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Introduction
Nowadays, scientists believe that the issue of big data is the biggest challenge in com-
puter science. Social websites like Facebook and Twitter have billions of users that pro-
duce hundreds of gigabytes of information per minute. There are over one billion users 
on YouTube that produce and upload hundreds of hours of movie per minute [1, 2].

In order to use and discover knowledge out of this massive amount of data, the prepa-
ration of proper tools and infrastructures is essential. Data mining techniques are among 
the most famous and authentic methods of knowledge discovery [3–5]. Clustering, as 
one of the main data mining methods, is aimed at partitioning a given dataset into a 
finite number of groups, called clusters, so that each member of each group is more sim-
ilar to any other member in the same group than any member in the other groups [1].

Although originally rooted in the domain of data mining, clustering is extensively 
used to address various problems in different domains, such as bioinformatics, machine 
learning, networking, and pattern recognition [6–8].
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Due to its algorithmic nature, the analysis of time and space complexity of a clustering 
algorithm is great importance in the evaluation of its performance, and hence its wide-
spread acceptance and use among researchers and practitioners. This becomes more 
crucial when clustering big datasets, as proposing effective and efficient clustering algo-
rithms for this scale of data is very challenging.

There are different challenges for clustering big data, many of them are rooted in the 
inherent features of big data. The more important elements of which are [9]: 

1.	 Volume: big data deals with huge amounts of data. While there is not a widely known 
agreement on the exact size of data that can be considered to be big, but the authors 
in [10] have provided a simple but reasonable characterization of the volume of big 
data (1). Since our focus in this paper is on clustering of big data, it is worth not-
ing that determining and analyzing the relations between data elements, which is a 
primitive operation in clustering methods, is quite challenging in the presence of a 
massive amount of data. This emphasizes the need for efficient methods for big data 
clustering.

2.	 Velocity: the speed with which the data is generated in big data systems, is so high 
that the system needs to be able to respond to huge amounts of incoming data within 
a short period of time. This means that a clustering algorithm needs to analyze the 
relations between data elements so quickly that the fast incoming data does not 
invalidate the results of the analysis before they are used.

3.	 Variety: usually, big data systems have to handle a wide range of different types of 
incoming data, including structured (e.g. CSV data), semi-structured (e.g. HTML 
content), and unstructured data (e.g. video and image). From the point of view of 
clustering, it means that the algorithm that is responsible for analyzing and compar-
ing the data elements must be able to handle the different dimensions of heterogene-
ity of those data elements, which is quite challenging.

4.	 Variability: the rate with which different types of data, or even different instances of 
the same type of data, are produced in a big data system has a wide range of varia-
tion, as some data instances might be generated per microsecond, while others in 
seconds or even days. This makes processing and in particular clustering of, big data 
more difficult as it is hard to make an assumption about the distribution of the pres-
ence of different data among the incoming.

5.	 Complexity: big data systems need to handle data that comes from different, usu-
ally heterogeneous, data sources with different data governance or data generation 
characteristics, making control of the streams of incoming data more challenging. 
This again affects the performance of clustering methods as they have more prob-
lems analyzing the relations among different data elements.

While being directly associated with the nature of big data, the challenges described 
above have different levels of severity and likelihood for different application domains. 
For instance, the diagram shown in Fig. 1 demonstrates the severity of each challenge in 
three data analytics tasks, namely clustering, stream classification, and noise detection.

Traditional clustering techniques cannot be used for such a large volume of data 
because of their high time complexity and execution time. For instance, the k-means 
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clustering problem is NP-hard, even if K equals 2. The main goal is to accelerate the clus-
tering algorithm with the least effect on their clustering quality.

Therefore, the main problem presented for this solution in this paper is Clustering 
large volumes of data (in terabytes and petabytes) using Map-Reduce architecture so 
that the quality of clustering is not compromised.

The paper is organized as follows. “Related work” section describes the related work on 
clustering techniques for big data, including single-machine clustering techniques and 
multi-machine clustering techniques. “Preliminary” section introduces the proposed big 
data clustering algorithm and “Proposed method” section discusses the experimental 
evaluation of this algorithm. Finally, “Results” section concludes the paper.

Related work
As mentioned before, services and sources like sensor networks, cloud storage, social 
networks and etc. produce a massive amount of data that its management, reuse, and 
analysis are an indispensable need of today’s world. The main goal of clustering tech-
niques on massive data is to improve the partition and segregation of this data. The 
resulting data, then, can be used with less complexity and at a higher pace.

In the following, different types of big data clustering algorithms are discussed. Gen-
erally big data clustering algorithms are divided into two categories: (1) single machine 
clustering algorithms and (2) Multiple machine clustering algorithm. In recent years, 
multiple machine clustering algorithms have been paid more attention than single 
machine clustering algorithms, because of their less execution time and capability to 
handle bigger size of data. As shown in Fig. 2, single and multiple machine algorithms 

Fig. 1  The difference in the challenges mentioned in different applications in big data
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are composed of different techniques: (1) Single machine clustering that contains sam-
pling techniques or dimension reduction techniques, and (2) Multiple machine cluster-
ing algorithms that contains parallel clustering or MapReduce [11] based clustering. 
Based on the above categorization.

Single‑machine clustering techniques

Single machine techniques consist of sampling and dimensionality reduction techniques, 
which are elaborated in the following. These algorithms are the first group of clustering 
algorithms that were used for performance promotion and scale development and their 
goal is to contrast with the exponential space state in the clustering.

These algorithms are considered as sampling because they perform the clustering pro-
cess on a sample of dataset and generalize the results to the entire dataset rather than 
just performing the clustering on the entire dataset. This makes the algorithm faster 
because the computations are done on a smaller volume of data and as a result the time 
and space complexity of these algorithms are lower.

CLARANS

Before addressing CLARANS algorithm [12], its primary version, CLARA [13], is dis-
cussed. This method is more powerful and capable of performing on big datasets com-
pared with PAM [14] that partition around the center. CLARA reduces the quadratic 
and time complexity needed for algorithm execution to the linear function of the num-
ber of data. PAM computes all the non-similarity matrices among data for the entire 

Fig. 2  Classification of big data clustering algorithms [55]
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data set and saves them in RAM. So it has O(n2) space complexity that cannot be used 
for large amounts of n.

To overcome this problem, CLARA doesn’t compute the non-similarity matrix for the 
entire dataset. PAM and CLARA can be considered equal to graph search problems that 
each vertex is a possible solution for clustering and two vertexes are connected when 
they have differences in one center. PAM starts with a randomly chosen vertex and 
greedily moves to the neighbor vertexes unless it finds no better neighbor. CLARA does 
this search in a sub graph, instead of the whole graph, which has a number of O(k). In 
order to improve the quality and scalability of CLARA, another algorithm CLARANS 
was suggested. That was the combination of sampling technique and PAM algorithm. 
Unlike CLARA, this algorithm does not restrict itself to constant samples resulted from 
sampling. CLARANS is presented for the improvement of CLARA. Similar to PAM, 
CLARANS algorithm searches all the graphs to find the optimal solution. However, 
here, in each step it investigates some instances of the current neighbor vertexes. Both 
CLARA and CLARANS use the sampling technique, but their difference is in how they 
execute this technique. Sampling in CLARA happens at the beginning and the search 
space limits to a sub-graph while in CLARANS, the sampling applies dynamically in 
each step of algorithm execution. Results show that CLARANS use of dynamic sampling 
made it more efficient compared to CLARA [12].

BIRCH

If data exceed RAM capacity the I/O operations amplify the computation cost as well 
as execution time. BIRCH algorithm [15] is a solution to this problem. BIRCH uses its 
exclusive data structure and called clustering feature(CF) and its tree which is CF-tree 
(Clustering Feature tree). In fact, CF consists of a summary of each cluster. In BIRCH, 
CF metadata is saved in the main RAM. Each CF is a triple containing < N , LS, SS > 
which respectively shows the number of data in the cluster, the aggregation of cluster 
data, and the sum of data cluster squares. In order to merge two clusters, their CF triples 
are mutually added. The advantage of this method is that for merging two clusters, just 
CF triples are added without any demand for the data into clusters and no computa-
tion complexity is imposed on the algorithm. There are two main phases in BIRCH: (1) 
Dataset is checked out and the CF-tree is created in main memory, and (2) Clustering is 
done on the CF-tree. Experiments show that CLARANS had a better performance both 
in time and space complexity in comparison with BIRCH and also has a more efficient 
execution when facing noise data.

CURE

In the aforementioned algorithms, each cluster represents by a point and the cluster-
ing algorithm started data clustering based on this approach. Until data are spherical, 
this process is suitable but in the real world, data might be much more complicated. To 
address this issue, CURE [16] algorithm uses more than one points to show the con-
cept of clustering. In fact, this algorithm assumes each data as a cluster and step by step 
merges different clusters to reach the number of predefined clusters. In the process used 
for merging two clusters at each stage, two data with the least corresponding distance 
merge with each other. Two data structures, heap, and K-d tree [17] are used in CURE 
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to enhance the clustering quality. Heap is used to preserving the distance among clus-
ters and K-d is used to save the points showing the clusters. CURE also uses sampling 
techniques to accelerate the computations. First, it uses a sample of the dataset and then 
performs the above-mentioned process on it. Chernoff bound is used to specify the sam-
ple volume. The volume sample is high if the data is massive and the repetition of sam-
pling consumes much time. The CURE uses partitioning to accelerate the algorithm. If 
we assume n as the main dataset and m as the sample dataset, CURE partitions m into 
p parts and executes clustering in a hierarchical manner on p to reach the termination 
conditions of the algorithm. Then another clustering algorithm is done on the entire p. 
Finally, all samples excluded in m are assigned to the closest cluster. The results show 
that the algorithm execution of CURE is slow but this algorithm is more resistant to 
noise data.

BKSK

[18] proposes an algorithm based on batches that are clustered in parallel on single 
machine. The proposed algorithm with a split dataset consists of several stages. The 
input dataset is divided into batches. Clustering is applied to each batch as a separate 
dataset. The initial centroids are selected randomly. Each batch is processed in parallel 
until the convergence condition is met. The algorithm minimizes the sum of squared 
errors for all clusters. As a result, Data partitioning into the batches before clustering 
and their parallel processing reduce the computation time.

Although the time and place complexity of clustering algorithms is dependent on the 
number of data in the dataset, on the other hand, the many dimensions of data is another 
crucial challenge. In fact, more data dimensions are equal to more features which results 
in longer algorithm execution time. Sampling techniques decrease the volume of the 
dataset but have no effect on dimension decrease.

Locality‑preserving projection

In locality-preserving projection method, it’s essential that after projecting data with 
many dimensions into fewer dimensions, the distance among points still remains and 
these dimension reductions have no effect on points distance and do not harm data gen-
erality. So data distance in reduced dimension space should be an optimal approximation 
of points distance in the primary dimension space. Random projection is done by data is 
a linear transformation matrix that contains the primary data of the dataset. If matrix R 
considered as a rotation matrix and d × t(t << d) (which d is the number of R dimen-
sions and t is the number of projected matrix dimensions), and each cell of R as R(i, j) is 
a random variable then A′

= A.R is the matrix projection of A with t dimensions. Creat-
ing a rotation matrix is different from other projection algorithms. The rotation matrix 
is created by random values that have a normal distribution with mean 0 and variance 1. 
Of course, this is just one of the available methods to create the aforementioned matrix. 
Clustering applies after transformation and projection of matrix A to A′ . [19] and [20] 
are some examples of implementing this algorithm and recently are presented in method 
[21] to reduce the execution time and improve its function.
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Global projection

In global projection, the main goal for the projected data is to be very close to the main 
data, but in local projection, the goal is that points in initial space and the projection 
space have a good approximation from each other. In other words, if the data primary 
matrix is A and the approximation matrix is A′ , in global projection the goal is that the 
amount of 

∥

∥

∥
A

′

− A
∥

∥

∥
 is minimized. Singular value decomposition (SVD) [22], CX/CUR 

[23], CMD [23] and Colibri [24] are among global projection algorithms.

Multi‑machine clustering techniques
Sampling and reduction methods improve the performance of clustering algorithms on 
big datasets, But due to the growing data, these methods are no longer effective. That’s 
why we need to look for algorithms that can be executed non-centrally like parallel and 
distributed paradigms.

Generally, non-centralized clustering algorithms can be categorized in to parallel para-
digm-based and MapReduce-based algorithms.

In parallel clustering [25], developer are concerned with not only parallelization chal-
lenges but also with data partition challenges. The difference between parallel paradigm 
and MapReduce paradigm is the comfort for the developers. That is, in MapReduce par-
adigm all data partitioning and data transitions among machine are done by the system. 
This feature improves parallelization and reliability.

The overall procedure of non-centralized clustering algorithms is shown in Fig. 3, In 
the first step the data is segmented among different machines. Then, each machine starts 
clustering its dataset. The main challenges here are minimizing the data transfer traffic 

Fig. 3  General procedure of multi-machine clustering algorithms [55]
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among machines, and lower accuracy compared to sequential model. The lower accu-
racy happens because of the following reasons: (1) different machines can execute dif-
ferent clustering algorithms, and (2) the manner of data segmentation may changes the 
final algorithm results.

In parallel algorithms, the data is in a shared storage. By accessing this shared storage, 
different processors pick up data pieces and process them. On the other hand, in distrib-
uted algorithms, data is distributed across multiple physical machines, and each physical 
machine performs the necessary processing on its own data. In other words, in parallel 
algorithms, processing is parallelized, but in distributed algorithms, both data and pro-
cessing are parallelized.

Parallel clustering methods

parallel clustering algorithm are complex for the developers, they are still available solu-
tion when volume data increases. In this subsection some of these algorithms are dis-
cussed in the following:

DBDC [26, 27] is a parallel density based [28] algorithm. In density based algorithms, 
the main goal is identifying clusters from the data shape. The density of points inside 
the cluster are much more than outside of the cluster. In additions, the density of noise 
points is much less than the density of clusters. here clustering performs locally and 
globally. For local clustering a default algorithms is used. For global clustering a density 
based algorithm named DBSCAN is used to finalize the results [29]. The results show 
that DBSCAN preserves the quality of clustering. Its execution time is 30 times faster 
than the sequential version of it.

parMETIS [30] is the parallelized version of the METIS [31]. parMETIS is the graph 
clustering and partitioning algorithms. The parMETIS algorithm is implemented in 3 
general steps. In the first step, a general subgraph of the data is extracted. This subgraph 
is selected according to the degree of vertices. In the next step, the initial division is per-
formed and the initial subgraph is clustered. And in the third step, the vertices of each 
subgraph are navigated using the breadth-first traversal algorithm. Finally, these three 
phases clustered the main graph into several clusters(partitions).

The new topic in parallel computation is to use GPU instead of CPU to increase com-
putation speed, because GPU is capable of computing millions or even billions calcu-
lations in only one second. G-DBSCAN is the distributed and GPU based clustering 
algorithm and it is DBSCAN density based. This algorithm is one of the newest methods 
presented. G-DBSCAN [29] has two main phases which are both parallelized: (1) Mak-
ing graphs: each data is a vertex and when the distance between two data is less than a 
predefined quantity, edge is formed between them. (2) Determining clusters: by the use 
of Breadth First Search (BFS) algorithm which is made on the graph in previous step. 
The results show that G-DBSCAN is 112 times faster than its sequential version.

MapReduce clustering algorithms

Although parallel clustering algorithms improve scalability and efficiency. However, 
complexity and difficulty of storage and processor distribution among different machines 
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still remains as the main challenge. To address this issue, the MapReduce framework was 
released. In this section, we review algorithms that use MapReduce paradigm and archi-
tecture. Figure 4 illustrates the architecture of MapReduce framework. This framework 
used to solve massive computational problems on large scale data in distributed com-
puting environments.

The algorithms discussed in this section are assests according to the following three 
aspects: (1) Speed up: It is defined as the ratio of application’s execution time on a sin-
gle processor to the execution time, of the same workload, on a system composed on P 
processors. (2) Scale up: This is measured as the ratio of a system with X times larger is 
capable of doing a job with X times larger in the same exact time, and (3) Size up: Is the 
ratio of the volume of data, on the execution time.

PKMeans [32] is the distributed version of K-Means [33] clustering algorithm. The 
main goal of the K-Means algorithm is clustering the set of data to K clusters such as 
data in each cluster have the most similarity with each other, while data in different clus-
ters have the most difference with each other. This algorithm, first selects K data ran-
domly and repeats the following two phases consequently: assigning each data to the 
nearest cluster, And updating cluster centers with the mean of data in each cluster.

PKMeans distributes computations among different machines to increase speed up 
and scale up. Initial clustering is done in the map phase and the final clustering in the 
reduce phase. PKMeans has linear size up and speed up. It has the scale up of 0.75 for 
four machines. Moreover, PKMeans has the same quality as the sequential version of it.

MR-DBSCAN [34] algorithm is the MapReduce based version of DBSCAN algorithm. 
The main challenges in the parallelized DBSCAN are failure in load balance among 
machines, and failure in scale up; because most of its essential functions cannot be par-
allelized. In MR-DBSCAN, a new mechanism for partitioning and segmentation of com-
putations has been considered, So that most essential functions could be parallelized. 
Experiments on large datasets have showed its efficiency and scale up.

In [35], an algorithm is presented to cluster big datasets that the volume transferred 
among machines has been reduced. This algorithm is divided into three phases: (1) In 
each machine, data clusters are searched by Canopy algorithm [36] to identify the best 
clusters. Because data shapes may not be spherical, instead of considering one point 

Fig. 4  Architecture of Apache Hadoop framework
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as the symbol of the clustering, several points are used to support the shape complex-
ity of data. Mahalanobis distance [37] is used to specify these points. Then, only these 
points are transferred among machines for final clustering. (2) A weighted clustering is 
performed over the points specified in the previous phase in different machines. (3) A 
bayesian classification algorithm [37] is used to calculate the probability that a points 
belongs to a cluster.

Possibility C-Means algorithm (PCM) [38] is one of the known clustering algorithms 
in data mining. A weighted PCM algorithm (wkPCM) is presented in [39] for cluster-
ing massive data distributedly using MapReduce. Experiments showed this algorithm is 
capable of clustering big data in an acceptable time. Both time and spatial complexities 
for this algorithm is O(n2).

In [40] the iterative clustering K-Means [41] (IKM) is presented that uses MapReduce. 
In the map phase, IKM runs on the loaded data segmentation, then, in the reduce phase, 
IKM algorithm again runs on the results taken from map phase. It is claimed that dataset 
needs just one scan. Therefore, the data transfer volume between map and reduce phases 
is very low.

In [42], improved map-shuffle-reduce version is used to present a clustering algorithm 
for spatial big datasets. In the map phase, dataset is divided into very small segments and 
the closest neighbor to each data (one scan) is specified. In the shuffle phase, the results 
in the previous phase are transferred to the reduce phase, orderly. Finally, in reduce 
phase, all points inside each cluster are averaged to calculate new cluster centers.

[43] introduces the design and implementation of a density-based clustering algo-
rithm. It present a parallel Shared Nearest Neighbor (SNN) clustering algorithm using 
the k-dimensional tree (k-d tree) to reduce search time to improve efficiency.

[44] presents a new meta-heuristic based clustering method to solve the big data clus-
tering. It leverages the searching potential of military dog squad to find the optimal cen-
troids and Map-Reduce architecture to handle the big data sets.

Preliminary
Before the proposed method can be described in detail, some concepts have to be 
discussed.

In order to optimize clustering, the Bee Colony algorithm has been used to increase 
the accuracy and quality of the clustering. Therefore, the Bee Colony algorithm is briefly 
described first.

Artificial Bee Colony Algorithm
Swarm Intelligence (SI) is a subset of artificial intelligence that focuses on the collec-
tive behavior of decentralized, self-organized systems, both natural and artificial. This is 
an emerging field of biologically-inspired artificial intelligence based on the behavioral 
models of social insects such as ants, fishes, bees, wasps, termites, etc.

An Artificial Bee Colony (ABC) [45] algorithms defined by Dervish Karaboga under 
the larger umbrella of swarm intelligence, motivated by the intelligent behavior of honey 
bees, which aims to discover food sources with progressively higher amounts of nectar. 
Compared to the natural swarms of bees, the main components can be somewhat linked 
to the model replicating honey bee movements.
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Food Source: Represented by profitability, whose value depends on the proximity, rich-
ness, and how easily it can be extracted.

Employed Bees: Employed bees go to their food source and come back to hive and 
dance on this area.

Onlooker Bees: Onlookers watch the dances of employed bees and choose food 
sources depending on dances.

Scout Bees: The employed bee whose food source has been abandoned becomes a 
scout and starts to search for finding a new food source.

To compare the real honey bee swarms with ABC algorithm, the swarm size can be 
considered as the search space, food sources represents the solutions. Employee bees and 
onlooker bees are components in the model that work in the same way as the bees do, 
the better the food source, the more fit it is for the bee. The number of employed bees is 
equal to the number of food sources. Each food source is associated with one and only one 

employed bee. The general pseudo code of the ABC algorithm is as Algorithm 1 .
The ABC produces a randomly initial population of SN solutions (food sources). Let 

Xi = xi,1, xi,2, ..., xi,n represent the ith solution, where n is the dimension size. At each itera-
tion of the algorithm, each employed bee Zi determines a new neighboring food source Vi 
of its currently associated food source by Eq. 1, and computes the nectar amount of this 
new food source:

where Xi is a randomly selected candidate solution, j is a random dimension index 
selected from the set 1, 2, ... , n, and θij is a random number between [− 1,1]. If the nec-
tar amount of this new food source, then this employed bee migrates to this new food 
source, otherwise it continues with the previous one. After all employed bees com-
plete their search, they share the information they collected about their food sources 
with onlooker bees. An onlooker bee evaluates the nectar information taken from all 
employed bees and chooses a food source with a probability related to its nectar amount 
by Eq. 2. The probability Pi of selecting a food source i is computed as:

where fiti is the fitness value of the solution i which is proportional to the nectar amount 
of the food source in the position i and SN is the number of food sources which is equal 
to the number of employed bees. Once all onlookers have selected their food sources, 
each of them determines a new neighboring food source of its selected food source and 

(1)Vij = Zij + θij(Zij − Zkj)

(2)Pi =
fiti

∑SN
n=1 fitn
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computes its nectar amount. Providing that this amount is higher than that of the pre-
vious one, and then the bee memorizes the new position and forgets the old one. The 
employed bee becomes a scout bee when the food source which is exhausted by the 
employed and onlooker bees is assigned as abandoned. In other words, if any solution 
cannot be improved further through a predetermined number of cycles which is called 
limit parameter, the food source is assigned as an abandoned source and employed bee 
of that source becomes a scout bee. In that position, scout generates randomly a new 
solution by Eq. 3. Assume that Zi is the abandoned source, the scout discovers a new 
food source which will be replaced with Zi,j:

where j is a random dimension index selected from the set 1, 2, ... , n different from i.

Fuzzy C‑means algorithm
In this section, the Fuzzy C-means clustering algorithm will be introduced. The pro-
posed method in this study is an Fuzzy C-meanse(FCM) based clustering for big data. 
The Fuzzy C-means (FCM) algorithm is a clustering algorithm developed by Bezdek 
[46]. FCM does not decide the absolute membership of a data point to a given cluster; 
instead, it calculates the likelihood (i.e., the degree of membership) that a data point will 
belong to that cluster. In each iteration of the FCM algorithm, the following objective 
function J is minimized:

Here, N is the number of data points, C is the number of clusters, cj is the center of clus-
ter j, and δij is the degree of membership for the ith data point xi in cluster j. The norm, 
∥

∥xi − cj
∥

∥ measures the similarity (or closeness) of the data point xi to the center vec-
tor cj of cluster j. In each iteration, the algorithm maintains a center vector for each of 
the clusters. These data points are calculated as the weighted average of the data points, 
where the weights are given by the degrees of membership. For a given data point xi , the 
degree of its membership to cluster j is calculated as follows:

where, m is the fuzziness coefficient and the center vector cj is calculated as follows:

In Eq. 6 above, δij is the value of the degree of membership calculated in the previous 
iteration. Note that at the start of the algorithm, the degree of membership for data 
point i to cluster j is initialized with a random value θij , θ ≤ θij ≤ 1 , such that 

∑C
j δij = 1.

(3)Zi,j = Zmin,j + rand(0, 1)(Zmax,j − Zmin,j)

(4)J =

N
∑

i=1

C
∑

j=1

δij
∥

∥xi − cj
∥

∥

2

(5)δij =
1

∑C
k=1(

�xi−cj�
�xi−ck�

)
2

m−1

(6)cj =

∑N
i=1 δ

m
ij .xi

∑N
i=1 δ

m
ij
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In Eqs. 5 and 6 the fuzziness coefficient m, where 1 < m < ∞ , measures the tolerance 
of the required clustering. This value determines how much the clusters can overlap with 
one another. The higher the value of m, the larger the overlap between clusters.

The required accuracy of the degree of membership determines the number of itera-
tions completed by the FCM algorithm. This measure of accuracy is calculated using the 
degree of membership from one iteration to the next, taking the largest of these values 
across all data points considering all of the clusters. If we represent the measure of accu-
racy between iteration k and k + 1 with ǫ , we calculate its value as follows:

where, δkij and δk+1
ij  are respectively the degree of membership at iteration k and k + 1.

Apache Hbase
HBase is an open-source non-relational distributed database modeled after Google’s 
Bigtable and written in Java. It is developed as part of Apache Software Foundation’s 
Apache Hadoop project and runs on top of HDFS or Alluxio, providing Bigtable-like 
capabilities for Hadoop.

Apache Hbase is a column-based NoSQL database that uses a MapReduce program-
ming model [47] for processing and running queries. It means Hbase uses a query engine 
processor that converts any SQL-like query to some MapReduce jobs. Then, provided 
jobs run on hadoop HDFS file systems (that stores data) and produce the results of each 
query. Apache Hbase supports SQL-like query syntax and some aggerations on top of 
columns in the HDFS file system.

Apache Hbase provide a real-time queries that can run on data that stores in the 
HDFS file system. In the other words, Hbase allows queries for individual records in 
the column with billion of records [48]. HBase runs on top of Apache Hadoop(it mostly 
requires only HDFS where it stores the data) and Apache Zookeeper. Apache Zookeeper 
cluster is used for failure detection of HBase nodes and stores distributed configuration 
of HBase cluster.

Master Node is responsible for monitoring RegionServers(detecting failures through 
Zookeeper), assigning regions to RegionServers, region load balancing between Region-
Servers and cluster metadata handling. HBase cluster typically consists of multiple 
Masters, one of which is active and other are backup. When all master instances run, 
each start leader election(by using Zookeeper) to become an active master. Then some 
instance wins election, others switch to “observer” state and wait until active master will 
fail(and start new round of election) [49].

Other component of HBase cluster is RegionServer. It is a worker node which is 
responsible for serving client requests and managing data regions. Tables in HBase con-
sist of rows which are identified by key. Rows are sorted according it’s key in data struc-
tures inside of HBase. Region is a group of continuous rows defined by start key and end 
key of rows which belong to it. RegionServer hosts multiple regions of different tables. 
It’s important to note that regions of the same table may be hosted on different serv-
ers, e.g. table data is distributed across cluster. But each region is managed by only one 
RegionServer at a time.

(7)ǫ = δNi δCj

∣

∣

∣
δk+1
ij − δkij

∣

∣

∣



Page 14 of 22Razavi et al. J Big Data            (2021) 8:64 

In the next section, the proposed method is given. The method presented in this study 
is innovative in several respects: using the ABC algorithm to optimize clustering, imple-
menting the combination of the C-Means and the ABC algorithms by the Map-Reduce 
architecture, and using a distributed column-based database (Apache Hbase) to store 
intermediate results in Map-Reduce architecture.

Proposed method
To optimize FCM by using ABC, we consider each individual equivalent to a solution in 
k dimensional space for the clustering problem, k is the number of clusters. Each com-
ponent in the individual represents the center of each cluster, which is a p-dimensional 
vector, p is the number of attributes of the data set. In the initialization phase, each com-
ponent in the Individual, will randomly be between the two minimum and maximum 
values, this minimum and maximum values will be for the minimum and maximum val-
ues of the corresponding attribute in the data set. Each data vector xi is attributed to the 
nearest center, and then using the Eq. 4, the fitness of each individual is calculated. In 
fact, fitness function is the same as the objective function in the FCM algorithm, which 
as a result of implementing the Bee Colony algorithm, the FCM cost function is opti-
mized and a better quality clustering is performed.

Now we need to design and develop the above algorithm in the form of MapReduce 
architecture. According to the map-reduction program, for mapping or assigning any job 
or task, distributed map data and mappings must be defined and designed. Due to the 
fact that it is read and written in HDFS (Hadoop File System), the speed of access to data 
is slow. In other words, because the HDFS memory is sequential, the speed of reading 
and writing is very slow. On the other hand, considering that the clustering algorithm 
is an iterative algorithm with multiple iterations, at the beginning of each iteration, the 
data is read from the HDFS, and at the end of the iteration, write again in HDFS, in order 
to get used in the next iteration.

In this study, instead of storing input and output in HDFS, we used Hbase. In fact, we 
used the Hbase database to speed up data access at the beginning and end of each Itera-
tion. Therefore, especially for high-volume data (over 100 terabytes), the use of Hbase 
will have a dramatic effect on the speed and efficiency of the algorithm. Each of the map 
and decrease phases for the proposed algorithm is explained below.

Map phase

The map phase has the task of performing pre-processing on a block of data. This block 
of data is available to the mapper by the bulk data infrastructure, the Apache Hadoop 
tool. The pseudo code of the map phase is shown in Algorithm . Given that individuals 
are stored in HBase, the input data source for each individual mapper of the individual 
table (the initial population of bees that are randomly generated and stored in HBase) is 
in Hbase, which passes the mapper. To be in line 2 of the mapper, the data and clusters 
are extracted from the individual, and in line 3, the value of the fitness or function for 
this individual and the probable value in line 4 is computed. Given that the output of 
the phase of the map should be in the form of a key-value pair, in line 5, this algorithm is 
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the individual key plus the value of the fitness function and its probability as the mapper 

output.

Reduce phase

The input of reduce phase is the same as the output of the mapping phase. At this point, 
from the list of entries, the answer that is the highest value of the utility function is cho-
sen. Then a new answer is generated using Eq. (3), which is best replaced if bestsolution is 
better. Pseudo code of reduce phase is as Algorithm . 

 Finally, the best answer is sent as output. Therefore, the above-mapping-down structure 
runs into the number of Bee Colony algorithm implementations, and each stage outputs 
the mapping phase along with the individuals in Hbase to be used as inputs for the next 
iteration. Using Hbase makes the input and output read-write process at a much faster 
rate, and especially in high-volume data, it increases the efficiency and speed of the algo-
rithm. Also, the overall procedure of each iteration is shown in Fig. 5.

Algorithm complexities

The goal here is to measures the complexity of the proposed Map-Reduce algorithm. As 
there are many different operations in different phases of the algorithm, measuring the 
complexity of the algorithm is not easy. So, we only consider the most important parts.

In the map phase, two operations are performed. The fitness calculation is per-
formed first and then the probability is calculated. So the time complexity of this phase 
is equal to time complexity of fitness function(FF) plus time complexity of probability 
function(PF):

In this study, the fitness and probability functions are the same as 4 and 5. So, the time 
complexity of the fitness function is O(n2) and the time complexity of the probability 
function is O(n). Therefore, the time complexity of the map phase is O(n2 × s × (1/p)) , 
where n is the number of data points, s is the number of data node machines and p is the 
ping time between physical nodes in Hadoop clusters.

(8)O(map) = O(FF)+ O(PF)
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On the other hand, two operations are performed in reduce phase, as well. The select 
operator is applied first, followed by producing the new solution. So, the time complex-
ity of reduce phase is equal to time complexity of select operator(SO) plus time com-
plexity of produce new solution(PNS):

In this research, the time complexity of the select operator is O(n× logn) ; because 
of sorting fitness values. And, the time complexity of production of the new solution 
is O(n2) ; because of probabilities updating. So, the time complexity of reduce phase is 
O(n2 × s × (1/p)).

The important point is that in addition to the map and reduce phases, other opera-
tions are performed in a MapReduce algorithm, such as shuffling. As shuffling only 
include sorting in our implementation, it is the time complexity is equal to:

So, the total time complexity of our MapReduce algorithm is equal to:

(9)O(reduce) = O(SO)+ O(PNS)

(10)O(sorting) = O(n× logn× s × (1/p))

Fig. 5  Overall procedure of each iteration of proposed algorithm
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where M is the number of FCM iterations. Another parameter that is measured for 
MapReduce jobs is the calculation of main memory usage. The total memory needed by 
all reducers is O(s) where s is the number of data node machines, and also the memory 
needed for each reducer is O(1).

According to the above calculations, as the number of Mappers and Reducers 
increases, the execution time of the algorithm also decreases linearly. Therefore, the 
proposed algorithm is designed in full accordance with the scalability structure.It 
means, the algorithm execution time can be decreased by increasing the number of 
physical machines. So, the speed up of our algorithm is linear (Table 1).

Results
To implement this method we setup a cluster of machines with 6 nodes. The specifi-
cations of each of the physical machines are shown in Table  2. Of the six physical 
machines, a machine is named NameNode and five other machines are considered as 
DataNode. Apache Hadoop Version 2.5 and Apache Hbase version 1.2 are installed on 
this clone, and the programming language used is also python.

Datasets

To evaluate and calculate the accuracy and efficiency of the proposed clustering algo-
rithm we use 3 datasets as follows:
Vehicle_sensIT data set is the one from wireless distributed sensor networks (WDSN). 

It utilizes two different sensors, that is, acoustic and seismic sensor to record different 
signals and do classification for three types of vehicle in an intelligent transportation sys-
tem. We download the processed data from LIBSVM [50] and randomly sample 100 data 
for each class. Therefore, we have 300 data samples, 2 views and 3 classes (Table 3).
Caltech101 data set is an object recognition data set containing 8677 images, belong-

ing to 101 categories. We chose the widely used 7 classes, i.e. Faces, Motorbikes, Dolla-
Bill, Garfield, Snoopy, Stop-Sign and Windsor-Chair [51].
MSRC-v1 data set is a scene recognition data set containing 8 classes, 240 images in 

total. We select 7 classes composed of tree, building, airplane, cow, face, car, bicycle and 

(11)O(MapReduce) = M × (O(map)+ O(sorting)+ O(reduce))

Table 1  Classification of size of data [9]

Big Data

Bytes 10
6

10
8

10
10

10
12

10
>12

Size Medium Large Huge Monster Very Large

Table 2  Cluster physical machine specifications

Operating system Processor Main memory Hard disk Band width

Ubuntu 14.10 64-bit Intel Core i7 4.3 GHz 16 GB 1 TB 100 Mbit/s
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each class has 30 images. We also extract the same 6 visual features from each image 
with Caltech101 dataset [52].

Comparisons

The Adjusted Rand Score (ARI) parameter is used to assess the quality of clustering, 
which in fact specifies the similarity between the two sets (similarity score between 
− 1.0 and 1.0. Random labelings have an ARI close to 0.0 and 1.0 stands for perfect 
match). Therefore, the higher the ARI, the greater the accuracy of clustering. The 
method presented in this study is compared with PCM, wPCM, HOPCM-15 and 
HOPCM [53] methods. In Tables  4, 5, and  6, the results of the comparison of the 
method presented in this study with the above methods are presented on the 3 above 
datasets. As it is known, the proposed method has improved by 3% at least compared 
to other methods.

We also evaluated the method presented in this article from another aspect. Because 
we use the Apache Hbase and MapReduce method, the efficiency of the proposed 
method will be much higher in the high volume of data than in the normal volume data. 
Therefore, we repeated the first data set Vehicle_sensIT to the desired number to create 
more data volume to test the performance of our algorithm in large datasets.

For repeat dataset, the oversampling methods are used [54]. Assume the dataset is 
1, 2, 3 and you sample 2N values out of it and get: 1, 1, 2, 2, 3, 3. Now if you compute 

Table 3  Summary of the datasets

Dataset No. of classes References

Vehicle_sensIT 3 [50]

Caltech101 7 [51]

MSRC-v1 7 [52]

Table 4  Results of clustering quality on the Vehicle_sensIT dataset (ARI Score)

Algorithm class1 class2 class3 Overall

PCM 0.53 0.51 0.65 0.59

wPCM 0.60 0.64 0.70 0.65

HOPCM-15 0.84 0.75 0.89 0.85

HOPCM 0.84 0.79 0.85 0.84

Proposed method 0.85 0.93 0.91 0.89

Table 5  Results of clustering quality on the Caltech101 dataset (ARI Score)

Algorithm class1 class2 class3 class4 class5 class6 class7 Overall

PCM 0.63 0.61 0.72 0.73 0.70 0.62 0.71 0.71

wPCM 0.67 0.70 0.75 0.79 0.77 0.77 0.77 0.76

HOPCM-15 0.89 0.85 0.92 0.89 0.87 0.91 0.81 0.89

HOPCM 0.89 0.87 0.93 0.90 0.89 0.92 0.87 0.90

Proposed method 0.94 0.92 0.94 0.93 0.91 0.94 0.93 0.92
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some statistics on it (for example mean), then you will get the same result for both 
since they contain the same observations appearing with the same probability.

So we separate the Map-Reduce job of our method into the following parts:

Read Phase: Data read from HDFS that runs one time at the beginning of the algo-
rithm.
Map Phase: Map function applies to the data that repeats K times according to 
FCM algorithm procedure.
Reduce Phase: Reduce function applies to the output of Map Phase that repeats K 
times too.
Export Phase: The output of the Reduce phase write to the Hbase database that 
repeats K times too.
Import Phase: The results of previous iteration reads from Hbase database that 
repeats K − 1 times.

So, We analyze the performance of our method in the above parts and with various 
of data volume from 200 GBs to 1 TBs. The results of this evaluation are shown in the 
Table 6.

The execution time of each phase that reports in Table 7 is the total of execution time 
of each phase in k repeats of the algorithm. In our evaluation the k is equal to 20. As can 
be seen, the amount of execution time does not increase linearly with increasing data 
volume. On the other hand, since the intermediate results in the algorithm iterations are 
stored in the Hbase table, the I/O time of the algorithm is very low.

Table 6  Results of clustering quality on the MSRC-v1 dataset (ARI Score)

Algorithm class1 class2 class3 class4 class5 class6 class7 Overall

PCM 0.53 0.49 0.62 0.65 0.61 0.54 0.63 0.61

wPCM 0.59 0.61 0.68 0.71 0.65 0.69 0.67 0.67

HOPCM-15 0.81 0.74 0.84 0.81 0.78 0.82 0.72 0.80

HOPCM 0.80 0.77 0.82 0.84 0.79 0.83 0.75 0.80

Proposed method 0.84 0.83 0.81 0.80 0.85 0.84 0.79 0.83

Table 7  Execution time (hour) of proposed method on 5 data nodes with huge volumes of data

Size of data(GB) Read Phase Map Phase Reduce Phase Export Phase Import Phase Overall

200 0.6 13.49 8.58 0.2 0.1 22.97

400 1.4 21.17 13.48 0.69 0.15 36.89

600 2.7 30.05 18.49 1.1 0.23 52.57

800 4.6 36.74 25.27 1.8 0.34 68.75

1000 6.9 43.12 31.24 2.9 0.49 84.65
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Conclusion
This research offered a method for clustering large amounts of data, while in addition 
to maintaining the quality and desirability of data clustering, its execution time is also 
appropriate to run on a large volume of data. The method described in this research 
is based on honey Bee Colony algorithm and mapping-reduction architecture pattern. 
In addition, the use of the Hbase database made this method more efficient than other 
methods, especially in high data volumes. After that, we proposed a workflow engine 
processing that supports a custom description language which allows user to define a 
overall procedure of multiple MapReduce jobs. The proposed method was implemented 
and evaluated on a cluster to determine its performance in a distributed environment. 
For future work, other heuristic and clustering algorithms can be implemented in an 
integrated framework.
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