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Abstract

At present, voice biometrics are commonly used for identification and authentica-

tion of users through their voice. Voice based services such as mobile banking, access
to personal devices, and logging into social networks are the common examples of
authenticating users through voice biometrics. In Pakistan, voice-based services are
very common in banking and mobile/cellular sector, however, these services do not
use voice features to recognize customers. Therefore, the chance to use these services
with false identity is always high. It is essential to design a voice-based recognition
system to minimize the risk of false identity. In this paper, we developed regional voice
datasets for voice biometrics, by collecting voice data in different local accents of Paki-
stan. Although, there is a global need for voice biometrics especially when voice-based
services are common, however, this paper uses Pakistan as a use case to show how to
build regional voice dataset for voice biometrics. To build voice dataset, voice samples
were recorded from 180 male and female speakers with two languages English and
Urdu in form of five regional accents. Mel Frequency Cepstral Coefficient (MFCC) fea-
tures were extracted from the collected voice samples to train Support Vector Machine
(SVM), Artificial Neural Network (ANN), Random Forest (RF) and K-nearest neighbor
(KNN) classifiers. The results indicate that ANN outperformed SVM, RF and KNN by
achieving 88.53% and 86.58% recognition accuracy on both datasets respectively.

Keywords: Speaker recognition systems, Speakers classification, Voice database,
Accents and dialects

Introduction

For identification and verification, human body characteristics like voice, face, finger-
print, and gait etc. have been used since long ago [1]. Such characteristics are prefer-
ably used for biometric identification because these satisfy the desirable properties
of biometrics such as universality, distinctiveness, permanence and collectability [2].
Biometric identification is based on biometric traits, which broadly fall into two cat-
egories i.e. physiological biometric traits (fingerprint, face, iris, vein, ear, DNA, etc.)
and behavioral biometric traits (voice, key strokes dynamics, signature, and gait etc.).
These individual traits are unique and are often difficult for scammers’ to replicate.
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Hence biometric approaches may provides superior security and convenience than
recognition techniques based on PIN, passwords and identity cards [3, 4]. Biometric
traits can be used in various applications such as ATM, credit cards, physical access
control, cell phone, national ID cards, passport control, driver licenses, dead body
identification, and criminal investigation, etc. [5]. Each biometric has its own features
and limits. The selection of a biometric particularly depends on the applications for
which it is being used. No single biometric is optimal and nor it efficiently fulfills all
the requirements of various applications. For example, in some situations, the fin-
gerprint biometric trait is more desirable than the voice biometric trait. In another
situation, the voice biometric is preferable than finger print, such as access control
for bank transactions via cell phones or landline telephones, voice mails and verifi-
cation of credit cards, distant access to computers through a modem on the dial-up
telephone line in call-centers and forensic applications where speaker recognition is
required [4, 6]. The human voice carries different characteristics such as the meaning/
words a speaker wants to pass to a listener, spoken language information, emotions,
gender, identity, health and speaker’s age-related information etc. [6]. The objective of
speaker recognition is to extract information about the speaker’s identity and based
on that information it recognizes the speaker [7]. Speaker recognition is usually sub-
divided into speaker verification and speaker identification tasks. The speaker veri-
fication is the task of verifying a claimed person from his/her voice and verification
system must perform a 1:1 comparison hence the cost of computation is independent
of the records in the voice database. On the other hand, the speaker identification
task is to determine the specific speaker speaking from a speaker’s database. In this
task the unknown person does not claim identity and there must be 1:N comparisons.
In this way, the cost of computation depends on the number of records in the voice
database [8].

An important step in designing Voice Based Systems (VBS) i.e. speech and speaker
recognition systems is the voice database design. A comprehensive voice database plays
significant role for design and development of VBS specifically designed for particular
applications, same is the case here (refer to “Database” section for further detail about
the designed database). In this research, we developed an Urdu and English languages
based voice dataset particularly designed for voice based customer verification services
in banking sector in Pakistan. To the best of our knowledge, there is no such voice data-
set available, which has been particularly designed for the banking sector in Published
literature.

During the database design we particularly focused on minimizing different perfor-
mance degrading factors/variability mostly encountered in voice databases such as back-
ground noise, channel mismatch, speaker’s age, health & emotions etc.

Like the other performance degrading factors, different accents and dialects of a lan-
guage can also cause performance degradation in VBS [9]. Typically, VBS do not perform
well if the accent of a speaker, who is going to be recognized, is different from the accent
of the speakers by whom the system was trained. Incorporation of accents can minimize
the variability caused by different accents of a language, which in turn enhances the per-
formance of the recognition system [10].
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Based on the above mentioned detail about VBS and their possible performance deg-
radation factors, here in this research, a voice database (containing Urdu and English
datasets) has been designed and tested on several popular ML methods (KNN, RE, SVM
and ANN in our case). The specific contributions of the presented research are:

+ Designing a voice database for the five regional accents of Urdu and English spoken
in Pakistan.

+ Including accents variations in the designed database so that it could be used to
design robust Speaker Recognition Systems (SRS) based on this dataset.

+ Database design to particularly help banking sector applications in Pakistan.

» Database design based on a questionnaire/script containing question answers par-
ticularly asked by bank representatives for authentication during voice calls in case of
lost/theft of credit/debit cards or any other query with the banks in Pakistan.

+ Testing KNN, RE, SVM and ANN algorithms on the designed dataset.

The other aforementioned performance degrading factors (other than different accents
and dialects) have also been taken into consideration during database design, however,
to fully address all the performance degrading factors from a single designed system
is still a challenging task, which is one of the limitation of the present research. Fur-
ther detail of the development of the voice database is presented in “Database” section.
Related research is presented in “Related research” section. Methodology is presented in
“Methodology” section. Results and discussions are provided in “Results and discussion”
section. Finally in ‘Conclusion” section, conclusion is provided.

Related research

This section provides a review of some of the recent SRS particularly robust against dif-
ferent types of variability (performance degrading factors like accents and dialects of a
language) present in them.

Development of voice datasets is an important aspect of designing SRS. Particularly,
SRS designed for specific applications need their own voice dataset to develop because
such datasets are usually not available, same is the case here in this research.

Some of the variability present in SRS (room reverberation, channel mismatch, sea-
sonal variations) are tried to be addressed during voice database design. However, most
of them (accents and dialects, emotions, background noise) need to be addressed during
the design and development phase of the SRS [11, 12].

National Institute of Standards and Technology (NIST) Speaker Recognition Evalu-
ation (SRE) [13] is an ongoing series of developing speaker recognition and exploring
new promising ideas in this field. The task specifically includes voice database design
and development of state of the art SRS robust against different variability/mismatch
conditions.

RedDot [14] is a project to collect speech data over mobile devices for speaker recogni-
tion. The designed database contains speech data of 45 English speakers (both native and
non-native) from 16 countries. The content of the database consists of a short duration
test utterances with variable phonetic content. The main focus for the RedDots database
was to include a high degree of inter-speaker variations and intra-speaker variations. To
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achieve the main focus, the speakers were selected worldwide and data was collected
from speakers in 91 different sessions.

Although RedDot and NIST speaker recognition evaluations provide great opportu-
nity to the research community to use their datasets and to evaluate their systems but
their focus was mostly towards the controlled data collection over mobiles or landline
telephones, which restricts the dimensions of different variability present in the data
[15].

To fill some of these gaps present in the previous datasets (particularly NIST-SRE), a
new voice dataset "Speakers in the Wild (SITW)" was created [16].

SITW [15] is a speaker recognition database specifically collected for the text-inde-
pendent speaker recognition applications. This database contains audio recordings of
299 speakers that were collected from open source media, with an average of 8 sessions
per speaker. The audio recordings in database include unconstrained/wild acoustic con-
ditions like background noise, reverberation as well as large intra-speaker variability. The
database also contains audios of speakers in different scenarios like interview, dialog or
uncontrolled conditions where multiple speakers are involved. SITW filled much of the
gaps present in the previous datasets like NIST but because of manually annotations, its
size was quite small.

VoxCeleb2 [17] is a very large-scale audio-visual speaker recognition publicly avail-
able dataset collected from open-source media, which contains over a million utter-
ances from over 6000 speakers. Along with its large size, the dataset specially focused
to improve the limitations exhibited by the most of the previous datasets like recording
under controled conditions [18—22] limited in size because of manually annotations, and
not freely available to the research community [18, 23].

Accent and dialect classification systems have also provided a great help in solving
accent and dialect related variability and designing robust SRS [24].

A weighted accent classification system has been designed by using multiple words
[25]. In this research, extreme learning machines (ELMs) and SVMs were used to the
problem of accent/dialect classification on TIMIT dataset. The TIMIT comprises utter-
ances from 630 speakers indicating eight different dialect regions of the United States.

Design of regional accented databases as well as accent and dialect classification is
another important area of research that helps in improving performance of speaker and
speech recognition systems designed for specific regions.

An Algerian Speech corpus [26] was designed to support research in speech recog-
nition. The corpus represents 300 Algerian native speakers who could speak Modern
Standard Arabic (MSA) language. The speakers were selected from 11 different regions
of Algerian, with both genders (148 males and 152 females), with different age groups
and with different educational levels (primary school to postgraduate level). Finally,
using a subset of the collected dataset, the author has designed a text-independent ASR
system using Hidden Markove Model (HMM) that achieved a 91.65% recognition rate.

Shah et al. [10] designed a voice database considering the same strategy i.e. the voice
samples were recorded using different recording devices to minimize the channel
variability, quite rooms were used to record the voice samples to minimize the effect
of the room reverberation, data was recorded with different sessions spread over
ample amount of time to cope with the seasonal variations’ effect on the collected
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dataset as well as a particular script containing the words spoken differently in dif-
ferent accents and dialects to make the designed dataset robust against accentual and
dialectical variations present in Pashtu language. On the other hand, Gaussian noise
was added in the extracted feature vectors to make the designed SRS robust against
background noise.

An accent classification system for classifying the regional accent of Philippine was
presented by Dano et al. [27]. Voice data was collected from 150 native residents of
Philippine. MFCC features were extracted to train MLP and k-NN classifier. In this
research, MFCC-MLP based accent classification system outperforms k-NN by
achieving recognition accuracy of 56.19%.

A small scale database of 11 speakers including 7 males and 4 females, with their
age ranging from 19-36 years was collected by Thullier et al. [28]. All of the speakers
were native French. Some speakers from all had unique Canadian French accents and
Hexagonal French accents. The voice samples were collected in a silent room (univer-
sity meeting room) as well as in a noisy environment (i.e. University cafeteria).

Based on the above discussion and the importance of designing regional voice data-
bases, here in this research we designed a voice database for five regional accents (spo-
ken in Gilgit Biltistan (GB), Pakistan) of Urdu and English, which are the important
regional accents of Pakistan. The next section describes the database development phase
of our research.

Database

This paper presents development of voice datasets used to evaluate the performance
of various ML algorithm. The datasets contain 7200 voice samples of 180 different
speakers of GB region of Pakistan. The proposed datasets add diversity to existing
datasets in terms of different local accents. Datasets development consists of various
steps, each step is explained below.

A regional voice dataset collection with accent variation

To design Urdu and English voice datasets with various accentual and dialectical varia-
tions, the Gilgit-Baltistan (GB) Provence of Pakistan has been selected. GB is an impor-
tant region of the China-Pakistan Economic Corridor (CPEC) and has great diversity
in voice accents. It borders with Azad Kashmir, Jammu Kashmir, Khyber Pakhtunkhwa,
Afghanistan, and China. GB is an area of high mountains and has an area of over
72,496 km?. The capital city of GB is Gilgit and the population of GB is about 2.0 mil-
lions. There are ten districts in GB i.e. Gilgit, Nagar, Hunza, Ghizer, Astore, Skardu, Dia-
mer, Ghanche, Shigar, and Kharmang. The people of this region have different native
languages and have different cultures and backgrounds. There are five different native
languages spoken in these districts, which are Shina, Balti, Burushishki, Khuwar and
Wakhi [29, 30]. Speakers of each of these districts speak their standard native Languages
(which are used as a mean of official communication in offices as well as are communi-
cated on radio broadcasts) with different accents. Based on these five regional accents,
several speakers were chosen from each district as indicated in Table 1.
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Table 1 District wise speaker selection

Districts Accent Language Participants
Male Female Total
Gilgit, Hunza, Nagar, Ghizer, Astore, Diamer, Shina English and Urdu 33 33 66
Skardu, Ghanche, Shigar, Kharmang

Skardu, Shigar, Kharmang. Ghanche Balti English and Urdu 21 21 42
Gilgit, Hunza, Nagar, Ghizer, Burushiski English and Urdu 18 18 36
Hunza, Ghizer Wakhi English and Urdu 9 9 18
Hunza, Ghizer Khuwar English and Urdu 9 9 18

Total participants 180

80
65
‘g 60
42 40
é 40 33
P4
° 20
E 0 r r v
18-30 31-43 44-56 57-69
Spealer's Age
Fig. 1 Age-wise speakers' distribution

Age distribution of the speakers

For the design of voice database, the voice data was collected from male and female
speakers with different ages ranging from 18-69 years. The purpose of selecting
speakers with different age groups is to include acoustic variation, which arises in the
voice of speakers at different stages of age to cover maximum telephone banking cus-
tomers and mobile users. The Age-wise distribution of the speakers is shown in the
Fig. 1

Design of script for speakers

The voice data was collected from each selected speaker based on two specifically
designed scripts in Urdu and English languages. The scripts contain all possible con-
versational talk between a phone banking officer/mobile call center agent and their
customers. These scripts contain sentences in the form of words, 10-16 digit strings,
and the speaker’s personal information mostly related to bank and mobile network
services. All together 20 sentences with average time duration ranging between 10
and 100 ms were included in each of the scripts. The scripts were provided to each
speaker to read for recording data. The designed written script for the English lan-
guage is shown in Table 2, whereas, the same script was translated into Urdu for the
recording of voice samples in Urdu language.
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Table 2 Designed written script for English

S.No Authentication questions by a phone banking Recorded customer’s response
officers
1 Asalamualaikum Asalamualaikum
2 What is your Name? My name is; ———
3 Where are you calling from ? Iam calling from: ———
4 What is your father’s name? My father name is: ———
5 What is your mother’s name? My mother name is; ———
6 What is your National Identity Card (NIC)? My NIC number is: ———
7 What is your postal address? My postal address is: ———
8 What is your mobile number? My mobile number is: ———
9 Is your mobile registered with this bank? Yes/No: ———
10 What is your current location? My current location is: ———
11 What is your account number? My account number is: ———
12 What is your debt card number? My debt card number is: ———
13 What is your credit card number? My credit card number is; ———
14 What is the expiry date of your debit card? The expiry date of my debit card is: ———
15 What is the expiry date of your credit card? The expiry date of my credit card is: ———
16 What is the secret code of your debit card? The security code of my debit card is: ———
17 What is the secret code of your credit card? The security code of my credit card is; ———
18 What is the expiry date of your NIC? The expiry date of my NIC card is: ———
19 What is your occupation? My occupation is: ———
20 What is your Date of Birth? My Date of Birth is; ————

Voice data recording environment and device allocation

The data was recorded from speakers in the university office, seminar room, and rest
room using different smartphones and landline. The specification of the smart phones
which have been used for data recording is as follows.

1. Huawei P8, CPU Octa-core 1.2 GHZ, 2.0 GB RAM, 16.00 GB internal memory and
Android version 6.0

2. Oppo A371W, Processor Qualcomm snapdragon 410 quad-core processor msm8916,

16 GB internal memory, 2 GB RAM and OS version lollipop 5.1.1

Samsung S6 (Samsung-sm-g920v), 32 GB internal memory, and Android version 7.0.

iPhone X, CPU Hexa core, 256 GB internal memory, 3 GB RAM

Micromax Q349, 16 GB internal memory, 2 GB RAM, and Android version 6.0.

Landline

ISR

The voice data was recorded from a total of 180 speakers. The speakers were sub
divided into 6 groups where each group contained 30 speakers. All the groups were
assigned a different specific device for recording.

Recording sessions
The voice data was collected in seven recording sessions with a gap of at least one
month. Figure 2 depicts recording sessions and their corresponding speakers. The

Page 7 of 18
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Fig. 2 Recording sessions with corresponding speakers

purpose of recording data in different sessions was to track the effects of intersession
variability on ASR performance [31].

Recording of voice samples

The designed scripts (Urdu and English) were provided to each speaker who was
selected in a particular session for recording. Before the start of each session, each
speaker was communicated on how to record their voices, and afterword, they were sup-
posed to rehearsal for a short period. Finally, the data was collected sentence by sentence
according to the script. After the recording of each sentence, the recorded sample was
verified by just replaying the recorded sentence to ensure the acquisition of appropriate
sample. Since the scripts contained 20 different sentences each, therefore, each speaker
recorded 20 separate sentences for the Urdu language as well as for English. A total of
3600 (20 * 180) voice samples have been recorded for the English Language. Similarly,
a total of 3600 (20 * 180) voice samples have been recorded for the Urdu language. So
overall a total of 7200 (3600 + 3600) voice samples have been recorded. All the recorded
samples are then transferred to a laptop and converted to .wav from the default format
of the allocated devices using audio converter (4dots software) for further process-
ing. The voice samples were recorded in a systematic way as shown in Fig. 3. As per
Fig. 3, the designed scripts were distributed to the speakers selected for a particular ses-
sion for recording. During a practice session, the speakers were given instructions on
how to read the script and making them familiar with the acquisition process. It was a
kind of practice session before the actual recording. Afterwards, the speaker’s voice sam-
ples were recorded sample by sample. Each sample was cross-checked with the script
to ensure the consistency of the acquired voice sample with the script. All consistent
samples were kept as voice database and inconsistent samples were discarded and the
process was continuing until the collection of all voice samples.

Methodology

Voice samples preprocessing

After data collection, the collected voice samples were pre-processed and features
were extracted using MFCC. Pre-processing of speech plays an important role in the
development of an efficient automatic speech/speaker recognition systems. Pre-pro-
cessing is an important step for ML algorithms to produce better results. In speech
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Fig. 3 Voice samples recording process

processing, the pre-processing includes noise cancellation, pre-emphasis and silence
removal. Pre-processing facilitates the voice-based recognition systems to be compu-
tationally efficient [32]. Due to the characteristics of the human vocal system, glottal
airflow and lip radiations depress higher frequency components of the voiced part of
the sound signal. For the voiced sound signal, the glottal pulse has a slope of approxi-
mately — 12dB/octave, and the lip radiation has a slop of approximately + 6dB/
octave. Resultantly sound signal introduces a slope of — 6 dB/octave down-ward if
compared with the spectrum of vocal tract. The process to remove the slope of — 6 dB
/octave is known as pre-emphasis and it removes the effects of the glottal pulse from
actual vocal tract and balance power spectrum dynamics. Thus, all voice samples have
been passed through a high pass filter. It amplifies high-frequency components with
respect to low-frequency components. The pre-emphasis method ensures that all for-
mants of the voice signal have identical amplitude so that have equal importance in
subsequent processing steps [33]. After pre-emphasis, the voice samples were further
processed to remove silence using amplitude based silence removal technique [34]
This technique divides the whole audio sample into components of short fixed length
called frames and calculates maximum amplitude of each frame. It then finds those
frames with the maximum amplitude is greater than 0.03 and considers those frames
as voice portion of the speech and discards the frames with lesser amplitude then
0.03. This technique assumes that the silent part of the voice signal has amplitude
< 0.03 and the voice part of voice signal contains amplitude > 0.03. The pre-process-

ing is shown in Fig. 4.
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Fig. 4 Voice samples’ pre-processing

As per Fig. 4, for pre-processing of voice samples, initially, each voice sample was pre-
emphasized by passing through a first order high pass filter. Each pre-emphasized voice
sample is then divided into 20 ms to 30 ms duration overlapping frames for analysis.
Each frame is then analyzed using Hamming window. Based on the amplitude of each
windowed frame, frames with silence and without silence were separated and frames

with silence were removed.

Features extraction

After pre-processing, MFCC features were extracted from all voice samples. Feature
extraction is the next important step after pre-processing for developing voice based
recognition systems. The output from the feature extraction process is the main input
for speaker model development and matching processes.

The MFCC technique is a most popular, has a huge achievement and extensively
used in the speaker and speech recognition systems [35, 36]. It is based on a loga-
rithmic scale and is able to estimates human auditory response in a better way than
the other cepstral feature extraction techniques [37, 38]. MFCC features are derived
from short-term Fast Fourier Transform (FFT) power spectrum of the pre-empha-
sized input speech samples. To obtain these features, initially, the pre-emphasized
input voice sample is divided into fixed length segments known as frames. The pur-
pose of framing is to analyze the input voice sample in nearly non-varying/static form
(by nature, speech signals are non-stationary). After framing each frame is passed
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through a window (hamming window in our case) to analyze. Each frame is ana-
lysed by applying window to remove discontinues at the beginning and the end of
each frame. The resulting speech sample is then transformed into frequency domain
from time domain by simply applying FFT. Transformed signal values are then plot-
ted against the Mel scale (Mel-scale has linear frequency spacing lower than 1000 Hz
and a logarithmic frequency interval higher than 1000 Hz) [39]. Finally, MECC coef-
ficients are obtained by using a Discrete Cosine Transform (DCT) of the logarithm of
the power on each Mel frequency.

The process of feature extraction is shown in Fig. 5. In this research, 19 MFCC were
obtained and used as feature vectors for ML algorithms.

Classification models

After extraction of voice features (MFCCs), some of the popular ML algorithms relevant
and suitable to the present research such as SVM, ANN, k-NN, and RF [40-42] were
trained using training set of feature vectors and tested on the set of test feature vec-
tors. To build learning models and for train-test splits of feature vectors, ten-fold cross-
validation (TFCV) technique was used. In TFCV method, the original feature vector
is randomly divided into ten nearly equal sub samples. One of the ten samples is ran-
domly chosen as a test feature vector, whereas, all the remaining sub-samples are used
as training feature vectors. Similar, process is repeated until all the ten sub-samples of
feature vectors have been tested [43]. In this procedure, since, the classification accuracy
is based on ten estimates rather than just a single estimate, therefore, TFCV produces a
more precise estimate of classification accuracy than cross validation [44].

SVM is a supervised machine learning model [45] that analyzes data and recognizes
patterns, used for regression and classification. It is a well-known discriminative clas-
sifier that models the boundary between the speaker and a group of impostors. We
implemented a Sequential Minimal Optimization (SMO) algorithm to train SVM
classifier [46].

K-NN algorithm is a family of lazy and instance-based learning algorithms. When-
ever it is necessary to classify a sample of unknown data from a test data set, the
KNN’s task is to examine training data set for the most related k samples. Instance
based classification algorithm, provide an efficient implementation of the KNNs [47].
We used euclidean distance based approach for KNN implementation [48].

RF belongs to a family of supervised learning model, used for the task of classifica-
tion and regression. RF works by constructing a huge amount of decision trees during

Pre-Processed ) Fast Fourier . Mel-Frequency
\foice Signal Transform Warping
MFCC 4| Discrete Cosine
Coefficients Transform
Fig. 5 Features extraction process
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the training phase and producing a class that is the mode of the classes. RF is a very
precise and robust classifier and is not subject to overfitting problem [49]. We imple-
mented RF with bootstrapping of samples technique [40] in this research.

ANN is used in a wide range of applications. It consists of a collection of various
neurons often called nodes of network connection and is a simplified version of the
human brain [50]. It consists of an input, hidden, and output layers. Its objective is
to get inputs and transform them into meaningful outputs. Here in this research,
Multilayer Perceptron (MLP) algorithm of ANN with back propagation feed-forward
algorithm is implimentd to classify instances and log-sigmoid function as a neuron
activation function [51].

Performance evaluation measurements
The behavior of each classification model is assessed on the basis of certain parame-
ters for measuring its efficiency. The performance of model is influenced by the train-
ing data size, the quality of voice records, and most significantly the type of ML model
used. We have used the following measurement matrices to assess the efficiency of
the ML models [52, 53]:

Accuracy: It shows how frequently the classifier predicts the correct values and can
be calculated as:

TP + TN
TP + TN + FP + FN

Accuracy = 1)
Precision: The segment of the relevant examples among the retrieved examples. The
precision can be calculated as:
iy P
Precision = ——— 2)
TP + FP
Recall: The segment of relevant examples, which are retrieved from the total rel-
evant examples and can be defined mathematically as bellow:
P
Recall = —— 3)
TP + FN
F-measure: It is the harmonic mean of the precision and recall. It can be expressed
mathematically as bellow:
2 x Precision x Recall

F-measure =
" Precision + Recall (4)

where TP is the number of samples predicted as positive that are actually positive; FP is
the number of samples predicted as positive that are actually negative; TN is the number
of samples predicted as negative that are actually negative; FN is the number of samples
predicted as negative that are actuall positive

Root Mean Squared Error: It is used to measure the mean magnitude of the errors

in an experiment using a quadratic scoring rule and it can be calculated as bellow::
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where ¥; is the estimate of y;.

Results and discussion
To test the effectiveness of ML models on the collected voice datasets, we performed
two experiments. In the first experiment, the performance of ANN, SVM, KNN and RF
models was evaluated on the feature vectors obtained from the English voice dataset,
whereas, in the second experiment, the performance of the same models was evaluated
on the feature vectors obtained from the Urdu voice dataset. In each experiment, for the
training and testing splits of features data, TFCV method was used. WEKA was used as
implementation tool to implement ML classifiers. Table 3 outlines the design parameters
of the employed ML algorithms.

Tables 4 and 5 outlines the results obtained during first and second experiments
respectively.

Table 3 Design parameters of ML classifiers

ML Models Parameters

SVM Kernal= polynomial, Seeds=1
RF Trees= 100, Bag size = 100
KNN K= 3, Distance = Euclidian
ANN Learning Rate = 0.3, Momen-

tum = 0.2, Epochs = 500,

Input nodes = 19, Hidden lay-
ers =01, Hidden units = 10

Table 4 Performance of ML models on English dataset

Performance measures Classifier models

ANN SVM KNN RF
Accuracy 88.53% 85.54% 86.11% 85.28%
RMSE 0.032 0.074 0.0384 0.0499
Precision 0.889 0.845 0.869 0.841
Recall 0.885 0.855 0.861 0.853
F-Measure 0.886 0.835 0.862 0.861

Table 5 Performance of ML models on Urdu dataset

Performance measures Classifier models

ANN SVM KNN RF
Accuracy 86.58% 81.75% 83.03% 81.12%
RMSE 0.0346 0.074 0.0424 0.0517
Precision 0.869 0.829 0.840 0.800
Recall 0.866 0818 0.830 0811

F-Measure 0.865 0.817 0.821 0.813
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Fig. 7 The RMSE of the classification models with TFCV for English and Urdu Dataset

Table 4 shows that ANN classifier outperformed SVM, RF and KNN by showing
2.99%, 3.25% and 2.42% improvement in classification accuracy respectively in classify-
ing speakers of English dataset. Root Mean Square Error (RMSE) is the standard devia-
tion of the recognition errors. SVM has the highest RMSE at 0.074 followed by RF at
0.049. ANN and KNN have the lowest RMSE of 0.032 and 0.038.

Table 5 shows that again ANN outperformed RE, KNN and SVM by 5.4%, 3.5% and
4.8% respectively in classifying speakers on Urdu dataset. Furthermore, SVM has the
uppermost RMSE of 0.074 followed by RF of 0.051, whereas ANN and KNN have the
lower RMSE of 0.034 and 0.042 respectively. This also indicates that SVM, RF and KNN
misclassified most of the Urdu voice dataset compared to ANN.

Figures 6 and 7 provide the comparison of the performance of ML models on English
and Urdu datasets.

Figure 6 provides the comparision of recognition accuracies of ML models (i.e. ANN,
SVM, KNN and RF) on English and Urdu datasets. All the models achieved higher accu-
racy on English dataset as compared to Urdu dataset. However, ANN achieved high
accuracy for both the datasets as compared to other classifiers.
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Figure 7 provides the comparision of RMSE of the models on English and Urdu data-
sets. All the models provided Lower RMSE on English dataset as compared to Urdu
dataset. However, ANN model showed lower RMSE for both the datasets.

It can be seen through the results provided that ANN outperformed all the other
tested ML models on the developed datasets. As already mentioned, Multilayer Percep-
tron (MLP) algorithm of ANN was used to classify different speakers based on different
accents. MLP better approximates the classes overlapping in nature [54]. The same is
case here in this research, where the different regional accents of GB, Pakistan are over-
lapping in nature, that is one of the reason why ANN outperformed the other used ML
algorithms.

Comparison with the other systems in literature
Finally, the achieved experimental results were compared with some of the state of the
art recently proposed classifier models. During the literature review, it was found that:

« Rizwan et al. [25] applied SVM on TIMIT dataset and achieved 77.8% recognition
accuracy.

« Danao et al. [27] applied MLP on their own designed Philippine dataset and achieved
56.19% recognition accuracy.

+ Shah et al. [10] applied MLP on their own developed Poshtu speakers” dataset and
achieved 87.5% recognition accuracy.

« Liu et al. [55] developed an MFCC-based text-independent speaker identification
system for access control. In their system, along with MFCC features, they used
Gaussian Mixture Models (GMM) as a classifier. Their system achieved overall
86.87% identification accuracy.

Comparative studies indicates that the proposed ANN model using collected English
dataset outperformed all the above mentioned models reported in literature.

Conclusion

In this paper, the authors have designed voice datasets in Urdu and English languages
with five different regional accents spoken in GB, located at the north of Pakistan.
These datasets are specifically designed to support and extend research in the domain
of speaker recognition systems. The designed voice datasets represents 7200 voice sam-
ples of 180 speakers and the content is in the form of single words, 10-16 digit strings
and speaker’s personal information. Designed datasets were pre-processed to extract
voice features and used in training four ML algorithms including SVM, ANN, RF and
KNN. The recognition accuracy indicates that ANN classifier model outperforms SVM,
RF and KNN by achieving 88.53% and 86.58% on English and Urdu dataset respectively.
Similarly, RMSE of ANN is best among other ML algorithms as the ANN model is sim-
ple and does not overfit. Moreover, it was found that ANN outperformed some of the
recently proposed classifiers in literature.
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