of incretin [2]. However, the regis-
tered DPP-4 inhibitor drugs have adverse side effects, such as upper respiratory tract 
infections, pancreatitis, and risk of heart failure, if taken for a long time. Therefore, 
development of new DPP-4 inhibitors is needed.

In-silico methods apply the use of computers as a tool in drug discovery that can per-
form cost-efficiently compared to conventional methods, which are known to be time-
consuming and high cost [3]. They offer simulations and calculations that can rationally 
reduce the number of proposed compounds and assist in studying drug interactions 
with targets to the toxic properties of compounds and their metabolites [4]. QSAR is the 
ligand-based virtual screening method that studies the relationship between the chemi-
cal structures and biological activities of the molecules that can be calculated to derive a 
model or equation that can be used to predict the activity of a compound [4–6].

Several studies have performed QSAR against DPP-4 inhibitors. [2] developed QSAR 
using naïve Bayesian and recursive partitioning approaches to predict new DPP-4 inhibi-
tors using thousands of available DPP-4 inhibitor molecule data. Hermansyah (2019) 
developed the QSAR method using XGBoost, Random Forest, Support Vector Machine, 
Multiple Linear Regression, and Deep Learning techniques to find a new DPP-4 inhibi-
tor hit compound. These studies have relatively high predictive accuracy, which is above 
80%. However, both studies still carried out a random selection method of molecules in 
the data partitioning stage. According to Andrada et al. (2015) [7], a random selection 
of molecules can lead to a mismatch because all members of the validation data may be 
members of the same group, thereby resulting in a molecular set that is not representa-
tive of the real data. Thus, a method is needed that can produce a representative data set 
in the data partition stage [2, 7, 8].

The problems in QSAR, in general, include the problem of transforming molecules 
into feature vectors that can be used as input data (feature extraction) and building a 
high-performance QSAR model. Rational selection of molecules in the data prepara-
tion stage of QSAR modelling is believed to affect the performance improvement of the 
QSAR model compared to random molecular selection. One method that can be used 
to select a subset of molecules rationally is clustering [7, 9]. Molecules can be uniquely 
identified from chemical databases by molecular descriptors [10]. Molecular descrip-
tors are derived by several algorithms that describe specific aspects of a compound 
[11]. Molecular descriptors of compound molecules can be extracted from the Simpli-
fied Molecular Input Line Entry System (SMILES) format into a molecular fingerprint. 
SMILES is a general method that facilitates the representation and manipulation of 
molecular structures using computers with text strings and symbols, such as for single 
bonds, f  or double bonds, and # for triple bonds [9, 12, 13].

A fingerprint is a numerical representation concept of a particular structure or feature 
of a molecule that combines the presence or absence of different molecular substruc-
tures in a molecule into one molecular descriptor. Fingerprints can be classified into 
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non-hashed and hashed. A non-hashed fingerprint, also known as a structural key, is 
based on a predefined substructure dictionary, so there is a unique mapping between the 
position of the bit vector and a particular substructure. A hashed fingerprint is defined 
as a method that generates substructure set for a molecule that is converted into a fixed-
length vector of bits. Molecular fingerprint data in the form of vectors containing bit 
strings with the numbers 0 or 1 can be considered as data with categorical features 
because they state the presence or absence of a particular molecular substructure in the 
fingerprint pattern of a molecule [11, 14]. In this research, the extended circular finger-
print (ECFP) and functional class fingerprint (FCFP) methods were used with diameters 
4 and 6 [15], respectively, and a bit vector length of 1024, where the bit vector length 
represents the features of the data.

Clustering is a method that can be used to group or divide data by distance metrics 
that have been determined in high dimensional space. K-modes clustering is a cluster-
ing method that employs a similar procedure to K-means clustering. This method uses 
distance measures to handle categorical objects, replaces the average calculation method 
on the cluster with data mode, and uses frequency-based methods to update the data 
mode in the clustering process to minimise the clustering cost function [16]. Leven-
shtein distance is a distance method that can be used in the K-modes clustering as a 
dissimilarity function. It aims at measuring the similarity of two strings in the form of 
a sequence, where the order of the elements in one string is considered necessary using 
insertion, deletion, and substitution operations [17–19].

The artificial intelligence paradigm has been widely used to model QSAR, especially 
in the development of machine learning and deep learning methods. These methods 
have been successful in various applications of bioinformatics, including hypoxia detec-
tion in Cardiotocography (CTG) signals [20], prediction of protein interactions using 
amino acid sequences [21], biclustering method implementation on gene expression 
data of carcinoma tumour [22], protein interaction networks of schizophrenia’s risk fac-
tor candidate genes [23], and Ebola virus phylogenetic analysis [24]. Rotation Forest is 
a machine learning method that uses PCA in forming a rotation matrix to rotate data 
sets that are then compiled into a decision tree. DNN is a deep learning method con-
sisting of an input layer, several hidden layers, and an output layer. Several studies have 
been conducted to compare machine learning and deep learning methods in the drug 
discovery process. Similar performances of the two methods have been found with ran-
dom data selection, but different performances can occur when data selection is made 
rationally [7, 25, 26]. Feature selection is one of the important steps for processing and 
analysing machine learning methods effectively. This technique can reduce the number 
of features of data while maintaining the same or even better learning performance by 
selecting a feature subset [27]. Important features are often useful for studying the rela-
tive importance or contribution of each feature in predicting targets [28]. CatBoost is a 
gradient boosting algorithm developed by [29]. The benefit of using the gradient boost-
ing method is that it is relatively easy to determine the important score for each feature.

The analysis of the QSAR method is generally categorised into QSAR regression 
and QSAR classification [30]. The QSAR classification method is used to predict the 
active compound from the database, and then the QSAR regression method is used to 
study the activity value [30. This study aims to build QSAR models using an artificial 
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intelligence paradigm, especially for the QSAR classification and regression models, to 
design a new DPP-4 inhibitor candidate for the treatment of type 2 diabetes. Machine 
learning and deep learning methods are used, including the Rotation Forest and DNN 
methods, respectively, where in the machine learning methods we compared PCA with 
sparse PCA (SPCA) as transformation methods in the framework of Rotation Forest. The 
K-modes clustering with Levenshtein distance method was used for the DPP-4 inhibitor 
molecular selection method and CatBoost was used for the feature selection method.

There are several novelties in this research. The first novelty in this study is the use of 
the K-modes clustering method using Levenshtein distance. The clustering analysis was 
carried on DPP-4 inhibitors through the fingerprints obtained by the ECFP and FCFP 
methods. The determination of the number of clusters in the K-modes clustering algo-
rithm was evaluated by applying the Silhouette Coefficient method. Selection of DPP-4 
inhibitor molecules was carried out based on the clustering results by taking one mol-
ecule from each cluster with the lowest logP value that is less than five, according to 
Lipinski’s Rule of 5 [31]. The second novelty is the use of SPCA as a rotation matrix in the 
Rotation Forest method. The SPCA method is often used to perform dimensional reduc-
tion. In this study, SPCA was applied in the Rotation Forest method to transform feature 
data variables into new variables within an independent loading vector-matrix, in which 
all of the principal components (PCs) in the SPCA loading matrix were retained, to build 
QSAR models. CatBoost as a feature selection method for ECFP and FCFP fingerprint 
methods is a new thing in ligand-based virtual screening research. Therefore, this study 
will compare and analyse the performance of the QSAR model as a ligand-based virtual 
screening method with and without using the CatBoost feature selection method.

Methodology
The schematic representation of proposed methods is shown in Fig. 1.

Data source and acquisition

The data used in this study is 4661 DPP-4 inhibitor molecular data in the form of Canon-
ical SMILES which contains information on the molecular structure of the DPP-4 inhibi-
tor with the type of biological activity IC50. The data were obtained from https://www.
ebi.ac.uk/ site accessed in July 2019 through several stages, such as selecting the DPP-4 
inhibitor and then selecting the biological activity value of IC50. The IC50 values have 
been converted to molar units pIC50 (defined as log 10 IC50).

Data preprocessing

In the data preprocessing stage, there are three things that can be done, including data 
cleaning, data conversion, and feature extraction. The data were cleaned with the follow-
ing criteria: (1) only selecting human DPP-4 inhibitor; (2) only selecting DPP-4 enzyme; 
(3) select data with biological activity value IC50; (4) eliminating duplicate compounds. 
The IC50 value is in the interval of 0.1 to 98,000 nM. In this study, compounds that 
have a value between 50 and 500 nM are defined as grey compounds, so they need to be 
removed. Besides, compounds having an IC50 value below 50 nM are defined as active 
compounds and an IC50 value above 500 nM as inactive compounds.
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Several data cleaning steps, such as removing incomplete data rows in each column, 
reading Canonical SMILES columns with the OpenBabel library, removing duplicate 
molecular structures, and removing salt in the Canonical SMILES column using the 
RDKit Salt Stripper library, were executed using the KNIME software version 3.7, as 
shown in Fig. 2. KNIME nodes can do a wide set of functions for many different tasks 
such as read and write data files, data processing, statistical analysis, data mining, and 
graphical visualization. At KNIME there are RDKit and CDK nodes that are very com-
plete for cheminformatics applications, from reading data in various formats to convert-
ing molecules from 2D to 3D [32].

At the data conversion step, the data is converted from CSV to SDF format. The feature 
extraction process carried out is calculating the molecular descriptors using several fin-
gerprinting methods [11]. In this research, the RDKit packages which are implemented 
in the Python 3.6 programming language are used for the calculation of molecular 

Fig. 1  Schematic representation of purposed methods
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descriptors. The molecular fingerprints used are ECFP_4, ECFP_6, FCFP_4 and FCFP_6 
fingerprints. The bit length of the ECFP_4, ECFP_6, FCFP_4 and FCFP_6 fingerprints is 
1024 bits. The formation of the QSAR regression and QSAR classification models will 
divide the dataset into a training dataset by 80% and a test dataset by 20%. Then 80% of 
the training dataset will be randomly divided into k groups (folds). The number of folds 
used is five folds (k = 5).

Data clustering using K‑modes

K-modes clustering is a clustering method that has a similar procedure to K-means 
clustering by expanding the paradigm for grouping categorical data by making several 
modifications, such as using simple dissimilarity measures to handle categorical objects, 
replacing the average calculation method on the cluster with the data mode; and using 
frequency-based methods to update the data mode to solve problems in the K-means 
clustering algorithm [16]. The K-modes clustering algorithm used in this study is 
described as follows: 

1.	 Determine the number of clusters (k).
2.	 Determine the initial k mode for each cluster.
3.	 Calculate the distance between each data to the mode based on the dimension of dis-

similarity.
4.	 Group objects against the cluster in the closest mode.
5.	 After all objects have been grouped into k clusters, recalculate the dimensions of the 

dissimilarity with respect to the current mode.
6.	 If there are objects whose closest mode belongs to another cluster, group the objects 

against that cluster and update the mode of both clusters.
7.	 Repeat steps 3 through 6 until no objects have moved clusters after all data has been 

tested.

In this study, the determination of the number of clusters was carried out by calculating 
the cluster evaluation value using the Silhouette Coefficient method. Silhouette studies 
the separation distance between the clusters generated in the clustering process which 
aims to measure the closeness of each object in a cluster to objects in other clusters. 

Fig. 2  KNIME workflow for several data acquisition steps
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The Silhouette values range between − 1 and +1, with values close to +1 indicating the 
model with the best separation between clusters [33].

The metric used to measure distance, or a measure of dissimilarity, in the clustering 
algorithm in this study is the Levenshtein distance. There are three main parts in the 
Levenshtein distance calculation algorithm: initializing the distance matrix, calculating 
the distance matrix, and returning the value from the distance matrix with the largest 
value as a result of the Levenshtein distance. In this study, similarity strings were used in 
the grouping of DPP-4 inhibitor molecules through a comparison of bit vector strings, 
each of which contained a string of 0 or 1, from each molecule obtained based on the 
fingerprinting method, ECFP and FCFP [17–19].

Molecular selection

The selection of DPP-4 inhibitor molecules is made by taking one molecule from each 
cluster obtained from the results of clustering. Molecules are selected based on the low-
est logP value and ‘Lipinski’s Rule of 5’ rule, i.e. the logP value cannot be more than 5.

In this study, the calculation of the logP value was carried out based on the atomic-
based approach method, as proposed by Crippen and Wildman in the RDKit module 
(1999). In this proposed method, the logP value is given by adding up the contributions 
of each atom, as given in Eq. 1, where ni is the number of atoms of the ith atomic type 
and ai is the contribution coefficient of the ith atomic type [34–37].

Before calculating the logP value, the molecular column can be added or displayed on 
the dataset first. After the logP value is obtained for each molecule, the dataset is then 
sorted according to the logP value. In this study, selection of molecules was carried out 
based on the lowest logP value of the molecules from each cluster, so that one molecule 
from each cluster would be selected, which was obtained from the clustering process 
with the lowest logP value.

Feature selection

CatBoost is an implementation of gradient boosting, which uses a binary decision tree 
as a basic prediction. Two important things that were introduced by CatBoost were the 
implementation of ordered boosting, namely permutation-based alternatives to classic 
algorithms, and algorithms for processing categorical features [29]. CatBoost divides the 
dataset into random permutations and applies ordered boosting to the random permu-
tations. The advantage of using a gradient boosting decision tree is that it is relatively 
easy to take essential values for each attribute after the tree is built.

Using the CatBoost library in the Python programming language, prediction values 
change used to obtain essential features. For each feature, the prediction values change 
shows the average change in predictions if the feature values change-the more signifi-
cant the importance, the greater the average change to the predicted value. The leaf pairs 
being compared have split values in different nodes to the leaf path. If it meets the split-
ting criteria, the object goes to the tree’s left side; otherwise, it goes the other way. The 
following Eqs. 2 and 3 determines the significant feature value.

(1)logP = niai
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Deep learning

Deep learning is a sub-field of machine learning that uses ANN algorithms, which are 
inspired by the structure and function of the human brain. DNN is a deep learning 
method that has been used since 2012 by Dahl et al. in the ‘Merck Molecular Activity 
Challenge’ to predict biomolecular targets in one drug [38]. The basic neural network 
model can be described in M liner combination with input variables x1, . . . , xD as follows 
[39].

Data goes to zj neuron

where w(1)
ji  is denoted as the weight parameter and w(1)

j0  as the bias parameter.
Data out of zj neuron

Data goes to yk neuron

where w(2)
kj  is denoted as the weight parameter and w(2)

k0  as the bias parameter.
Data out of yk neuron

For binary classification problems, each activation unit is transformed using the sigmoid 
logistic function so that:

The overall neural network function becomes

The classification problem is mathematically formulated as an optimisation problem 
where the objective function or loss function is the cross-entropy between the target 
vector and the predicted results. Given the dataset set {xn, tn}N(i=1) , where x ∈ R

m is the 
input vector and tn is the target vector, cross-entropy is defined as [39]

(2)FI =
∑

trees,leafSF

(v1 − avr)2c1 + (v2 − avr)2c2

(3)avg =v1c1 + v2c2

c1 + c2

(4)aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0

, j = 1, . . .M,

(5)zj = h(aj)

(6)bk =
M∑

i=1

w
(2)
kj zj + w

(2)
k0

, j = 1, . . .M,

(7)yk = l(bk).

(8)σ(x) = 1

1+ exp(−x)

(9)yk(x,w) = l




M�

j=0

w
(2)
kj h

�
D�

i=0

w
(1)
ji xi + w

(1)
j0

�

+ w
(2)
k0
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Furthermore, the best training procedure is known as the backpropagation algorithm, 
which is implemented using stochastic gradient descent [40]. The idea of the back-
propagation algorithm is to fix errors from the output layer to the input layer with the 
chain rule. A simple approach to using gradient information is to select an update of the 
weights to form small steps towards a negative gradient, that is,

where the learning rate is used as a parameter to determine the speed of model learn-
ing process, w(τ+1) is denoted as the new weight parameter and w(τ ) the weight before 
updating. At this stage, we evaluate ∇E(x) = 0 , which is used to solve optimisation prob-
lems such as stochastic gradient descent iteratively. Deep neural network architecture in 
this study consists of an input layer, 3 hidden layers, and an output layer. In this study, 
the selection of 3 hidden layers was carried out based on the research of [41], where the 
hidden layers are chosen between 2 and 5, while [42] chose 4 hidden layers for the DNN 
model architecture. Other hyperparameters used in this study include initialization of 
weights with random values normally distributed, the activation function used in each 
hidden layer is RELU, and the sigmoid function in the output layer [42], Adam’s opti-
mizer is used as an optimization method in updating weights, using a dropout rate of 0.2 
on the input layer and 0.5 in the hidden layer [43], the batch size is chosen was 32. The 
epoch used in the learning model process was 30 by applying the early stopping tech-
nique. The architecture of the DNN model in this research is illustrated in Fig. 3.

Rotation forest

Let y = [y1, y2, . . . , yn]T be the set of class labels or response variables from the set 
w1,w2 . The decision tree in the ensemble is denoted by D1,D2, . . . ,DL and the set of 
independent variables in X is denoted by F. There are two parameters in this method: the 
number of decision trees denoted by L, and the number of original variables separator 
denoted by K. These two parameters have an essential role in determining the success 
of the Rotation Forest method. The first step in this method is to choose the number of 

(10)L = −1

N

N∑

i=1

[tn ln(yn)+ (1− tn) ln(1− yn)].

(11)w(τ+1) = w(τ ) − η∇E(w(τ )),

Fig. 3  DNN model architecture
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decision trees (L) used. Then, based on [44] to build each decision tree Di for i = 1, . . . , L 
will be determined by the following steps: 

1	 Randomly divide the set of independent variables F into K subsets. To increase the 
probability of high diversity in each tree, select disjoint subset so that each subset of 
feature contains M = p/K  features.

2	 Let F(i, j) be the j-th feature subset for the training dataset Di . Note Xi,j as a data set 
with the variable set Fi,j , where j = 1, 2, 3, . . . ,K  . Randomly select a nonempty class 
subset and draw a bootstrap object sample of 75% of the total observations where X∗

i,j 
is the bootstrapped data.

3	 Apply PCA analysis to X∗
(i,j) . Use all PC coefficients from PCA and save as 

a
(1)
i,j , a

(2)
i,j , . . . , a

Mj

i,j  into matrix C(i,j) of Mj × 1.
4	 Principal Component Analysis (PCA) analysis on X∗

i,j . Use all principal component 
coefficients from PCA and save as a(1)i,j , a

(2)
i,j , . . . , a

(Mj)

i,j  into matrix Ci,j of Mj × 1.
5	 Rearrange Ci,j into a rotation matrix Ri of p× p with the coefficients obtained.
6	 Rearrange the columns of the matrix Ri so that they correspond to the original vari-

able subset F to construct the Di tree. Then, state the rotational matrix composed of 
Ra
i .

7	 Use XRa
i  as the training data cluster to build the Di decision tree.

8	 Estimate in each D the number of L trees followed by calculating the majority voting.

This research will use the Rotation Forest classification (PCA), which is developed using 
an algorithm that is under the Rotation Forest algorithm proposed by Rodriguez et al. 
(2006) and the Rotation Forest regressor proposed by Zhang et al. (2008) [44, 45].

Rotation Forest models that use PCA for classification and regression algorithms are 
called QSAR RFC-PCA and QSAR RFR-PCA respectively. Meanwhile, for models that 
use SPCA, they are called QSAR RFC-SPCA and QSAR RFR-SPCA. The differences 
between models that use PCA and SPCA is in the third step of Rotation Forest algo-
rithm, in which SPCA analysis on X∗

i,j is performed, and all the main component coef-
ficients of the sparse loading are used.

QSAR model building

The main focus on this current work is to implement efficient modeling and well-defined 
models of QSAR. To accomplish this objective, it was necessary to solve two challeng-
ing issues in QSAR modelling. The first one is to carry out rational molecular selection 
to obtain a representative molecular subset and molecular descriptor selection to pre-
dict inhibitory concentration of DPP-4 inhibitor molecules. The second one is to make a 
modeling workflow as model validation, so that the result can be unbiasedly evaluated. 
A schematic of QSAR modeling workflow is shown in Fig. 1. This workflow starts with 
DPP-4 inhibitor molecules data acquisition and data preprocessing. After this step, the 
feature selection is carried out to identify an optimized non redundant descriptor that 
can lead to best models. Finally, when the descriptors are determined, it can be used to 
develop the QSAR Classification and QSAR Regression models. The QSAR Classifica-
tion model building was executed using the Rotation Forest Classifier and DNN algo-
rithms. QSAR Classification with the Rotation Forest Classifier algorithm uses 2 types of 
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matrix rotation methods, namely PCA and SPCA. Each of these models is called QSAR 
RFC-PCA and QSAR RFC-SPCA. Meanwhile, QSAR Classification with the DNN algo-
rithm is called QSAR DNN. The QSAR Regression model building was executed using 
the Rotation Forest Regressor algorithm. QSAR Regression with the Rotation Forest 
Regressor algorithm also uses PCA and SPCA as the rotation matrix methods. Each of 
these models is called QSAR RFR-PCA and QSAR RFR-SPCA.

Evaluation

To determine the QSAR classification model, a confusion matrix that is used to indicate 
the number of observations was predicted correctly or not is required [46]. There are 
four parameters in this method, namely the true positive, false positive, false negative, 
and true negative.

Based on these parameters, the classification model evaluation metrics can calculate 
performance evaluation; such as Sensitivity, Specificity, Accuracy, and Matthews corre-
lation coefficient (MCC), as explained as follows.

To assess the performance of the QSAR regression model obtained, the coefficient of 
determination R2 of root mean square error (RMSE) can be used. This criterion is deter-
mined using the formulas (15) and (16).

Results
Molecular selection result

Clustering procedure is used to assist in the molecular selection process. Meanwhile, 
The K-modes clustering algorithm is used to classify DPP-4 inhibitor compounds 
based on molecular fingerprints that can help the process of selecting molecules 
rationally. Levenshtein distance, which is used as a measure of dissimilarity in the 
K-modes clustering algorithm, is used to measure the closeness or similarity of the 

(12)sensitivity = TP

TP + FN
,

(13)specificity = TN

TN + FP
,

(14)accuracy = TP + TN

TP + FP + FN + TN
,

(15)MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

.

(16)

√∑
(Yi − Ŷi)2

n

(17)1−
∑

(Yi − Ŷi)
2

∑
(Yi − Ȳ )2

.
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DPP-4 inhibitor compound’s molecules through a string comparison of molecular bit 
fingerprint vectors. The process of selecting DPP-4 inhibitor molecules was carried 
out based on the logP value criterion in the Lipinski rule after obtaining the results of 
grouping the DPP-4 inhibitor molecules in the clustering process using the K-modes 
clustering algorithm with Levenshtein distance.

Based on the results of grouping four datasets of molecular fingerprint for DPP-4 
inhibitor compounds with the ECFP and FCFP methods, namely ECFP_4, ECFP_6, 
FCFP_4, and FCFP_6, the number of clusters from each dataset were obtained from 
the lowest being FCFP_4 = 1261, FCFP_6 = 1261, ECFP_4 = 1263, and ECFP_6 = 
1265. The FCFP_4 dataset obtained the highest silhouette coefficient value (0.2574).

Based on the calculation of the logP value for 2053 DPP-4 inhibitor molecules, the 
logP value was obtained in the range of −1.6693 to 4.99044, meaning that the logP 
value has met the criterion of Lipinski’s rule that the logP value of a compound mol-
ecule must be less than 5. All fingerprint datasets labelled for each cluster are sorted 
according to the lowest logP value. After all the datasets are sorted, one molecule 
with the lowest logP value is taken from each cluster in each fingerprint dataset. 1263 
molecules are obtained for the ECFP_4, 1265 for the ECFP_6, 1261 for the FCFP_4, 
and 1261 for the FCFP_6. Based on the selected molecules in all fingerprint datasets, 
1020 molecules of the same DPP-4 inhibitor compound were obtained from all data-
sets. Those representative molecules can be further used for QSAR modelling.

Features selection result

This section will explain the results of selecting features using the CatBoost method. 
In assigning a value to essential features, each feature extraction dataset is used as an 
input vector at the learning stage of the CatBoost method. In this study, the CatBoost 
model learning was performed on each feature extraction data using the Python pro-
gramming language with the CatBoost library. CatBoost models are generated, then 
there is an essential value in each feature. The feature that has the highest importance 
value indicates that it contributes the most in predicting the target. The performance 
results of the CatBoost model in predicting active and inactive compounds of DPP-4 
inhibitors are presented in Table 1.

Table  1 informs that the accuracy of the CatBoost model results is above 0.840. 
Besides, the CatBoost model also has a balanced value between sensitivity, specific-
ity, and MCC values. As a result, the recommended features as the essential features 
come from a good model. The following are the number of essential features for each 

Table 1  CatBoost model performance

Datasets Testing dataset

Sensitivity Specificity Accuracy MCC

ECFP_4 0.899 0.784 0.843 0.689

ECFP_6 0.912 0.848 0.882 0.763

FCFP_4 0.889 0.870 0.880 0.759

FCFP_6 0.908 0.817 0.863 0.729
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dataset, where the sum of the feature values qualifies the proportion values of 60%, 
70%, 80%, and 90%.

There are 1024 features from the feature extraction results that are then selected using 
the CatBoost method. Fig.  2 explains that from the four fingerprint datasets, FCFP_4 
received the least number of important features, by 55, with a proportion of 60%. In 
comparison, ECFP_4 received the most number of important features, by 280, with a 
ratio of 90%. Furthermore, these features will be used as input feature vectors to build 
the QSAR classification model using the Rotation Forest and DNN methods.

QSAR classification models using machine learning

This section will explain the QSAR model in the machine learning approach using the 
Rotation Forest method to predict DPP-4 inhibitors into active and inactive compounds 
with different numbers of features based on the results of feature selection in the Cat-
Boost method using a proportion of feature importance value of 60%, 70%, 80%, and 90% 
and without doing performing feature selection (100% feature importance). The QSAR 
classification model building using the machine learning approach is called QSAR-
RFC(PCA) and QSAR-RFC(SPCA). Furthermore, it will be observed whether using 
some of the features in the feature extraction dataset results in an increase or decrease 
in the performance of the Rotation Forest model. The performance results of the QSAR-
RFC(PCA) and QSAR-RFC(SPCA) models by selecting or not selecting features using 
the CatBoost method are presented in Figs. 5 and 6, respectively.

The feature selection with a proportion of 60% increased the MCC value in the fea-
ture extraction datasets ECFP_4, ECFP_6 and FCFP_6. Still, it did not increase the MCC 
value in the FCFP_4 feature extraction dataset, because there was a difference in the 
decrease in the performance of the MCC value by 0.018 in the QSAR-RFC(PCA) mod-
els. On the other hand, in the QSAR-RFC(SPCA) model, the MCC value increased in the 
feature extraction dataset of ECFP_4, ECFP_6, FCFP_4 and FCFP_6. Thus, to predict the 
DPP-4 inhibitors into active or inactive compounds using the QSAR-RFC(PCA) model 
combined with the FCFP_4 feature extraction, it is better to use all of the features to get 
a good model.

QSAR classification models using deep learning

This section will explain the QSAR model in the deep learning approach using the DNN 
method to predict DPP-4 inhibitors into active and inactive compounds with different 
numbers of features based on the results of feature selection in the CatBoost method 
utilising a proportion of feature importance value of 60%, 70%, 80%, and 90% and with-
out making feature selection (100% feature importance). QSAR classification model 
building using a deep learning approach is called QSAR-DNN. Furthermore, it will be 
observed whether using some of the features in the feature extraction dataset results in 
an increase or decrease of the performance of the DNN model. The performance results 
of the QSAR-DNN by selecting or not feature using the CatBoost method are presented 
in Figs. 5 and 7 .

The feature selection with a proportion of 60%, 70%, 80% and 90% increased the 
MCC value in the feature extraction dataset using QSAR-DNN models. For example, 
Fig. 4 shows that only by selecting features with a proportion of 60% in the ECFP_4 
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feature extraction, the QSAR-DNN can obtain an MCC value of 0.766; this is better 
than using all the features where the MCC value is 0.704. There are several features 
in the feature extraction of ECFP and FCFP that do not represent the molecular 
structure of the DPP-4 inhibitor properly, so these features need to be removed. The 
best QSAR-DNN in this study is the DNN model combined with ECFP_4 as a fea-
ture extraction method with a feature selection proportion of 90%. This model has 
sensitivity, specificity, accuracy and MCC values of 0.905, 0.903, 0.904 and 0.807, 
respectively.

Fig. 4  The number of important features

Fig. 5  QSAR-RFC(PCA) model

Fig. 6  QSAR-RFC(SPCA) model
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Comparison of the QSAR classification model using machine learning and deep learning 

approach

The machine learning and deep learning methods used in this study are expected to pre-
dict each DPP-4 inhibitor molecular structure, whether it is an active or inactive com-
pound. This section will compare the QSAR classification model using the machine 
learning approach, namely the QSAR-RFC(PCA) and QSAR-RFC(SPCA), with the 
QSAR classification model using deep learning approach, namely, QSAR-DNN. Based 
on the results obtained in this study, the QSAR model in the machine learning approach, 
the QSAR-RFC(SPCA) model combined with the ECFP_6 feature extraction and using 
the feature important value proportion of 60% of the features obtained an MCC value 
of 0.824, which is the highest MCC value. Meanwhile, the values for sensitivity, specific-
ity and accuracy were 0.887, 0.938 and 0.911, respectively, and a running time of 11.622 
s. Furthermore, the QSAR model, in the deep learning approach, has the best model, 
namely the QSAR-DNN model combined with ECFP_4. This model obtained the high-
est MCC value of 0.807 on ECFP_4 with a feature selection proportion of 90%, with the 
sensitivity, specificity and accuracy values of the QSAR-DNN model being 0.905, 0.903 
and 0.904, respectively, and a running time of 2.046 s.

Balanced sensitivity, specificity and accuracy values are good criteria for a model 
[46], so that the model can distinguish between active and inactive compounds accu-
rately. The QSAR classification model using the machine learning and deep learn-
ing approaches has shown a balanced performance between sensitivity, specificity and 
accuracy values. In this study, the author will not only observe the balance of sensitivity, 
specificity and accuracy values but also use the MCC value to compare the best perfor-
mance of the QSAR classification model, because the MCC value is a more representa-
tive measurement metric when compared to accuracy [47]. The QSAR classification 
model using machine learning has the highest MCC value of 0.824, but its running time 
is longer than that of the DNN model.

QSAR regression

This section discusses the QSAR regression model using a Rotation Forest with a 
PCA rotation matrix and SPCA rotation matrix. This QSAR regression model uses 

Fig. 7  QSAR-DNN model performance
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598 active molecules, with the lowest activity value of the test molecule being 48.9 
nM (pIC50 = 7.31) and the highest 0.064 nM (pIC50 = 10.19). The machine learn-
ing approach using the Rotation Forest regression method will predict the value of 
DPP-4 inhibitor activity with several different features, based on the results of feature 
selection using the CatBoost Regressor method with the proportion of important fea-
ture values of 60%, 70%, 80%, and 90% and without making feature selection (100%). 
Furthermore, it will be observed whether using some of the features in the feature 
extraction dataset will increase or decrease the performance of the Rotation Forest 
regression model. In this study, the QSAR Rotation Forest regression model uses a 
PCA rotation matrix called QSAR-RFR(PCA), and the QSAR Rotation Forest regres-
sion model uses an SPCA rotation matrix called QSAR-RFR(SPCA). The performance 
results of the QSAR-RFR(PCA) model using the CatBoost feature selection method 
and without using the feature selection are presented in Tables 2, 3, 4 and 5.

Based on the simulation results, on the ECFP_4, ECFP_6, FCFP_4 and FCFP_6 
datasets, the optimum features for the QSAR-RFR(PCA) model are 90%, because they 
have an R2 value of 0.344, 0.345, 0.306 and 0.362 in each dataset. Meanwhile, without 
performing feature selection, the values for R2 are 0.313, 0.278, 0.19 and 0.125 for 
each dataset, which means that the R2 value is lower than the highest performance 
that can be achieved with the feature selection process. The performance results of 

Table 2  QSAR-RFR(PCA) simulation results on ECFP_4 dataset

Number of features R
2 value Running time

60% 0.317 1.33

70% 0.299 2.00

80% 0.286 2.89

90% 0.344 4.28

100% (without feature selection) 0.313 16.30

Table 3  QSAR-RFR(PCA) simulation results on ECFP_6 dataset

Number of features R
2 value Running time

60% 0.309 1.42

70% 0.3405 2.02

80% 0.334 2.95

90% 0.345 4.49

100% (without feature selection) 0.278 15.38

Table 4  QSAR-RFR(PCA) simulation results on FCFP_4 dataset

Number of features R
2 value Running time

60% 0.186 1.18

70% 0.297 1.56

80% 0.1422 2.42

90% 0.306 3.64

100% (without feature selection) 0.19 15.68
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the QSAR-RFR(SPCA) model using the CatBoost feature selection method and with-
out using the feature selection are presented in Tables 6, 7, 8 and 9.

Based on the simulation results, on the ECFP_4 and ECFP_6 datasets, the optimum 
features for the QSAR-RFR (SPCA) model are 90%, because they have R2 values of 
0.366 and 0.408 in each dataset, respectively. In the FCFP_4 dataset, the optimum 
number of features for the QSAR-RFR(SPCA) model is 60%, because it has an R2 
value of 0.334.

In the FCFP_6 dataset, on the other hand, the optimum number of features for the 
QSAR-RFR (SPCA) model is 70%, because it has an R2 value of 0.353. Meanwhile, 

Table 5  QSAR-RFR(PCA) simulation results on FCFP_6 dataset

Number of features R
2 value Running time

60% 0.311 1.03

70% 0.353 1.47

80% 0.307 2.28

90% 0.362 3.61

100% (without feature selection) 0.125 13.75

Table 6  QSAR-RFR(SPCA) simulation results on ECFP_4 dataset

Number of features R
2 value Running time

60% 0.352 10.84

70% 0.299 14.74

80% 0.285 22.15

90% 0.366 32.11

100% (without feature selection) 0.303 81.61

Table 7  QSAR-RFR(SPCA) simulation results on ECFP_6 dataset

Number of features R
2 value Running time

60% 0.321 12.87

70% 0.384 17.02

80% 0.231 22.87

90% 0.408 33.1

100% (without feature selection) 0.233 87.61

Table 8  QSAR-RFR(SPCA) simulation results on FCFP_4 dataset

Number of features R
2 value Running time

60% 0.334 8.29

70% 0.271 12.13

80% 0.245 17.44

90% 0.272 24.49

100% (without feature selection) 0.174 80.27
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without performing feature selection, the values for R2 are 0.303,0.233, 0.174 and 
0.273 for each datasets ECFP_4, ECFP_6, FCFP_4 and FCFP_6, meaning that the R2 
value is lower than the highest performance that can be achieved with the feature 
selection process.

Figs.  8 and 9 explain that the more features used, the longer the computation time 
required. From this, it can be observed that the importance of the feature selection pro-
cess increases the value of R2 and reduces the computation time in the QSAR-RFR(PCA) 
and QSAR-RFR(SPCA) models.

Conclusions
New dipeptidyl peptidase-4 (DPP-4) inhibitors need to be developed to be used 
as agents with low adverse effects for the treatment of type 2 diabetes mellitus. 
This study aims to build QSAR classification and regression models using machine 

Table 9  QSAR-RFR(SPCA) simulation results on FCFP_6 dataset

Number of features R
2 value Running time

60% 0.299 10.66

70% 0.353 13.56

80% 0.301 19.57

90% 0.303 28.32

100% (without feature selection) 0.273 81.75

Fig. 8  Running time for QSAR-RFR(PCA)

Fig. 9  Running time for QSAR-RFR(SPCA)
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learning and deep learning algorithms. A representative subset of DPP-4 inhibitor 
molecules was resulted by applying the K-modes clustering algorithm with Leven-
shtein distance in the clustering process and analysing the selection of DPP-4 inhibi-
tor molecules based on the logP value criteria of Lipinski’s Rule of 5. Two thousand 
and fifty-three DPP-4 inhibitor molecules were obtained from the ChEMBL website. 
Clustering was carried out on the molecular fingerprint of DPP-4 inhibitors obtained 
from the SMILES feature. Several methods, such as ECFP diameter 4 and 6 and FCFP 
diameter 4 and 6, were used to construct four fingerprint datasets. From the selection 
process of molecules, 1020 representative DPP-4 inhibitor molecules are produced.

Before constructing the QSAR classification and regression model, feature selection 
was carried out using CatBoost. The results of feature selection using CatBoost are 
proven can improve the performance of the QSAR model, which requires a running 
time that is not too long. It is indicated by the results of the performance of QSAR-
RFC, QSAR-RFR, and QSAR-DNN that have improved compared to using all fea-
tures. The QSAR-RFC(PCA) method performed best in terms of predicting active and 
inactive DPP-4 inhibitors using ECFP_4, with an accuracy, sensitivity, specificity and 
MCC of 0.902, 0.914, 0.887 and 0.802, respectively, at 90% features with a running 
time of 4.307 s. The QSAR-RFC(SPCA) model using ECFP_6 has good performance, 
obtaining the corresponding values of 0.911, 0.887, 0.938 and 0.824, respectively, at 
60% features with a running time of 11.622 s. The best QSAR-DNN model perfor-
mance using ECFP_4 resulted in accuracy, sensitivity, specificity and MCC of 0.904, 
0.905, 0.903 and 0.807, respectively, at 60% features with a running time of 2.046 s.

From these observations, the PCA rotation matrix’s use to predict the activity value 
of the DPP-4 inhibitor IC50 is good enough. Based on the explanation above, in the 
QSAR regression model, the use of the PCA rotation matrix on the rotation Rota-
tion Forest method obtains a more efficient computation time than modifying the 
rotation matrix with SPCA. The ECFP_4 dataset of the QSAR-RFR(PCA) model was 
able to get an R2 value of 0.344 with a computation time of 4.28 s, while the QSAR-
RFR(SPCA) model obtained an R2 value of 0.366 with a computation time of 32.11 s. 
It explains why the SPCA rotation matrix increases the R2 value by 0.022 but requires 
a very long computation time.
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