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Introduction
For a past few decades, a DL has obtained boundless victory in several safety–critical 
applications like speech recognition, image processing, and board games [1]. The DNN-
based software could still have faults like traditional software, in spite of taking attained 
maximum testing accuracy as established by combative assaults. Specifically for those 
useful in mission and safety–critical situations, the significance of superiority and safety 
assurance of DL starts to draw attention [2]. In the DL system, the main leading concept 
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is to examine the reason for vulnerability by the way of creating adversarial test sam-
ples for the video and image-based DL schemes. Such sensibly erudite pixel-level dis-
quiets invisible to the human eyes which can reason the DL-based taxonomy structure 
to outcome entirely erroneous choices along with high confidence [3]. Nowadays, the 
different study has been devoted to constructing the robust assailants as the beginning 
of adversarial assaults on the DL schemes. As a result, superior defense mechanisms are 
required in DL structures in contrast to adversarial assaults. In the current investiga-
tion, the numerous methods to train a large amount of robust DL structure and to invali-
date the adversarial assaults [4]. The investigation in both empires creates a good circle 
and illuminations a trajectory for the construction of more common and vigorous DL 
structures.

The exhaustive coverage analysis has a tractable solution because the traditional pro-
grams are deterministic [5]. The normal methods for model testing are used to collect 
practical test information but the DNNs are data-driven. Such datasets are considered 
as costly and time-consuming process because they are labeled manually in a crowd-
sourced manner. Besides, the different DNNs classification boundaries are differ-
ent according to their complication remark the statistics in a different way [6]. Hence, 
based on the model intricacy and the architecture details, the test data generation, and 
input data space are explored. Else, the structure may not be a true representation of 
practical application and the coverage of the model would be incomplete. In order to 
deliver shareholders with data about the quality of the services, software manufacturing 
be dependent on testing [7]. To measure the software at dissimilar levels, the investiga-
tion in the testing of software has stemmed in a wide-ranging of methods. The construc-
tion of a database is subjugated to produce test cases in white-box testing. In order to 
measure the extensiveness of a test collection, the encryption analysis criteria have been 
intended [8].

In software testing, the descriptive rules play a major role in choosing test input data. 
These rules have estimated  the functionality of an AUT (application under test). For 
instance, the instruction for an insurance application is that if the clients have more 
preceding insurance fraud principles and deadbolt locks that are not installed on their 
locations, that particular client will posture a maximum insurance risk [9]. Along with 
a maximum insurance record, a high amount of resources are included in the assurance 
premium for a consumer. By the immaculate record, it equals this rule as opposed to 
a consumer. However,  performing different computationally luxurious transactions is 
involved in the high-risk consumer record in contrast to a database [10]. For instance, 
the over-generalized rule demonstrates the concept. To make the efficient performance 
error illuminating test cases, the valuable descriptive rules frequently permit testers 
even though practical structures reveal much more complex behavior [11]. This intui-
tion directed the investigators to consider the different ways which industrialize the test-
ing role with intelligence in the optimization and test case assortment. By collecting the 
data about the software being investigated, the superiority assertion is maintained by 
the intellectual software testing actions. It points out the requirement for a search-based 
optimization procedure therefore the resources can be successfully employed [12].

The different test coverage criteria have been described with these test input genera-
tion procedures. In neuron coverage [13], conditions to detention exact neuron initiation 
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values to estimate the corner circumstances and a criterion which is stimulated by MC/
DC [14]. Generally, the input of a DNN is high dimensional that creates an arbitrary 
testing complex. Using the symbolic implementation, the quantity of the execution path 
is very large in DNN to be entirely enclosed due to the extensive usage of the ReLU acti-
vation function for hidden neurons [15]. From the DL output, the software quality is 
estimated which is artificial in the logic in which basic sympathetic of the DL interior 
neuron actions and system behaviors are not moved. A set of testing criteria is required 
according to the DL decision output to solve the above-mentioned drawbacks. The 
developed criteria will have to observe and measure the actions of neurons and essential 
system connectivity at different granularity stages.

The major contribution of the paper as follows

In this paper, the optimized DBN with SAR approach is introduced for the testing of 
coverage criteria. For enhancing the coverage accuracy, the proposed DBN with SAR 
is used. The lack of robustness and complexity in the DL process reduces the accu-
racy of software testing. In order to reduce this kind of complexity and robustness, the 
SAR algorithm is introduced in DBN for optimal weight calculation. This optimized 
DBN with SAR reduces the error function presented in a DBN and improves the accu-
racy of testing. The proposed DBN is tested for different criteria such as KMNC, NBC, 
SNAC, TKNC, and TKNP. The coverage accuracy for each criterion is enhanced for the 
proposed method. For the coverage testing, the three standard datasets like MNIST, 
CIFAR-10, and ImageNet are used. For analysis, the developed approach is compared 
with the three LeNet models like LeNet-1, LeNet-4, and LeNet-5 for the MNIST data-
set, the VGG-16, and ResNet-20 models for the CIFAR-10 dataset, and the VGG-19 and 
ResNet-50 models for the ImageNet dataset. These models are tested on four adversar-
ial test input generation methods like JSMA,BIM,FGSM, and CW, and one DL testing 
method like DeepGauge to validate the efficiency of the suggested approach. The results 
proved that the suggested approach provides goodoutcomes than other models.

The remaining of the paper is systematized as trails: “Related works” section provide 
the recent related works, the overall proposed methodology is explained in the third 
section which include the DBN structure with optimization approach and the different 
coverage criteria for testing of DL systems. Simulation results are describe in the fourth 
section. Finally, the conclusion and future scopes are discussed in the fifth section.

Related works
Recent related papers are listed below

For DL structures, a tomographic combinatorial testing (CT) was developed by Lei Ma 
et al. [16]. In classic software testing, CT was the most dominant and suitable method. 
CT concentrates on the interactions of input testing instead of deeply analyzing all the 
groupings of input space. The key objective was to lessen the dimension of the test suite 
by gaining satisfactory defect discovery capabilities. A set of CT criteria was discussed 
on DL structures and also presented the CT coverage-guided test generation approach. 
Simulation outcomes illustrations that CT offers a hopeful opportunity for DL struc-
tures testing.
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An important test coverage criteria were developed by Youcheng et al. [17] for DNN. 
A group of four new test coverage criteria was suggested which motivated by the MC/
DC coverage criterion. These are custom-made to operational features of DNN and their 
semantics. By means of indicating the test inputs, the criteria were authenticated which 
are created using the suggested criteria with the direction that are intelligent to confine-
ment undesired behaviors in a DNN. With the help of gradient-based heuristic and sym-
bolic methods, the test cases were built. The suggested criteria accomplish steadiness 
among their capability to discover bugs and the computational costs of the test input 
creation. The experiments were implemented using MNIST, ImageNet, and CIFAR-10 
datasets on the current DNNs.

For a structure of DNN, a coverage-guided fuzz testing scheme was presented by Xiao-
fei et al. [18]. To identify the faults of DNNs, a coverage-guided fuzz testing structure 
was presented. For creating the new semantically well-maintained tests, a metamorphic 
mutation approach was discussed. Further, to direct the test creation, a numerous exten-
sible coverage criterion was controlled as feedback. Moreover, a seed selection approach 
was discussed that merges the recency-based and diversity-based seed selection. In Dee-
pHunter, five current testing criteria and four seed selection approaches were executed. 
The simulation outcomes show that the metamorphic mutation approach was suitable 
for creating the novel legal tests as the unique speed with similar semantics. To enhance 
the coverage and identify the faults, the diversity-based seed selection approaches were 
commonly utilized than the recency-based method. As related to other methods, a Dee-
pHunter provides better outcomes in terms of quantity, coverage, and defects diversity 
discovered. The DeepHunter method was more helpful to capture imperfections in the 
course of DNN quantization for platform relocation.

For DL structures, a multi-granularity testing criterion was developed by Lei et  al. 
[19]. In this study, DeepGauge was presented for DL structures to execute a multi-fac-
eted depiction of the testbed. The detailed assessment of the suggested testing measures 
was validated using two datasets, five DL structures, and four existing adversarial attack 
approaches in contrast to DL. The prospective worth of proposedshelters on the addi-
tional common structures and effective DL structures. The suggested criteria enable the 
thoughtful of DNN and the quality of test information from various stages and angles. 
Usually, discovery imperfections could possibly allocate to the corner-case regions and 
major function regions of DNNs. The suggested criteria could cover the major region 
and the corner cases of the neurons for a specified set of inputs. Here, defects of DL 
could suffer.

For DL structures, a coverage guided differential adversarial testing was presented by 
Jianmin et  al. [20]. To direct the DL structures showing unfitting behaviors, this study 
presented a DLFuzz structure. The suggested method saves closely altering the input to 
enhance the coverage of neuron and the forecast variance among the mutated and the new 
input, without considering physical labeling effort from other structures with similar func-
tionality. To enhance the neuron coverage, numerous new approaches were presented for a 
selection of neurons. DLFuzz provides the unfitted behaviors and it was applied for retrain-
ing, thus enhance the models’ reliability. The suggested approach was validated using the 
two standard datasets and it was related to DeepXplore, the existing DL white-box test-
ing structure. For cross-referencing form, DLFuzz could not need any additional efforts 
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to discover identical functional DL structures. At last, DLFuzz methodology improves the 
accuracy of DL structure while utilizing these adversarial inputs to rehabilitate.

From the literature, existing DNN testing methods need extremely costly human exertion 
to offer accurate actions for a goal task. For compound and high-dimensional actual inputs, 
human beings, frequently have trouble in effectively executing a job properly for a huge 
database. No one of the current testing methods even attempts to shelter various instruc-
tions. Hence, the test ideas frequently flop to expose various invalid DNN behaviors. In this 
paper, an optimized DBN with SAR is introduced for the testing coverage criteria. The main 
gain of the suggested technique is to enhance the coverage accuracy for all the coverage 
criteria. DBN with SAR is introduced as the proposed scheme to test the different cover-
age criteria. Also, the proposed scheme measures the testing ability of the DBN structure. 
The proposed system obtained good accuracy performance on the test data.

Deep belief network architecture
The following symbols are utilized in order to the convenience of reading. Table 1 displays 
the symbols and its explanations.

Numerous layers of RBMs (restricted Boltzmann machines) and MLPs (multilayer per-
ceptron’s) are included in the DBN and it is a portion of DNN. The RBM model is shown in 

Table 1  Symbols and Descriptions

Symbols Descriptions

gh The amount of hidden units

gv The amount of visible units

W Simultaneous weights among hidden and visible units

L Simultaneous weights among visible and visible units

J Simultaneous weights among hidden and hidden units

v Visible unit

h Hidden unit

Wij Symmetric connection among hidden ( j  ) and visible ( i  ) unit

bj and ai Bias terms

Z Normalization constant

m Amount of training data samples

Xil i th unit of the l th data occasion

ε Learning rate

g(x) = 1/(1+ exp(−x)) Logistic sigmoid function

D Entire amount of data samples

Oe
z Expected output

Zez Predicted output

Mn Location of the n th stored clue

N = {n1, n2, ...} Set of neurons

T = {x1, x2, ...} Test inputs

Li Arrangement of neurons on the ith layer

Xi Preceding location

T Chosen features

X Weight

Lown Lower boundary output values for a neuron n

Highn Upper boundary output values for a neuron n
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Fig. 1. The visible and hidden units are included in the RBMs which are connected accord-
ing to the weighted links. The input, hidden and output layers are included in the MLPs and 
these are deliberated as the feed-forward networks [21]. The undirected graphical design is 
also called as the BM. The DBN connected with RBM structure is shown in Fig. 2.

Along with stochastic binary units, the Boltzmann machine is also termed as the concur-
rent system. The set of visible v ∈ {0, 1}gv and hidden h ∈ {0, 1}gh units are included in the 
system. Here, the amount of hidden and visible units are represented as gh and gv individu-
ally. In Boltzmann machine, the joint configuration 

{

v, h
}

 energy can be given as:

For the straightforwardness of performance, the bias is eliminated. The simultaneous 
weights among hidden and visible units are represented as W  . Also, the simultaneous 
weights among visible and visible units are denoted as L . Then the simultaneous weights 
among hidden and hidden units are denoted as J . But the crosswise values of L and J are 

(1)E(v, h) = −
1

2
vTLv −

1

2
hT Jh− vTWh

Hidden 
layer

Visible 
layer

W

Fig. 1  RBM model

Fig. 2  DBN with RBM
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zero. The complex concept and designs are involved in the Boltzmann machines. For this 
reason, the RBM model is utilized for straightforwardness. The popular RBM model is pre-
sented if J = 0 and L = 0 . In RBM, by the way of including bias, the mutual pattern 

{

v, h
}

 
energy can be specified as:

Here, the symmetric connection among hidden ( j ) and visible ( i ) unit is denoted as Wij . 
The bias terms are denoted as bj and ai individually. In hidden and visible units, a likelihood 
value is allocated by the network to all state based on the energy function. The product of 
possibilities are described as the joint distribution. Therefore, for the possible functions the 
sum of energy is accomplished by including the energies. For the hidden and visible units, 
the joint likelihood distribution can be given as:

Here, the normalization constant is denoted as Z which is accomplished by adding all 
probable pairs of hidden and visible vectors.

By the way of disregarding out hidden vector, the likelihood allocated to a visible vec-
tor by the system is accomplished.

By the way of altering the weights and biases, the likelihood of the system allocates to 
a training image which can be enhanced to the lower energy of that image [22]. Specifi-
cally, those images have less energy and the huge impact to the partition function is cre-
ated. By the subsequent objective function, the better value for every component can be 
estimated.

Here, the amount of training data samples are denoted as m . The major objective is 
to enhance the likelihood of training informations. Then the fractional derivate of the 
above-mentioned objective with regards to wij can be defined as:

Here, the ith unit of the lth data occasion is denoted as Xil . The sum on the right hand 
side is inflexible but the quantity on the left hand side can be estimated accurately. With 

(2)E(v, h) = −vTWh− aTv − bTh = −

gv
∑

i=1

gh
∑

j=1

Wijvihj −

gv
∑

i=1

aivi −

gh
∑

j=1

bjhj

(3)P(v, h) =
1

Z
exp (−E(v, h))

(4)Z =
∑

v

∑

h

exp (−E(v, h))

(5)P(v) =
∑

h

P(v, h) =
1

Z

∑

h

exp (−E(v, h))

(6)max imize{wij , ai , bj}
1

m

m
∑

l=1

log

(

∑

h

P
(

v(l), h(l)
)

)

(7)

∂

∂wij

(

1

m

m
∑

l=1

log

(

∑

h

P
(

v(l), h(l)
)

))

=
1

m

m
∑

l=1

∑

h

XilhjP(h |v = x)−
∑

v
′

∑

h
′

v
′

ih
′

jP
(

v
′

, h
′
)
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respect to the weight, the derivative for log likelihood of a training vector can be given 
as:

Here, to define the prospects, the angle brackets are employed under the distribution 
stated by the subscript. In the log likelihood of the training samples, this indications to a 
very simple learning instruction for executing stochastic sharpest gradient.

Here, the learning rate is denoted as ε . The learning rules of the bias components can 
be given as:

Subsequently there are no straight connection among hidden units in the RBM model. 
But these hidden units are autonomous for a specified visible units. The binary state hj 
of all hidden unit j is fixed to 1 for a specified arbitrarily designated training image v . Its 
likelihood can be given as:

Here, the logistic sigmoid function is denoted as g(x) = 1/(1+ exp(−x)) . But 
< vihj >data can be estimated simply. Meanwhile, there are no straight associates among 
visible units in an RBM. For a specified hidden vector, it is easy to compute the impartial 
model of the state for visible unit.

Even though, < vihj > mod el estimation is very complex. By executing consecutive 
Gibbs sampling for anextensive period and originating from several arbitrary state of 
visible units, it can be accomplished. At last, CD (contrastive divergence) is employed 
because of the unfeasibility of this technique and huge run-times. Several advantages are 
included in the RBM and it has been extensively applied in the current decades particu-
larly in DBNs. Figure 3 shows the training approach of DBN.

For high level RBM learning, the action values of its hidden units can be employed 
as the training data after the RBM has been learned. To obtain a numerous depiction 
of data, every RBM model is permitted in the sequence by the DBN. To fine tune the 
weights, the BP (back propagation) method can be utilized after pre-training in DBN. 
Pre-training supports simplification and to marginally alter the weights obtained 
through pre-training, the minimum amount of information in the data can be used.

(8)−
∂ log P(v)

∂wij
=< vihj >data − < vihj > mod el

(9)�wij = ε
(

< vihj >data − < vihj > mod el

)

(10)
�ai = ε(< vi >data − < vi > mod el)

�bj = ε
(

< hj >data − < hj > mod el

)

(11)P(hj = 1|v) = g

(

bj +
∑

i

viwij

)

(12)P(vi = 1|h) = g



ai +
�

j

hjwij




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Optimal weight updation of DBN using SAR

For the weight calculation, the SAR [23] algorithm is used in the DBN structure. The 
main objective of this work is to improve the coverage criterion for testing coverage of 
DBN structure. Using SAR, the optimal weights are accomplished in DBN. During the 
SAR operation, SAR is motivated by the explorations executed by humans. The locations 
of human is identical to the optimization issue solutions in SAR. For these solutions, the 
amount of clues are determined in these locations that denotes the impartial function. 
The DBN based SAR procedure of steps are presented below:

Initialization: In the arbitrary way, the DBN weights are initialized in the primary stage 
and it can be given as:

Here, the entire weights are denoted as α.
Error estimation: To determine the output, the weight X and the chosen features T  

are applied to the DBN. The error of output is computed by the quantity of squares of 
present output of the system and the output of training label for network training and it 
can be given as:

Here, the entire amount of data samples are denoted as D , the expected output is 
denoted as Oe

z at present location and the predicted output is denoted as Ze
z.

Weight updation: Using the SAR algorithm, the updated weight is computed. Based on 
the individual and social stages, the group members will search in every iteration. In an 
arbitrary location of the memory matrix (M), the preceding location (Xi) can be stored 
using Eq. (15) if the impartial function in location X ′

i (f (X
′

i )) is superior to the preceding 

(13)X =
{

X1, X2, ....., Xg , ....., Xα

}

; 1 < g ≤ α

(14)Erre+1 =
1

D

D
∑

z=1

[

Oe
z − Ze

z

]

Input

Output

Label

RBM

BP

Fine
Tuning

RBM

Fine
Tuning

Back
Propagation

Fig. 3  Training procedures of DBN
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one (f (Xi)) after each stage. Then using Eq. (16) this position can be acknowledged as a 
new location. Or else, this location is left and the remembrance is not upgraded.

Here, the location of the nth kept clue is denoted as Mn in the memory matrix, the 
arbitrary number is denoted as n in the range of [1, N]. The algorithm diversity can 
be improved by this kind of memory updating procedure. The algorithm capability to 
determine the global optimum.

The misplacedindividuals may be damaged and the interruption of SAR groups may 
yield in their deaths. For this reason, time is the most significant factor in SAR opera-
tions. In the minimum probable time, the biggest space is examined and by this way 
SAR operations must be accomplished. He/she leaves the present location and goes to 
an original location if a human cannot discover superior clues around his/her present 
location after a particular amount of hunts. For every human being, USN (unsuccess-
ful search number) is fixed to zero. If a humanoiddiscoveries superior clues in the 
initial and another stage of the hunt then the USN is 0 for that human or else, it can 
be improved by 1 point by the subsequent equation.

Here, the human i has not been capable to determine the superior clues in the num-
ber of times is denoted as USNi . In the hunt space, He/she drives to an arbitrary loca-
tion by the subsequent equation if the USN is superior to the maximum unsuccessful 
search number (MU) for a human and USNi is fixed to 0 for that human:

Here, the arbitrary number is denoted as r4 in the range of [0, 1]. For each dimension, 
this number is changed. Using Eq.  (18), the weight value is assigned to the network if 
the estimated error is lower than that estimated error for the earlier instance. Or else, 
the USN count is improved. The optimal weight is obtained with minimum error value. 
Hence, the solution with the least value of the fault is selected as the optimal weight.

Determination of feasible weights: At last, based on the SAR algorithm, the weight 
value is updated using Eq. (18) in DBN structure.

Stopping criterion: In the iterative way, the optimal weights are computed until the 
maximum iteration is found.

(15)Mn =

{

Xi, if f (X
′

i ) > f (Xi)

Mn, otherwise

(16)Xi =

{

X
′

i , if f (X
′

i ) > f (Xi)

Xi, otherwise

(17)USNi =

{

USNi + 1, if f (X
′

i ) < f (Xi)

0, otherwise

(18)Xi, j = Xmin
j + r4 ×

(

Xmax
j − Xmin

j

)

, j = 1, ...., D
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Coverage criteria for testing of DL structures

To estimate the software internal states, coverage criteria is used fortesting. By this, the 
input space is separated and the connection of an input and an estimated software inte-
rior state are constructed. As of a distinct input subspace, the test information’s is com-
pared. Here, the identical amount of test data from numerous input subspaces provide 
the higher decision to cover additional assorted software states [19]. It provides the max-
imum likelihood to perceive the additional assorted software defects. In this work, the 
test coverage criteria is used from different levels for DBN structure. The major objective 
is to measure the testing capability of DBNs and enable the discovery of those incorrect 
behaviours from numerous depictions. The test criteria should be modest and accessible 
in the industry level applications.Also it is enough to utilize for a high range of DBNs 
without keeping on particular DBN scheme. Theoretically, the DBNs behaviours can be 
distributed into groups such as corner-case behaviours and major function behaviours. 
These two behaviours includes incorrect behaviours. For the strategy of coverage crite-
ria, these factors are considered. Consider the set of neurons N = {n1, n2, ...} in DBN 
structure. Assume T = {x1, x2, ...} is the test inputs. In a specified test input x ∈ T  , 
ϕ(x, n) is employed to define a task that takings the neuron output n ∈ N  . l layers are 
included in the DBN structure. The arrangement of neurons on the ith layer (i ≤ i ≤ l) is 
denoted as Li.

Neuron‑level coverage criteria

The output values of neuron is employed at the neuron level which accomplished 
from the training to classify its behaviours. Using the training sample, the DBN inter-
nal structure is typically programmed. For every neuron of a DBN, more or less statis-
tical distribution is trailed by the output of neuron. Using the training informations, 
these scattering is mostly accomplished.From the training informationsinspection, 
the output scattering of a neuron is accomplished and it permit to properly classify 
the major function areas. Along with an identical numerical distribution, the input 
data is activate the output values to the training data. The output values for corner 
cases rarely happen. For all neuron, the exact output distribution would be computa-
tionally demanding for a practical-sized DBN. To estimate the corner case region and 
major function region, the neuron output values are controlled which obtained from 
the training data. The lower and upper boundary output values are denoted as lown 
and highn for a neuron n . From the training dataset analysis, these boundary values 
are obtained. The major function region is denoted as [ lown,highn ] for a neuron n.

Definition 1:  A DBN is mounted in its major function region for a test input x ∈ T  
that given x iff ∀n ∈ N : ϕ(x, n) ∈ [lown, highn].

The lower and upper boundary values are divided into k sections to completely 
cover the major function regions. Also using the test inputs each of them to be cov-
ered. This coverage is called as KMNC.

1.	 k-multisection Neuron Coverage (KMNC)
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	 The KMNC measures the specified arrangement of test inputs T  which shelters the 
range [ lown,highn ] for a specified n . For k > 0 , the range of [ lown,highn ] is distributed 
into k sections. For i ≤ i ≤ k , the set of values are denoted as Sni  in the ith section. 
The test input x is cover the ith section when ϕ(x, n) ∈ Sni  . The fraction of amount of 
segments sheltered by T  and the entire amount of segments is known as KMNC for 
T  and n . KMNC for a neuroncan be given as:

	 Also, KMNC of a DBN can be given as:

	 Here, two cases exists. One is ϕ(x, n) may localize out of the boundary output values 
that means ϕ(x, n) ∈ (−∞, lown) or ϕ(x, n) ∈

(

highn, +∞
)

 . Another one is corner 
case region for a neuron n that given (−∞, lown) ∪

(

highn, +∞
)

.
Definition 2:  A DBN is mounted in its corner-case region for a specified test input 
x ∈ T  that assumed x iff ∃n ∈ N : ϕ(x, n) ∈ (−∞, lown) ∪

(

highn, +∞
)

.

Two coverage criteria such as NBC and SNAC are utilized to cover the corner-case 
regions for a DBN structure. The resultant corner-case region is covered for a specified 
trial input if ϕ(x, n) be appropriate to (−∞, lown) or 

(

highn, +∞
)

 . The amount of shel-
tered corner-case areas are separated as trails:

2.	 Neuron boundary coverage (NBC)

	 For a particular arrangement of test input T  , several corner-case areas are protect-
edbased on the upper and lower border values which is defined by the NBC. The 
fraction of quantity of sheltered corner-cases and the entire amount of corner-cases 
(2× |N |) are called as NBC.

3.	 Strong neuron activation coverage (SNAC)
	 For a particular arrangement of test input T  , the quantity of corner-cases are covered 

based on the upper boundary values which is defined by the SNAC. The propor-
tion of the amount of protected upper-corner circumstancesand the entire amount 
of corner-cases (|N |) are called as SNAC.

(19)
∣

∣

{

Sni
∣

∣∃x ∈ T : ϕ(x, n) ∈ Sni
}∣

∣

k

(20)KMNCov(T , k) =

∑

n∈N

∣

∣

{

Sni
∣

∣∃x ∈ T : ϕ(x, n) ∈ Sni
}∣

∣

k × |N |

(21)
UpperCornerNeuron =

{

n ∈ N
∣

∣∃x ∈ T : ϕ(x, n) ∈ (highn, +∞)
}

LowerCornerNeuron =
{

n ∈ N
∣

∣∃x ∈ T : ϕ(x, n) ∈ (−∞, lown)
}

(22)NBCov(T ) =
|UpperCorne rNeuron| + |LowerCorne rNeuron|

2× |N |
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Layer‑level coverage criteria

To describe DBN behaviours, the top hyperactive neurons and their combinations are 
employed at layer level. The neurons n1 and n2 on the equivalent layer for a particular 
set of test input x . If ϕ(x, n1) > ϕ(x, n2) , n1 is more active for a specified x than n2 . To 
describe the neurons, topk(x, i) is employed for the ith layer. The neurons ensure the 
highest k outputs on that layer for a particular x.

1.	 Top-k neuron coverage (TKNC)

	 It gauges neurons which act as the maximum active k neurons in all layer. The frac-
tion of the entire amount of TKN on every layer and the entire amount of neurons in 
a DBN are called as TKNC.

	 The neurons play a major task which accomplished from the identical layer of DBN. 
To describe the foremost functionality of a DBN, top active neurons are significant 
factors which obtained from numerous layers. An additional top active neurons are 
uncovered by the test dataset to more systematically test a DBN.

2.	 Top-k neuron patterns (TKNP)
	 The arrangement of TKN makes a pattern on every layer for a specified arrangement 

of test input x . The amount of TKNP for the test input T  can be given as:

	 From the highesthyper neurons of all layer, the numerous types of activated situa-
tions are defined by the TKNP.

In this work, the coverage accuracy is obtained using the above-mentioned coverage 
criteria for the proposed approach. The proposed approach achieved more coverage’s on 
each criteria using the three famous standard datasets like CIFAR-10,MNIST,and Ima-
geNet. Accuracy only depends onhow many amounts of neurons covered for the pro-
posed approach. The proposed approach maximum amount of neurons are covered for 
each criteria. The proposed approach tested on 4 adversarial test inputs and one DL sys-
tem like DeepGauge. The coverage accuracy of the suggestedtechnique is equated with 
the different DNN models.

Simulation results and discussions
In this work, coverage criteria testing for the DBN with SAR algorithm is implemented 
on the Python 3.6 platform with Anaconda IDE. The implementation is processed on 
a windows machine using 3.20  GHz i3 CPU and 6G memory. For the testing of DBN 
structure, three well-standard datasets like MNIST, CIFAR-10and ImageNet are used. 

(23)SNACov(T ) =
|UpperCornerNeuron|

|N |

(24)TKNCov(T , k) =

∣

∣∪x∈T (∪1≤i≤l top(x, i))
∣

∣

|N |

(25)TKNPat(T , k) =
∣

∣

{

(topk(x, l), ...., topk(x, l))|x ∈ T
}∣

∣
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MNIST [24] a huge digital handwritten dataset obtained from https://​www.​kaggle.​
com/​oddra​tiona​le/​mnist-​in-​csv?​select=​mnist_​train.​csvwh​ich contains images (pix-
els 28 ∗ 28 ∗ 1) whose labels may range from 0 to 9. It contains totally 70,000 input data, 
among that 60,000 are utilized for training and 10,000 are utilized for testing. Another 
dataset is ImageNet [25] obtained from http://​image-​net.​org/​downl​oadwh​ich also con-
tains three-channel image with pixel size 224 ∗ 224 ∗ 3. It is a large dataset with 1000 
diverse types of images. For training purpose, more than 1 million images are used and 
for testing 50000 images are utilized.CIFAR-10 [26] is the most well-known dataset 
obtained from https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html. It is a collection of common 
classification images. This dataset contains 32 ∗ 32 ∗ 3 pixel three-channel images and ten 
various types of pictures. In this dataset, 50,000 training samples and 10,000 test samples 
are involved. As compared to the MNIST, classification of CIFAR-10 dataset is more dif-
ficult due to the largequantity of information and high complexity. Hence, two obtain 
the better performances, two pre-trained models like VGG-16 and ResNet-20 are used. 
To measure the ability of the proposed structure, 4 existing adversarial test examples[27] 
such as FGSM, BIM, JSMA, and CW and 1corresponding DL testing method like Deep-
Gauge [19] are considered for the comparative study.Five types of coverage criteria such 
as KMNC, NBC, SNAC, TKNC, and TKNP are used for the testing of DBN structure. 
For each datasets, coverage accuracy is accomplished using these coverage criteria’s.

In the MNIST dataset, all images are distinct channel of dimension 28 × 28 × 1. By the 
way of 60,000 training data, the DBN’s neuron output is accomplished using the runt-
ime profiling before starting the assessment process. Then 10,000 test data is execute 
to accomplish the equivalent analysis for DBN if assessment of testing originates. In 
this work, four existing adversarial test input schemes such as FGSM, BIM, JSMA, and 
CW and one DL testing scheme like Deep Gauge are employed for the testing of pro-
posed system. Each test input is combined with the MNIST dataset that permit us to 
activate the qualified study. Defect detection capability is enhanced by the adversarial 
test inputs. The adversarial test input approaches are model-dependent.For each neuron 
during profiling, the lower and upper bounds are indicated as l and u, respectively; and 
the standard deviation is represented as σ. Due to the large image size (224 × 224 × 3) 
and data size, the ImageNet is more challenging for evaluation. Furthermore, the DBNs 
that obtain maximum accuracy is frequently complex. The 5,000 images are utilized as 
the test data for assessment. In the ImageNet, the computational complexity is reduced 
by the arbitrary sample images in the adversarial test inputs.

The KMNC coverage accuracy for MNIST dataset is shown in Fig. 4a. The proposed 
method obtained the high coverage accuracy for KMNC coverage criteria. The 4 adver-
sarial test examples and one DL testing system were considered for the testing of the pro-
posed and other DNN models. For the MNIST dataset, the three different DNN models 
such as LeNet1, LeNet4 and LeNet5 are considered. Three different models has lowest 
accuracy than the proposed method. In the proposed scheme, SAR approach is used to 
select the optimal value of DBN. KMNC coverage obtained more coverage accuracy in 
the DBN structure. KMNC coverage accuracy for the proposed scheme is 81% which is 
maximum than other approaches. For each test method like DeepGauge, FGSM, BIM, 
JSMA and CW, the KMNC coverage accuracy for LeNet1 is 64%, 75%, 68%, 78% and 
73% individually. Also for LeNet4, the KMNC accuracy of existing methods such as 

https://www.kaggle.com/oddrationale/mnist-in-csv?select=mnist_train.csvwhich
https://www.kaggle.com/oddrationale/mnist-in-csv?select=mnist_train.csvwhich
http://image-net.org/downloadwhich
https://www.cs.toronto.edu/~kriz/cifar.html
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DeepGauge, FGSM, BIM, JSMA and CW is 70%, 75.5%, 74%, 78%, and 75% respectively. 
The KMNC accuracy for LeNet5 is 68%, 72%, 72%, 74% and 72% respectively. For the 
comparison of each model, the KMNC coverage improvement is minimum as compared 
to the proposed approach.For MNIST dataset, NBC coverage accuracy for the proposed 
and existing models is plotted as shown in Fig.  4b. The existing models are obtained 
low coverage accuracy for the NBC coverage than the proposed DBN approach. The 
proposed method obtained the highest (52%) coverage accuracy as compared to the 
all DNN models. In the existing methods, LeNet1 models obtained higher coverage 
than LiNet4 and LiNet5 models. SNAC coverage is improved in the proposed scheme 
using the MNIST dataset as shown in Fig. 4c. SNAC coverage improvement is 48% for 

Fig. 4  Coverage accuracy on MNIST dataset (a) KMNC, (b) NBC, (c) SNAC, (d) TKNC and (e) TKNP
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proposed DBN as compared to other DNN models such as LeNet1, LeNet4 and LeNet5 
on the FGSM, BIM, JSMA, CW and DeepGauge.For the MNIST dataset, TKNC and 
TKNP coverage criteria’s are obtained for the proposed DBN and the existing models as 
shown in Fig. 4d, e. In such cases, adversarial test data still trigger more neurons which 
detect the hidden defects. TKNC accuracy is maximum in the proposed DBN method 
which is 63% and also TKNP coverage is maximum as related to other DNN structure 
of LeNet1, LeNet4 and LeNet5. In the TKNP coverage, LeNet5 obtained the maximum 
coverage which is less as compared to the proposed and maximum than other LeNet4 
and LeNet1 models.

Fig. 5  Coverage accuracy on ImageNet dataset (a) KMNC, (b) NBC, (c) SNAC, (d) TKNC and (e) TKNP



Page 17 of 20Jammalamadaka and Parveen ﻿J Big Data            (2021) 8:59 	

While showing some differences, some similarity is shared by the testing coverage on 
the ImageNet along with MNIST data. ResNet-50 and VGG-19 models have high com-
plexity and large size, potentially provide the low coverage.For the ImageNet dataset, the 
coverage criteria of KMNC is accomplished for the proposed and existing methods as 
shown in Fig.  5a. The existing DNN models such as VGG19 and ResNet50 are tested 
on the FGSM, BIM, CW and DeepGauge. KMNC coverage is enhanced in the pro-
posed DBN model than other structures. The proposed obtained highest (51.5%) cover-
age accuracy for ImageNet dataset as related to other models of VGG19 and ResNet50. 
As compared to ResNet50, the model of VGG19 provide the maximum coverage which 
is less than the proposed method.NBC and SNAC coverage for the ImageNet dataset 
is shown in Fig.  5b, c. For each coverage criteria, the proposed method obtained the 
highest coverage accuracy than other approaches. NBC and SNAC coverage accuracy 
is 12.1% and 14.7% for the suggestedprocess with the ImageNet dataset. The existing 
models of VGG19 and ResNet50 are achieved lowest coverage improvement for the 
ImageNet dataset. Fig.  5d, e shows the TKNC and TKNP coverage for the ImageNet 
dataset. The proposed DBN structure has maximum coverage accuracy for both TKNC 
and TKNP criteria’s. The existing models of VGG19 and ResNet50 are obtained the low 
coverage accuracy for the test input generation approaches such as DeepGauge, FGSM, 
CW, and BIM. TKNP would frequently be capable to distinguish the input data if k is 
correctly designated for a specified target DBN. Creating test case to cover more TKN-
Pand it have a maximum choice to discover faults of a DBN.

Figure  6 shows the different coverage accuracy on CIFAR-10 dataset using the pro-
posed and the existing models. The several coverage criteria such as KMNC, NBC, 
SNAC, TKNC and TKNP are used to test the quality of the DBN structure. Here, the 
existing pre-trained DNN models of VGG-16 and ResNet-20 are used for the compari-
son process. The proposed scheme and the existing models are tested on the adversarial 
test input generation method like FGSM, BIM and CW, and also one more DL structure 
like DeepGauge. The proposed system covered the more amount of neurons on each 
criteria, hence, the proposed method provides better outcomes for each criterion than 
other models. Because, the proposed method utilized the SAR algorithm for the opti-
mal weight selection. This optimized DBN with SAR approach reduce the learning com-
plexity. Therefore, the proposed method obtained more coverage accuracy on CIFAR-10 
dataset as compared to other DNN models like VGG-16 and ResNet-20.

Conclusion
In this work, an optimized DBN with SAR algorithm has been proposed for testing 
the numerouscoverage criteria. To effectively measure the testing accuracy, the differ-
ent coverage criteria are discussed for the DBN structure. For an optimal weight selec-
tion of DBN, the SAR algorithm is used. Then five test coverage criteria are used for the 
testing of optimized DBN with SAR structure. The proposed coverage criteria for the 
DBN system enhances the coverage accuracy and the amount of potentially erroneous 
behaviours. The proposed test coverage criteria is executed by python tool with the help 
of threewell-standard datasets like CIFAR-10,MNIST, and ImageNet. The simulation 
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outcomes shows that the effectiveness of the proposed system in supporting DBN cover-
age, enhancing accuracy model and finding potential errors in DBN. In future, the cover-
age metrics may be introduced to offer extra intuitions for domain specialists while they 
are deliberating the capability of a specific datasets for an application usage.

Abbreviations
DL: Deep learning; DBN: Deep belief network; SAR: Search and resuce; MNIST: National Institute of Standards and Tech-
nology; DNN: Deep neural network; AUT​: Application under test; CT: Combinatorial testing; RBMs: Restricted Boltzmann 
Machines; MLPs: Multilayer perceptrons; KMNC: K-multisection Neuron Coverage; NBC: Neuron boundary coverage; 
SNAC: Strong neuron activation coverage; TKNC: Top-k Neuron Coverage; TKNP: Top-k Neuron Patterns.

Fig. 6  Coverage accuracy on CIFAR-10 dataset (a) KMNC, (b) NBC, (c) SNAC, (d) TKNC and (e) TKNP
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