
Big data fuzzy C‑means algorithm based
on bee colony optimization using an Apache
Hbase
Seyyed Mohammad Razavi†, Mohsen Kahani*†  and Samad Paydar† 

Introduction
Nowadays, scientists believe that the issue of big data is the biggest challenge in com-
puter science. Social websites like Facebook and Twitter have billions of users that pro-
duce hundreds of gigabytes of information per minute. There are over one billion users
on YouTube that produce and upload hundreds of hours of movie per minute [1, 2].

In order to use and discover knowledge out of this massive amount of data, the prepa-
ration of proper tools and infrastructures is essential. Data mining techniques are among
the most famous and authentic methods of knowledge discovery [3–5]. Clustering, as
one of the main data mining methods, is aimed at partitioning a given dataset into a
finite number of groups, called clusters, so that each member of each group is more sim-
ilar to any other member in the same group than any member in the other groups [1].

Although originally rooted in the domain of data mining, clustering is extensively
used to address various problems in different domains, such as bioinformatics, machine
learning, networking, and pattern recognition [6–8].

Abstract 

Clustering algorithm analysis, including time and space complexity analysis, has always
been discussed in the literature. The emergence of big data has also created a lot of
challenges for this issue. Because of high complexity and execution time, traditional
clustering techniques cannot be used for such an amount of data. This problem has
been addressed in this research. To present the clustering algorithm using a bee
colony algorithm and high-speed read/write performance, Map-Reduce architecture
is used. Using this architecture allows the proposed method to cluster any volume of
data, and there is no limit to the amount of data. The presented algorithm has good
performance and high precision. The simulation results on 3 datasets show that the
presented algorithm is more efficient than other big data clustering methods. Also, the
results of our algorithm execution time on huge datasets are much better than other
big data clustering approaches.

Keywords:  Clustering, Big data, Bee colony, MapReduce

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

RESEARCH

Razavi et al. J Big Data (2021) 8:64
https://doi.org/10.1186/s40537-021-00450-w

*Correspondence:
kahani@um.ac.ir
†Seyyed Mohammad
Razavi and Mohsen Kahani
contributed equally to this
work
†Samad Paydar Advisor
contributor
Department of Computer
Engineering, Ferdowsi
University of Mashhad,
Mashhad, Iran

http://orcid.org/0000-0002-2603-6066
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00450-w&domain=pdf

Page 2 of 22Razavi et al. J Big Data (2021) 8:64

Due to its algorithmic nature, the analysis of time and space complexity of a clustering
algorithm is great importance in the evaluation of its performance, and hence its wide-
spread acceptance and use among researchers and practitioners. This becomes more
crucial when clustering big datasets, as proposing effective and efficient clustering algo-
rithms for this scale of data is very challenging.

There are different challenges for clustering big data, many of them are rooted in the
inherent features of big data. The more important elements of which are [9]:

1.	 Volume: big data deals with huge amounts of data. While there is not a widely known
agreement on the exact size of data that can be considered to be big, but the authors
in [10] have provided a simple but reasonable characterization of the volume of big
data (1). Since our focus in this paper is on clustering of big data, it is worth not-
ing that determining and analyzing the relations between data elements, which is a
primitive operation in clustering methods, is quite challenging in the presence of a
massive amount of data. This emphasizes the need for efficient methods for big data
clustering.

2.	 Velocity: the speed with which the data is generated in big data systems, is so high
that the system needs to be able to respond to huge amounts of incoming data within
a short period of time. This means that a clustering algorithm needs to analyze the
relations between data elements so quickly that the fast incoming data does not
invalidate the results of the analysis before they are used.

3.	 Variety: usually, big data systems have to handle a wide range of different types of
incoming data, including structured (e.g. CSV data), semi-structured (e.g. HTML
content), and unstructured data (e.g. video and image). From the point of view of
clustering, it means that the algorithm that is responsible for analyzing and compar-
ing the data elements must be able to handle the different dimensions of heterogene-
ity of those data elements, which is quite challenging.

4.	 Variability: the rate with which different types of data, or even different instances of
the same type of data, are produced in a big data system has a wide range of varia-
tion, as some data instances might be generated per microsecond, while others in
seconds or even days. This makes processing and in particular clustering of, big data
more difficult as it is hard to make an assumption about the distribution of the pres-
ence of different data among the incoming.

5.	 Complexity: big data systems need to handle data that comes from different, usu-
ally heterogeneous, data sources with different data governance or data generation
characteristics, making control of the streams of incoming data more challenging.
This again affects the performance of clustering methods as they have more prob-
lems analyzing the relations among different data elements.

While being directly associated with the nature of big data, the challenges described
above have different levels of severity and likelihood for different application domains.
For instance, the diagram shown in Fig. 1 demonstrates the severity of each challenge in
three data analytics tasks, namely clustering, stream classification, and noise detection.

Traditional clustering techniques cannot be used for such a large volume of data
because of their high time complexity and execution time. For instance, the k-means

Page 3 of 22Razavi et al. J Big Data (2021) 8:64 	

clustering problem is NP-hard, even if K equals 2. The main goal is to accelerate the clus-
tering algorithm with the least effect on their clustering quality.

Therefore, the main problem presented for this solution in this paper is Clustering
large volumes of data (in terabytes and petabytes) using Map-Reduce architecture so
that the quality of clustering is not compromised.

The paper is organized as follows. “Related work” section describes the related work on
clustering techniques for big data, including single-machine clustering techniques and
multi-machine clustering techniques. “Preliminary” section introduces the proposed big
data clustering algorithm and “Proposed method” section discusses the experimental
evaluation of this algorithm. Finally, “Results” section concludes the paper.

Related work
As mentioned before, services and sources like sensor networks, cloud storage, social
networks and etc. produce a massive amount of data that its management, reuse, and
analysis are an indispensable need of today’s world. The main goal of clustering tech-
niques on massive data is to improve the partition and segregation of this data. The
resulting data, then, can be used with less complexity and at a higher pace.

In the following, different types of big data clustering algorithms are discussed. Gen-
erally big data clustering algorithms are divided into two categories: (1) single machine
clustering algorithms and (2) Multiple machine clustering algorithm. In recent years,
multiple machine clustering algorithms have been paid more attention than single
machine clustering algorithms, because of their less execution time and capability to
handle bigger size of data. As shown in Fig. 2, single and multiple machine algorithms

Fig. 1  The difference in the challenges mentioned in different applications in big data

Page 4 of 22Razavi et al. J Big Data (2021) 8:64

are composed of different techniques: (1) Single machine clustering that contains sam-
pling techniques or dimension reduction techniques, and (2) Multiple machine cluster-
ing algorithms that contains parallel clustering or MapReduce [11] based clustering.
Based on the above categorization.

Single‑machine clustering techniques

Single machine techniques consist of sampling and dimensionality reduction techniques,
which are elaborated in the following. These algorithms are the first group of clustering
algorithms that were used for performance promotion and scale development and their
goal is to contrast with the exponential space state in the clustering.

These algorithms are considered as sampling because they perform the clustering pro-
cess on a sample of dataset and generalize the results to the entire dataset rather than
just performing the clustering on the entire dataset. This makes the algorithm faster
because the computations are done on a smaller volume of data and as a result the time
and space complexity of these algorithms are lower.

CLARANS

Before addressing CLARANS algorithm [12], its primary version, CLARA [13], is dis-
cussed. This method is more powerful and capable of performing on big datasets com-
pared with PAM [14] that partition around the center. CLARA reduces the quadratic
and time complexity needed for algorithm execution to the linear function of the num-
ber of data. PAM computes all the non-similarity matrices among data for the entire

Fig. 2  Classification of big data clustering algorithms [55]

Page 5 of 22Razavi et al. J Big Data (2021) 8:64 	

data set and saves them in RAM. So it has O(n2) space complexity that cannot be used
for large amounts of n.

To overcome this problem, CLARA doesn’t compute the non-similarity matrix for the
entire dataset. PAM and CLARA can be considered equal to graph search problems that
each vertex is a possible solution for clustering and two vertexes are connected when
they have differences in one center. PAM starts with a randomly chosen vertex and
greedily moves to the neighbor vertexes unless it finds no better neighbor. CLARA does
this search in a sub graph, instead of the whole graph, which has a number of O(k). In
order to improve the quality and scalability of CLARA, another algorithm CLARANS
was suggested. That was the combination of sampling technique and PAM algorithm.
Unlike CLARA, this algorithm does not restrict itself to constant samples resulted from
sampling. CLARANS is presented for the improvement of CLARA. Similar to PAM,
CLARANS algorithm searches all the graphs to find the optimal solution. However,
here, in each step it investigates some instances of the current neighbor vertexes. Both
CLARA and CLARANS use the sampling technique, but their difference is in how they
execute this technique. Sampling in CLARA happens at the beginning and the search
space limits to a sub-graph while in CLARANS, the sampling applies dynamically in
each step of algorithm execution. Results show that CLARANS use of dynamic sampling
made it more efficient compared to CLARA [12].

BIRCH

If data exceed RAM capacity the I/O operations amplify the computation cost as well
as execution time. BIRCH algorithm [15] is a solution to this problem. BIRCH uses its
exclusive data structure and called clustering feature(CF) and its tree which is CF-tree
(Clustering Feature tree). In fact, CF consists of a summary of each cluster. In BIRCH,
CF metadata is saved in the main RAM. Each CF is a triple containing < N , LS, SS >
which respectively shows the number of data in the cluster, the aggregation of cluster
data, and the sum of data cluster squares. In order to merge two clusters, their CF triples
are mutually added. The advantage of this method is that for merging two clusters, just
CF triples are added without any demand for the data into clusters and no computa-
tion complexity is imposed on the algorithm. There are two main phases in BIRCH: (1)
Dataset is checked out and the CF-tree is created in main memory, and (2) Clustering is
done on the CF-tree. Experiments show that CLARANS had a better performance both
in time and space complexity in comparison with BIRCH and also has a more efficient
execution when facing noise data.

CURE

In the aforementioned algorithms, each cluster represents by a point and the cluster-
ing algorithm started data clustering based on this approach. Until data are spherical,
this process is suitable but in the real world, data might be much more complicated. To
address this issue, CURE [16] algorithm uses more than one points to show the con-
cept of clustering. In fact, this algorithm assumes each data as a cluster and step by step
merges different clusters to reach the number of predefined clusters. In the process used
for merging two clusters at each stage, two data with the least corresponding distance
merge with each other. Two data structures, heap, and K-d tree [17] are used in CURE

Page 6 of 22Razavi et al. J Big Data (2021) 8:64

to enhance the clustering quality. Heap is used to preserving the distance among clus-
ters and K-d is used to save the points showing the clusters. CURE also uses sampling
techniques to accelerate the computations. First, it uses a sample of the dataset and then
performs the above-mentioned process on it. Chernoff bound is used to specify the sam-
ple volume. The volume sample is high if the data is massive and the repetition of sam-
pling consumes much time. The CURE uses partitioning to accelerate the algorithm. If
we assume n as the main dataset and m as the sample dataset, CURE partitions m into
p parts and executes clustering in a hierarchical manner on p to reach the termination
conditions of the algorithm. Then another clustering algorithm is done on the entire p.
Finally, all samples excluded in m are assigned to the closest cluster. The results show
that the algorithm execution of CURE is slow but this algorithm is more resistant to
noise data.

BKSK

[18] proposes an algorithm based on batches that are clustered in parallel on single
machine. The proposed algorithm with a split dataset consists of several stages. The
input dataset is divided into batches. Clustering is applied to each batch as a separate
dataset. The initial centroids are selected randomly. Each batch is processed in parallel
until the convergence condition is met. The algorithm minimizes the sum of squared
errors for all clusters. As a result, Data partitioning into the batches before clustering
and their parallel processing reduce the computation time.

Although the time and place complexity of clustering algorithms is dependent on the
number of data in the dataset, on the other hand, the many dimensions of data is another
crucial challenge. In fact, more data dimensions are equal to more features which results
in longer algorithm execution time. Sampling techniques decrease the volume of the
dataset but have no effect on dimension decrease.

Locality‑preserving projection

In locality-preserving projection method, it’s essential that after projecting data with
many dimensions into fewer dimensions, the distance among points still remains and
these dimension reductions have no effect on points distance and do not harm data gen-
erality. So data distance in reduced dimension space should be an optimal approximation
of points distance in the primary dimension space. Random projection is done by data is
a linear transformation matrix that contains the primary data of the dataset. If matrix R
considered as a rotation matrix and d × t(t << d) (which d is the number of R dimen-
sions and t is the number of projected matrix dimensions), and each cell of R as R(i, j) is
a random variable then A′

= A.R is the matrix projection of A with t dimensions. Creat-
ing a rotation matrix is different from other projection algorithms. The rotation matrix
is created by random values that have a normal distribution with mean 0 and variance 1.
Of course, this is just one of the available methods to create the aforementioned matrix.
Clustering applies after transformation and projection of matrix A to A′ . [19] and [20]
are some examples of implementing this algorithm and recently are presented in method
[21] to reduce the execution time and improve its function.

Page 7 of 22Razavi et al. J Big Data (2021) 8:64 	

Global projection

In global projection, the main goal for the projected data is to be very close to the main
data, but in local projection, the goal is that points in initial space and the projection
space have a good approximation from each other. In other words, if the data primary
matrix is A and the approximation matrix is A′ , in global projection the goal is that the
amount of

∥

∥

∥
A

′

− A
∥

∥

∥
 is minimized. Singular value decomposition (SVD) [22], CX/CUR

[23], CMD [23] and Colibri [24] are among global projection algorithms.

Multi‑machine clustering techniques
Sampling and reduction methods improve the performance of clustering algorithms on
big datasets, But due to the growing data, these methods are no longer effective. That’s
why we need to look for algorithms that can be executed non-centrally like parallel and
distributed paradigms.

Generally, non-centralized clustering algorithms can be categorized in to parallel para-
digm-based and MapReduce-based algorithms.

In parallel clustering [25], developer are concerned with not only parallelization chal-
lenges but also with data partition challenges. The difference between parallel paradigm
and MapReduce paradigm is the comfort for the developers. That is, in MapReduce par-
adigm all data partitioning and data transitions among machine are done by the system.
This feature improves parallelization and reliability.

The overall procedure of non-centralized clustering algorithms is shown in Fig. 3, In
the first step the data is segmented among different machines. Then, each machine starts
clustering its dataset. The main challenges here are minimizing the data transfer traffic

Fig. 3  General procedure of multi-machine clustering algorithms [55]

Page 8 of 22Razavi et al. J Big Data (2021) 8:64

among machines, and lower accuracy compared to sequential model. The lower accu-
racy happens because of the following reasons: (1) different machines can execute dif-
ferent clustering algorithms, and (2) the manner of data segmentation may changes the
final algorithm results.

In parallel algorithms, the data is in a shared storage. By accessing this shared storage,
different processors pick up data pieces and process them. On the other hand, in distrib-
uted algorithms, data is distributed across multiple physical machines, and each physical
machine performs the necessary processing on its own data. In other words, in parallel
algorithms, processing is parallelized, but in distributed algorithms, both data and pro-
cessing are parallelized.

Parallel clustering methods

parallel clustering algorithm are complex for the developers, they are still available solu-
tion when volume data increases. In this subsection some of these algorithms are dis-
cussed in the following:

DBDC [26, 27] is a parallel density based [28] algorithm. In density based algorithms,
the main goal is identifying clusters from the data shape. The density of points inside
the cluster are much more than outside of the cluster. In additions, the density of noise
points is much less than the density of clusters. here clustering performs locally and
globally. For local clustering a default algorithms is used. For global clustering a density
based algorithm named DBSCAN is used to finalize the results [29]. The results show
that DBSCAN preserves the quality of clustering. Its execution time is 30 times faster
than the sequential version of it.

parMETIS [30] is the parallelized version of the METIS [31]. parMETIS is the graph
clustering and partitioning algorithms. The parMETIS algorithm is implemented in 3
general steps. In the first step, a general subgraph of the data is extracted. This subgraph
is selected according to the degree of vertices. In the next step, the initial division is per-
formed and the initial subgraph is clustered. And in the third step, the vertices of each
subgraph are navigated using the breadth-first traversal algorithm. Finally, these three
phases clustered the main graph into several clusters(partitions).

The new topic in parallel computation is to use GPU instead of CPU to increase com-
putation speed, because GPU is capable of computing millions or even billions calcu-
lations in only one second. G-DBSCAN is the distributed and GPU based clustering
algorithm and it is DBSCAN density based. This algorithm is one of the newest methods
presented. G-DBSCAN [29] has two main phases which are both parallelized: (1) Mak-
ing graphs: each data is a vertex and when the distance between two data is less than a
predefined quantity, edge is formed between them. (2) Determining clusters: by the use
of Breadth First Search (BFS) algorithm which is made on the graph in previous step.
The results show that G-DBSCAN is 112 times faster than its sequential version.

MapReduce clustering algorithms

Although parallel clustering algorithms improve scalability and efficiency. However,
complexity and difficulty of storage and processor distribution among different machines

Page 9 of 22Razavi et al. J Big Data (2021) 8:64 	

still remains as the main challenge. To address this issue, the MapReduce framework was
released. In this section, we review algorithms that use MapReduce paradigm and archi-
tecture. Figure 4 illustrates the architecture of MapReduce framework. This framework
used to solve massive computational problems on large scale data in distributed com-
puting environments.

The algorithms discussed in this section are assests according to the following three
aspects: (1) Speed up: It is defined as the ratio of application’s execution time on a sin-
gle processor to the execution time, of the same workload, on a system composed on P
processors. (2) Scale up: This is measured as the ratio of a system with X times larger is
capable of doing a job with X times larger in the same exact time, and (3) Size up: Is the
ratio of the volume of data, on the execution time.

PKMeans [32] is the distributed version of K-Means [33] clustering algorithm. The
main goal of the K-Means algorithm is clustering the set of data to K clusters such as
data in each cluster have the most similarity with each other, while data in different clus-
ters have the most difference with each other. This algorithm, first selects K data ran-
domly and repeats the following two phases consequently: assigning each data to the
nearest cluster, And updating cluster centers with the mean of data in each cluster.

PKMeans distributes computations among different machines to increase speed up
and scale up. Initial clustering is done in the map phase and the final clustering in the
reduce phase. PKMeans has linear size up and speed up. It has the scale up of 0.75 for
four machines. Moreover, PKMeans has the same quality as the sequential version of it.

MR-DBSCAN [34] algorithm is the MapReduce based version of DBSCAN algorithm.
The main challenges in the parallelized DBSCAN are failure in load balance among
machines, and failure in scale up; because most of its essential functions cannot be par-
allelized. In MR-DBSCAN, a new mechanism for partitioning and segmentation of com-
putations has been considered, So that most essential functions could be parallelized.
Experiments on large datasets have showed its efficiency and scale up.

In [35], an algorithm is presented to cluster big datasets that the volume transferred
among machines has been reduced. This algorithm is divided into three phases: (1) In
each machine, data clusters are searched by Canopy algorithm [36] to identify the best
clusters. Because data shapes may not be spherical, instead of considering one point

Fig. 4  Architecture of Apache Hadoop framework

Page 10 of 22Razavi et al. J Big Data (2021) 8:64

as the symbol of the clustering, several points are used to support the shape complex-
ity of data. Mahalanobis distance [37] is used to specify these points. Then, only these
points are transferred among machines for final clustering. (2) A weighted clustering is
performed over the points specified in the previous phase in different machines. (3) A
bayesian classification algorithm [37] is used to calculate the probability that a points
belongs to a cluster.

Possibility C-Means algorithm (PCM) [38] is one of the known clustering algorithms
in data mining. A weighted PCM algorithm (wkPCM) is presented in [39] for cluster-
ing massive data distributedly using MapReduce. Experiments showed this algorithm is
capable of clustering big data in an acceptable time. Both time and spatial complexities
for this algorithm is O(n2).

In [40] the iterative clustering K-Means [41] (IKM) is presented that uses MapReduce.
In the map phase, IKM runs on the loaded data segmentation, then, in the reduce phase,
IKM algorithm again runs on the results taken from map phase. It is claimed that dataset
needs just one scan. Therefore, the data transfer volume between map and reduce phases
is very low.

In [42], improved map-shuffle-reduce version is used to present a clustering algorithm
for spatial big datasets. In the map phase, dataset is divided into very small segments and
the closest neighbor to each data (one scan) is specified. In the shuffle phase, the results
in the previous phase are transferred to the reduce phase, orderly. Finally, in reduce
phase, all points inside each cluster are averaged to calculate new cluster centers.

[43] introduces the design and implementation of a density-based clustering algo-
rithm. It present a parallel Shared Nearest Neighbor (SNN) clustering algorithm using
the k-dimensional tree (k-d tree) to reduce search time to improve efficiency.

[44] presents a new meta-heuristic based clustering method to solve the big data clus-
tering. It leverages the searching potential of military dog squad to find the optimal cen-
troids and Map-Reduce architecture to handle the big data sets.

Preliminary
Before the proposed method can be described in detail, some concepts have to be
discussed.

In order to optimize clustering, the Bee Colony algorithm has been used to increase
the accuracy and quality of the clustering. Therefore, the Bee Colony algorithm is briefly
described first.

Artificial Bee Colony Algorithm
Swarm Intelligence (SI) is a subset of artificial intelligence that focuses on the collec-
tive behavior of decentralized, self-organized systems, both natural and artificial. This is
an emerging field of biologically-inspired artificial intelligence based on the behavioral
models of social insects such as ants, fishes, bees, wasps, termites, etc.

An Artificial Bee Colony (ABC) [45] algorithms defined by Dervish Karaboga under
the larger umbrella of swarm intelligence, motivated by the intelligent behavior of honey
bees, which aims to discover food sources with progressively higher amounts of nectar.
Compared to the natural swarms of bees, the main components can be somewhat linked
to the model replicating honey bee movements.

Page 11 of 22Razavi et al. J Big Data (2021) 8:64 	

Food Source: Represented by profitability, whose value depends on the proximity, rich-
ness, and how easily it can be extracted.

Employed Bees: Employed bees go to their food source and come back to hive and
dance on this area.

Onlooker Bees: Onlookers watch the dances of employed bees and choose food
sources depending on dances.

Scout Bees: The employed bee whose food source has been abandoned becomes a
scout and starts to search for finding a new food source.

To compare the real honey bee swarms with ABC algorithm, the swarm size can be
considered as the search space, food sources represents the solutions. Employee bees and
onlooker bees are components in the model that work in the same way as the bees do,
the better the food source, the more fit it is for the bee. The number of employed bees is
equal to the number of food sources. Each food source is associated with one and only one

employed bee. The general pseudo code of the ABC algorithm is as Algorithm 1 .
The ABC produces a randomly initial population of SN solutions (food sources). Let

Xi = xi,1, xi,2, ..., xi,n represent the ith solution, where n is the dimension size. At each itera-
tion of the algorithm, each employed bee Zi determines a new neighboring food source Vi
of its currently associated food source by Eq. 1, and computes the nectar amount of this
new food source:

where Xi is a randomly selected candidate solution, j is a random dimension index
selected from the set 1, 2, ... , n, and θij is a random number between [− 1,1]. If the nec-
tar amount of this new food source, then this employed bee migrates to this new food
source, otherwise it continues with the previous one. After all employed bees com-
plete their search, they share the information they collected about their food sources
with onlooker bees. An onlooker bee evaluates the nectar information taken from all
employed bees and chooses a food source with a probability related to its nectar amount
by Eq. 2. The probability Pi of selecting a food source i is computed as:

where fiti is the fitness value of the solution i which is proportional to the nectar amount
of the food source in the position i and SN is the number of food sources which is equal
to the number of employed bees. Once all onlookers have selected their food sources,
each of them determines a new neighboring food source of its selected food source and

(1)Vij = Zij + θij(Zij − Zkj)

(2)Pi =
fiti

∑SN
n=1 fitn

Page 12 of 22Razavi et al. J Big Data (2021) 8:64

computes its nectar amount. Providing that this amount is higher than that of the pre-
vious one, and then the bee memorizes the new position and forgets the old one. The
employed bee becomes a scout bee when the food source which is exhausted by the
employed and onlooker bees is assigned as abandoned. In other words, if any solution
cannot be improved further through a predetermined number of cycles which is called
limit parameter, the food source is assigned as an abandoned source and employed bee
of that source becomes a scout bee. In that position, scout generates randomly a new
solution by Eq. 3. Assume that Zi is the abandoned source, the scout discovers a new
food source which will be replaced with Zi,j:

where j is a random dimension index selected from the set 1, 2, ... , n different from i.

Fuzzy C‑means algorithm
In this section, the Fuzzy C-means clustering algorithm will be introduced. The pro-
posed method in this study is an Fuzzy C-meanse(FCM) based clustering for big data.
The Fuzzy C-means (FCM) algorithm is a clustering algorithm developed by Bezdek
[46]. FCM does not decide the absolute membership of a data point to a given cluster;
instead, it calculates the likelihood (i.e., the degree of membership) that a data point will
belong to that cluster. In each iteration of the FCM algorithm, the following objective
function J is minimized:

Here, N is the number of data points, C is the number of clusters, cj is the center of clus-
ter j, and δij is the degree of membership for the ith data point xi in cluster j. The norm,
∥

∥xi − cj
∥

∥ measures the similarity (or closeness) of the data point xi to the center vec-
tor cj of cluster j. In each iteration, the algorithm maintains a center vector for each of
the clusters. These data points are calculated as the weighted average of the data points,
where the weights are given by the degrees of membership. For a given data point xi , the
degree of its membership to cluster j is calculated as follows:

where, m is the fuzziness coefficient and the center vector cj is calculated as follows:

In Eq. 6 above, δij is the value of the degree of membership calculated in the previous
iteration. Note that at the start of the algorithm, the degree of membership for data
point i to cluster j is initialized with a random value θij , θ ≤ θij ≤ 1 , such that

∑C
j δij = 1.

(3)Zi,j = Zmin,j + rand(0, 1)(Zmax,j − Zmin,j)

(4)J =

N
∑

i=1

C
∑

j=1

δij
∥

∥xi − cj
∥

∥

2

(5)δij =
1

∑C
k=1(

�xi−cj�
�xi−ck�

)
2

m−1

(6)cj =

∑N
i=1 δ

m
ij .xi

∑N
i=1 δ

m
ij

Page 13 of 22Razavi et al. J Big Data (2021) 8:64 	

In Eqs. 5 and 6 the fuzziness coefficient m, where 1 < m < ∞ , measures the tolerance
of the required clustering. This value determines how much the clusters can overlap with
one another. The higher the value of m, the larger the overlap between clusters.

The required accuracy of the degree of membership determines the number of itera-
tions completed by the FCM algorithm. This measure of accuracy is calculated using the
degree of membership from one iteration to the next, taking the largest of these values
across all data points considering all of the clusters. If we represent the measure of accu-
racy between iteration k and k + 1 with ǫ , we calculate its value as follows:

where, δkij and δk+1
ij are respectively the degree of membership at iteration k and k + 1.

Apache Hbase
HBase is an open-source non-relational distributed database modeled after Google’s
Bigtable and written in Java. It is developed as part of Apache Software Foundation’s
Apache Hadoop project and runs on top of HDFS or Alluxio, providing Bigtable-like
capabilities for Hadoop.

Apache Hbase is a column-based NoSQL database that uses a MapReduce program-
ming model [47] for processing and running queries. It means Hbase uses a query engine
processor that converts any SQL-like query to some MapReduce jobs. Then, provided
jobs run on hadoop HDFS file systems (that stores data) and produce the results of each
query. Apache Hbase supports SQL-like query syntax and some aggerations on top of
columns in the HDFS file system.

Apache Hbase provide a real-time queries that can run on data that stores in the
HDFS file system. In the other words, Hbase allows queries for individual records in
the column with billion of records [48]. HBase runs on top of Apache Hadoop(it mostly
requires only HDFS where it stores the data) and Apache Zookeeper. Apache Zookeeper
cluster is used for failure detection of HBase nodes and stores distributed configuration
of HBase cluster.

Master Node is responsible for monitoring RegionServers(detecting failures through
Zookeeper), assigning regions to RegionServers, region load balancing between Region-
Servers and cluster metadata handling. HBase cluster typically consists of multiple
Masters, one of which is active and other are backup. When all master instances run,
each start leader election(by using Zookeeper) to become an active master. Then some
instance wins election, others switch to “observer” state and wait until active master will
fail(and start new round of election) [49].

Other component of HBase cluster is RegionServer. It is a worker node which is
responsible for serving client requests and managing data regions. Tables in HBase con-
sist of rows which are identified by key. Rows are sorted according it’s key in data struc-
tures inside of HBase. Region is a group of continuous rows defined by start key and end
key of rows which belong to it. RegionServer hosts multiple regions of different tables.
It’s important to note that regions of the same table may be hosted on different serv-
ers, e.g. table data is distributed across cluster. But each region is managed by only one
RegionServer at a time.

(7)ǫ = δNi δCj

∣

∣

∣
δk+1
ij − δkij

∣

∣

∣

Page 14 of 22Razavi et al. J Big Data (2021) 8:64

In the next section, the proposed method is given. The method presented in this study
is innovative in several respects: using the ABC algorithm to optimize clustering, imple-
menting the combination of the C-Means and the ABC algorithms by the Map-Reduce
architecture, and using a distributed column-based database (Apache Hbase) to store
intermediate results in Map-Reduce architecture.

Proposed method
To optimize FCM by using ABC, we consider each individual equivalent to a solution in
k dimensional space for the clustering problem, k is the number of clusters. Each com-
ponent in the individual represents the center of each cluster, which is a p-dimensional
vector, p is the number of attributes of the data set. In the initialization phase, each com-
ponent in the Individual, will randomly be between the two minimum and maximum
values, this minimum and maximum values will be for the minimum and maximum val-
ues of the corresponding attribute in the data set. Each data vector xi is attributed to the
nearest center, and then using the Eq. 4, the fitness of each individual is calculated. In
fact, fitness function is the same as the objective function in the FCM algorithm, which
as a result of implementing the Bee Colony algorithm, the FCM cost function is opti-
mized and a better quality clustering is performed.

Now we need to design and develop the above algorithm in the form of MapReduce
architecture. According to the map-reduction program, for mapping or assigning any job
or task, distributed map data and mappings must be defined and designed. Due to the
fact that it is read and written in HDFS (Hadoop File System), the speed of access to data
is slow. In other words, because the HDFS memory is sequential, the speed of reading
and writing is very slow. On the other hand, considering that the clustering algorithm
is an iterative algorithm with multiple iterations, at the beginning of each iteration, the
data is read from the HDFS, and at the end of the iteration, write again in HDFS, in order
to get used in the next iteration.

In this study, instead of storing input and output in HDFS, we used Hbase. In fact, we
used the Hbase database to speed up data access at the beginning and end of each Itera-
tion. Therefore, especially for high-volume data (over 100 terabytes), the use of Hbase
will have a dramatic effect on the speed and efficiency of the algorithm. Each of the map
and decrease phases for the proposed algorithm is explained below.

Map phase

The map phase has the task of performing pre-processing on a block of data. This block
of data is available to the mapper by the bulk data infrastructure, the Apache Hadoop
tool. The pseudo code of the map phase is shown in Algorithm . Given that individuals
are stored in HBase, the input data source for each individual mapper of the individual
table (the initial population of bees that are randomly generated and stored in HBase) is
in Hbase, which passes the mapper. To be in line 2 of the mapper, the data and clusters
are extracted from the individual, and in line 3, the value of the fitness or function for
this individual and the probable value in line 4 is computed. Given that the output of
the phase of the map should be in the form of a key-value pair, in line 5, this algorithm is

Page 15 of 22Razavi et al. J Big Data (2021) 8:64 	

the individual key plus the value of the fitness function and its probability as the mapper

output.

Reduce phase

The input of reduce phase is the same as the output of the mapping phase. At this point,
from the list of entries, the answer that is the highest value of the utility function is cho-
sen. Then a new answer is generated using Eq. (3), which is best replaced if bestsolution is
better. Pseudo code of reduce phase is as Algorithm .

 Finally, the best answer is sent as output. Therefore, the above-mapping-down structure
runs into the number of Bee Colony algorithm implementations, and each stage outputs
the mapping phase along with the individuals in Hbase to be used as inputs for the next
iteration. Using Hbase makes the input and output read-write process at a much faster
rate, and especially in high-volume data, it increases the efficiency and speed of the algo-
rithm. Also, the overall procedure of each iteration is shown in Fig. 5.

Algorithm complexities

The goal here is to measures the complexity of the proposed Map-Reduce algorithm. As
there are many different operations in different phases of the algorithm, measuring the
complexity of the algorithm is not easy. So, we only consider the most important parts.

In the map phase, two operations are performed. The fitness calculation is per-
formed first and then the probability is calculated. So the time complexity of this phase
is equal to time complexity of fitness function(FF) plus time complexity of probability
function(PF):

In this study, the fitness and probability functions are the same as 4 and 5. So, the time
complexity of the fitness function is O(n2) and the time complexity of the probability
function is O(n). Therefore, the time complexity of the map phase is O(n2 × s × (1/p)) ,
where n is the number of data points, s is the number of data node machines and p is the
ping time between physical nodes in Hadoop clusters.

(8)O(map) = O(FF)+ O(PF)

Page 16 of 22Razavi et al. J Big Data (2021) 8:64

On the other hand, two operations are performed in reduce phase, as well. The select
operator is applied first, followed by producing the new solution. So, the time complex-
ity of reduce phase is equal to time complexity of select operator(SO) plus time com-
plexity of produce new solution(PNS):

In this research, the time complexity of the select operator is O(n× logn) ; because
of sorting fitness values. And, the time complexity of production of the new solution
is O(n2) ; because of probabilities updating. So, the time complexity of reduce phase is
O(n2 × s × (1/p)).

The important point is that in addition to the map and reduce phases, other opera-
tions are performed in a MapReduce algorithm, such as shuffling. As shuffling only
include sorting in our implementation, it is the time complexity is equal to:

So, the total time complexity of our MapReduce algorithm is equal to:

(9)O(reduce) = O(SO)+ O(PNS)

(10)O(sorting) = O(n× logn× s × (1/p))

Fig. 5  Overall procedure of each iteration of proposed algorithm

Page 17 of 22Razavi et al. J Big Data (2021) 8:64 	

where M is the number of FCM iterations. Another parameter that is measured for
MapReduce jobs is the calculation of main memory usage. The total memory needed by
all reducers is O(s) where s is the number of data node machines, and also the memory
needed for each reducer is O(1).

According to the above calculations, as the number of Mappers and Reducers
increases, the execution time of the algorithm also decreases linearly. Therefore, the
proposed algorithm is designed in full accordance with the scalability structure.It
means, the algorithm execution time can be decreased by increasing the number of
physical machines. So, the speed up of our algorithm is linear (Table 1).

Results
To implement this method we setup a cluster of machines with 6 nodes. The specifi-
cations of each of the physical machines are shown in Table 2. Of the six physical
machines, a machine is named NameNode and five other machines are considered as
DataNode. Apache Hadoop Version 2.5 and Apache Hbase version 1.2 are installed on
this clone, and the programming language used is also python.

Datasets

To evaluate and calculate the accuracy and efficiency of the proposed clustering algo-
rithm we use 3 datasets as follows:
Vehicle_sensIT data set is the one from wireless distributed sensor networks (WDSN).

It utilizes two different sensors, that is, acoustic and seismic sensor to record different
signals and do classification for three types of vehicle in an intelligent transportation sys-
tem. We download the processed data from LIBSVM [50] and randomly sample 100 data
for each class. Therefore, we have 300 data samples, 2 views and 3 classes (Table 3).
Caltech101 data set is an object recognition data set containing 8677 images, belong-

ing to 101 categories. We chose the widely used 7 classes, i.e. Faces, Motorbikes, Dolla-
Bill, Garfield, Snoopy, Stop-Sign and Windsor-Chair [51].
MSRC-v1 data set is a scene recognition data set containing 8 classes, 240 images in

total. We select 7 classes composed of tree, building, airplane, cow, face, car, bicycle and

(11)O(MapReduce) = M × (O(map)+ O(sorting)+ O(reduce))

Table 1  Classification of size of data [9]

Big Data

Bytes 10
6

10
8

10
10

10
12

10
>12

Size Medium Large Huge Monster Very Large

Table 2  Cluster physical machine specifications

Operating system Processor Main memory Hard disk Band width

Ubuntu 14.10 64-bit Intel Core i7 4.3 GHz 16 GB 1 TB 100 Mbit/s

Page 18 of 22Razavi et al. J Big Data (2021) 8:64

each class has 30 images. We also extract the same 6 visual features from each image
with Caltech101 dataset [52].

Comparisons

The Adjusted Rand Score (ARI) parameter is used to assess the quality of clustering,
which in fact specifies the similarity between the two sets (similarity score between
− 1.0 and 1.0. Random labelings have an ARI close to 0.0 and 1.0 stands for perfect
match). Therefore, the higher the ARI, the greater the accuracy of clustering. The
method presented in this study is compared with PCM, wPCM, HOPCM-15 and
HOPCM [53] methods. In Tables 4, 5, and 6, the results of the comparison of the
method presented in this study with the above methods are presented on the 3 above
datasets. As it is known, the proposed method has improved by 3% at least compared
to other methods.

We also evaluated the method presented in this article from another aspect. Because
we use the Apache Hbase and MapReduce method, the efficiency of the proposed
method will be much higher in the high volume of data than in the normal volume data.
Therefore, we repeated the first data set Vehicle_sensIT to the desired number to create
more data volume to test the performance of our algorithm in large datasets.

For repeat dataset, the oversampling methods are used [54]. Assume the dataset is
1, 2, 3 and you sample 2N values out of it and get: 1, 1, 2, 2, 3, 3. Now if you compute

Table 3  Summary of the datasets

Dataset No. of classes References

Vehicle_sensIT 3 [50]

Caltech101 7 [51]

MSRC-v1 7 [52]

Table 4  Results of clustering quality on the Vehicle_sensIT dataset (ARI Score)

Algorithm class1 class2 class3 Overall

PCM 0.53 0.51 0.65 0.59

wPCM 0.60 0.64 0.70 0.65

HOPCM-15 0.84 0.75 0.89 0.85

HOPCM 0.84 0.79 0.85 0.84

Proposed method 0.85 0.93 0.91 0.89

Table 5  Results of clustering quality on the Caltech101 dataset (ARI Score)

Algorithm class1 class2 class3 class4 class5 class6 class7 Overall

PCM 0.63 0.61 0.72 0.73 0.70 0.62 0.71 0.71

wPCM 0.67 0.70 0.75 0.79 0.77 0.77 0.77 0.76

HOPCM-15 0.89 0.85 0.92 0.89 0.87 0.91 0.81 0.89

HOPCM 0.89 0.87 0.93 0.90 0.89 0.92 0.87 0.90

Proposed method 0.94 0.92 0.94 0.93 0.91 0.94 0.93 0.92

Page 19 of 22Razavi et al. J Big Data (2021) 8:64 	

some statistics on it (for example mean), then you will get the same result for both
since they contain the same observations appearing with the same probability.

So we separate the Map-Reduce job of our method into the following parts:

Read Phase: Data read from HDFS that runs one time at the beginning of the algo-
rithm.
Map Phase: Map function applies to the data that repeats K times according to
FCM algorithm procedure.
Reduce Phase: Reduce function applies to the output of Map Phase that repeats K
times too.
Export Phase: The output of the Reduce phase write to the Hbase database that
repeats K times too.
Import Phase: The results of previous iteration reads from Hbase database that
repeats K − 1 times.

So, We analyze the performance of our method in the above parts and with various
of data volume from 200 GBs to 1 TBs. The results of this evaluation are shown in the
Table 6.

The execution time of each phase that reports in Table 7 is the total of execution time
of each phase in k repeats of the algorithm. In our evaluation the k is equal to 20. As can
be seen, the amount of execution time does not increase linearly with increasing data
volume. On the other hand, since the intermediate results in the algorithm iterations are
stored in the Hbase table, the I/O time of the algorithm is very low.

Table 6  Results of clustering quality on the MSRC-v1 dataset (ARI Score)

Algorithm class1 class2 class3 class4 class5 class6 class7 Overall

PCM 0.53 0.49 0.62 0.65 0.61 0.54 0.63 0.61

wPCM 0.59 0.61 0.68 0.71 0.65 0.69 0.67 0.67

HOPCM-15 0.81 0.74 0.84 0.81 0.78 0.82 0.72 0.80

HOPCM 0.80 0.77 0.82 0.84 0.79 0.83 0.75 0.80

Proposed method 0.84 0.83 0.81 0.80 0.85 0.84 0.79 0.83

Table 7  Execution time (hour) of proposed method on 5 data nodes with huge volumes of data

Size of data(GB) Read Phase Map Phase Reduce Phase Export Phase Import Phase Overall

200 0.6 13.49 8.58 0.2 0.1 22.97

400 1.4 21.17 13.48 0.69 0.15 36.89

600 2.7 30.05 18.49 1.1 0.23 52.57

800 4.6 36.74 25.27 1.8 0.34 68.75

1000 6.9 43.12 31.24 2.9 0.49 84.65

Page 20 of 22Razavi et al. J Big Data (2021) 8:64

Conclusion
This research offered a method for clustering large amounts of data, while in addition
to maintaining the quality and desirability of data clustering, its execution time is also
appropriate to run on a large volume of data. The method described in this research
is based on honey Bee Colony algorithm and mapping-reduction architecture pattern.
In addition, the use of the Hbase database made this method more efficient than other
methods, especially in high data volumes. After that, we proposed a workflow engine
processing that supports a custom description language which allows user to define a
overall procedure of multiple MapReduce jobs. The proposed method was implemented
and evaluated on a cluster to determine its performance in a distributed environment.
For future work, other heuristic and clustering algorithms can be implemented in an
integrated framework.
Acknowledgements
Not applicable.

Authors’ contributions
SMR and MK have made equivalent contribution to the conception, analysis of the work. SP has provided professional
and scientific advice to improve the quality of work. All authors read, review, and approved the final manuscript.

Funding
The authors declare that they have no funding.

Availability of data and materials
All 3 datasets used are free and everyone can download([50–52]) and use them.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All of the Authors declare that they do not have any particular competing interest.

Received: 6 January 2021 Accepted: 13 April 2021

References
	1.	 Havens TC, Bezdek JC, Palaniswami M. Scalable single linkage hierarchical clustering for big data. In: 2013 IEEE

eighth international conference on intelligent sensors, sensor networks and information processing. IEEE; 2013, pp.
396–401.

	2.	 Cheng X, Dale C, Liu J. Statistics and social network of youtube videos. In: 2008 16th interntional workshop on qual-
ity of service. IEEE; 2008, pp. 229–238.

	3.	 Priya V, Vadivel A. User behaviour pattern mining from weblog. Int J Data Warehousing Mining. 2012;8(2):1–22.
	4.	 Taniar D, Rahayu W, Lee V, Daly O. Exception rules in association rule mining. Appl Math Comput.

2008;205(2):735–50.
	5.	 Williams PK, Soares CV, Gilbert JE. A clustering rule based approach for classification problems. Int J Data Warehous-

ing Mining. 2012;8(1):1–23.
	6.	 Meyer FG, Chinrungrueng J. Spatiotemporal clustering of fmri time series in the spectral domain. Med Image Anal.

2005;9(1):51–68.
	7.	 Ernst J, Nau GJ, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics. 2005;21(Suppl

1):159–68.
	8.	 Iglesias F, Kastner W. Analysis of similarity measures in times series clustering for the discovery of building energy

patterns. Energies. 2013;6(2):579–97.
	9.	 Hathaway RJ, Bezdek JC. Extending fuzzy and probabilistic clustering to very large data sets. Comput Stat Data Anal.

2006;51(1):215–34.
	10.	 McAfee A, Brynjolfsson E, Davenport TH, Patil D, Barton D. Big data: the management revolution. Harvard Bus Rev.

2012;90(10):60–8.
	11.	 Dean J, Ghemawat S. Mapreduce: a flexible data processing tool. Commun ACM. 2010;53(1):72–7.

Page 21 of 22Razavi et al. J Big Data (2021) 8:64 	

	12.	 Ng RT, Han J. Clarans: a method for clustering objects for spatial data mining. IEEE Trans Knowl Data Eng.
2002;14(5):1003–16.

	13.	 Zhao G-F, Qu G-Q. Analysis and implementation of clara algorithm on clustering. J Shandong Univ Technol.
2006;2:45–8.

	14.	 Kaufman L, Rousseeuw PJ. Partitioning around medoids (program pam). Finding groups in data: an introduction to
cluster analysis, vol. 344. Hoboken: Wiley; 1990. p. 68–125.

	15.	 Zhang T, Ramakrishnan R, Livny M. Birch: an efficient data clustering method for very large databases. ACM Sigmod
Rec. 1996;25(2):103–14.

	16.	 Guha S, Rastogi R, Shim K. Cure: an efficient clustering algorithm for large databases. ACM Sigmod Rec.
1998;27(2):73–84.

	17.	 Foley T, Sugerman J. Kd-tree acceleration structures for a gpu raytracer. In: Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS conference on graphics hardware; 2005, pp. 15–22.

	18.	 Alguliyev RM, Aliguliyev RM, Sukhostat LV. Efficient algorithm for big data clustering on single machine. CAAI Trans
Intell Technol. 2020;5(1):9–14.

	19.	 Fern XZ, Brodley CE. Random projection for high dimensional data clustering: a cluster ensemble approach. In:
Proceedings of the 20th international conference on machine learning (ICML-03); 2003, pp. 186–193.

	20.	 Boutilier C, Goldszmidt M. Proceedings of the sixteenth conference on uncertainty in artificial intelligence (2000);
2013. arXiv preprint arXiv:​1304.​3842.

	21.	 Boutsidis C, Zouzias A, Drineas P. Random projections for k-means clustering. In: Advances in neural information
processing systems; 2010, pp. 298–306.

	22.	 Golub GH, Reinsch C. Singular value decomposition and least squares solutions. In: Linear algebra. Berlin: Springer;
1971, pp. 134–151.

	23.	 Drineas P, Kannan R, Mahoney MW. Fast monte carlo algorithms for matrices iii: computing a compressed approxi-
mate matrix decomposition. SIAM J Comput. 2006;36(1):184–206.

	24.	 Sun J, Xie Y, Zhang H, Faloutsos C. Less is more: Compact matrix decomposition for large sparse graphs. In: Proceed-
ings of the 2007 SIAM international conference on data mining. SIAM; 2007, pp. 366–77.

	25.	 Olman V, Mao F, Wu H, Xu Y. Parallel clustering algorithm for large data sets with applications in bioinformatics. IEEE/
ACM Trans Comput Biol Bioinform. 2008;6(2):344–52.

	26.	 Januzaj E. Kriegel H-P, Pfeifle M. Dbdc: Density based distributed clustering. In: International conference on extend-
ing database technology. Springer; 2004, pp. 88–105.

	27.	 Aggarwal CC, Reddy C. An introduction to cluster analysis; 2013.
	28.	 Kriegel H-P, Kröger P, Sander J, Zimek A. Density-based clustering. Wiley Interdiscipl Rev Data Mining Knowl Discov.

2011;1(3):231–40.
	29.	 Andrade G, Ramos G, Madeira D, Sachetto R, Ferreira R, Rocha L. G-dbscan: a gpu accelerated algorithm for density-

based clustering. Procedia Comput Sci. 2013;18:369–78.
	30.	 Karypis G, Kumar V. Parallel multilevel series k-way partitioning scheme for irregular graphs. Siam Rev.

1999;41(2):278–300.
	31.	 Karypis G, Kumar V. Multilevelk-way partitioning scheme for irregular graphs. J Parallel Distrib Comput.

1998;48(1):96–129.
	32.	 Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. In: IEEE international conference on cloud

computing. Springer; 2009, pp. 674-9.
	33.	 Mirkin B. Clustering: a data recovery approach. Boca Raton: CRC Press; 2012.
	34.	 He Y, Tan H, Luo W, Feng S, Fan J. Mr-dbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed

data. Front Comput Sci. 2014;8(1):83–99.
	35.	 Ma C, Liang X, Ma Y. A succinct distributive big data clustering algorithm based on local-remote coordination. In:

2015 IEEE international conference on systems, man, and cybernetics. IEEE; 2015, pp. 1839–844.
	36.	 Zhang G, Zhang C, Zhang H. Improved k-means algorithm based on density canopy. Knowledge-Based Syst.

2018;145:289–97.
	37.	 De Maesschalck R, Jouan-Rimbaud D, Massart DL. The mahalanobis distance. Chemometri Intell Lab Syst.

2000;50(1):1–18.
	38.	 Pal NR, Pal K, Keller JM, Bezdek JC. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst.

2005;13(4):517–30.
	39.	 Zhang Q, Chen Z. A weighted kernel possibilistic c-means algorithm based on cloud computing for clustering big

data. Int J Commun Syst. 2014;27(9):1378–91.
	40.	 Nguyen CD, Nguyen DT, Pham V-H. Parallel two-phase k-means. In: International conference on computational sci-

ence and its applications. Springer; 2013, pp. 224–31.
	41.	 Pham DT, Dimov SS, Nguyen C. An incremental k-means algorithm. Proc Inst Mech Eng Part C J Mech Eng Sci.

2004;218(7):783–95.
	42.	 Hu C, Kang X, Luo N, Zhao Q. Parallel clustering of big data of spatio-temporal trajectory. In: 2015 11th international

conference on natural computation (ICNC). IEEE; 2015, pp. 769–774.
	43.	 Pokhrel AR, Wang S. Design of fast and scalable clustering algorithm on spark. In: Proceedings of the 2020 4th

international conference on cloud and big data computing; 2020, pp. 43–7.
	44.	 Tripathi AK, Sharma K, Bala M, Kumar A, Menon VG, Bashir AK. A parallel military-dog-based algorithm for clustering

big data in cognitive industrial internet of things. IEEE Trans Ind Inform. 2020;17(3):2134–42.
	45.	 Karaboga D. Artificial bee colony algorithm. Scholarpedia. 2010;5(3):6915.
	46.	 Bezdek JC, Ehrlich R, Full W. Fcm: The fuzzy c-means clustering algorithm. Comput Geosci. 1984;10(2–3):191–203.
	47.	 Lämmel R. Google mapreduce programming model revisited. Sci Comput Program. 2008;70(1):1–30.
	48.	 Eadline D. Hadoop fundamentals livelessons (video training). Boston: Addison-Wesley Professional; 2013.
	49.	 Uzunkaya C, Ensari T, Kavurucu Y. Hadoop ecosystem and its analysis on tweets. Procedia-Soc Behav Sci.

2015;195:1890–7.
	50.	 Chang C-C, Lin C-J. Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):1–27.

http://arxiv.org/abs/1304.3842

Page 22 of 22Razavi et al. J Big Data (2021) 8:64

	51.	 Griffin G, Holub A, Perona P. Caltech-256 object category dataset; 2007.
	52.	 Winn J, Jojic N. Locus: learning object classes with unsupervised segmentation. In: Tenth IEEE international confer-

ence on computer vision (ICCV’05) Volume 1, vol. 1. IEEE; 2005, pp. 756–63.
	53.	 Zhang Q, Yang LT, Chen Z, Li P. Pphopcm: privacy-preserving high-order possibilistic c-means algorithm for big data

clustering with cloud computing. IEEE Transactions on Big Data; 2017.
	54.	 Gosain A, Sardana S. Handling class imbalance problem using oversampling techniques: a review. In: 2017 interna-

tional conference on advances in computing, communications and informatics (ICACCI). IEEE; 2017, pp. 79– 85.
	55.	 Shirkhorshidi AS, Aghabozorgi S, Wah TY, Herawan T. Big data clustering: a review. In: International conference on

computational science and its applications. Springer; 2014, pp. 707–20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Big data fuzzy C-means algorithm based on bee colony optimization using an Apache Hbase
	Abstract
	Introduction
	Related work
	Single-machine clustering techniques
	CLARANS
	BIRCH
	CURE
	BKSK
	Locality-preserving projection
	Global projection

	Multi-machine clustering techniques
	Parallel clustering methods
	MapReduce clustering algorithms

	Preliminary
	Artificial Bee Colony Algorithm
	Fuzzy C-means algorithm
	Apache Hbase

	Proposed method
	Map phase
	Reduce phase
	Algorithm complexities

	Results
	Datasets
	Comparisons

	Conclusion
	Acknowledgements
	References

