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Introduction
Big Data is a field that has been receiving a lot of attention in recent years. While a 
definitive definition is elusive, a definition which provides context is that big data is “the 
datasets that could not be perceived, acquired, managed, and processed by traditional 
IT and software/hardware tools within a tolerable time” [1]. This definition implies that 
Big Data involves such quantities of data that non-traditional methods are necessary 
for managing this data. A recent example of the application of Big Data with respect 
to world events was when Taiwan combined its health insurance and immigration and 
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customs databases to perform analysis to help characterize and control the spread of 
COVID-19 [2].

As a specific instance of a Big Data database, consider a relational database that is 
designed to organize Position, Navigation and Timing (PNT) metadata specifically 
related to test flights conducted by the Air Force Institute of Technology (AFIT). AFIT 
has approximately 100 data logs (also called missions) which will be stored in this rela-
tional database, and this number is expected to grow annually. This database requires a 
number of queries from parties interested in using this data for research.

Two relevant well-known Nondeterministic Polynomial (NP)-Complete problems 
are the 0/1 Knapsack Problem (KP) and the 0/1 Set Covering Problem (SCP) [3–6]. 
The terms 0 and 1 indicate that, given a Problem Domain (PD) of objects, each object 
is either included in a specific solution (1), or excluded (0). An answer in this pd is one 
that meets all of the problem constraints, and a global optimum is one that has a better 
objective function then all other solutions in the search space [7].

Consider the following brief description of the combined Multi-Objective (MO) KP/
SCP when converted to a database query: “Return the set of data logs where at least one 
data log meets n different criteria, and for which at least one each of x category are uti-
lized with the summation of z number totaling no more than c number, and maximizing 
k.” A specific implementation of this query may be: Return the set of data logs where a 
given set of sensor types and terrain types are represented across the set of returned data 
logs (and every data log contributes at least one sensor or terrain type not contributed 
by a separate log), and where the number of sensor readings recorded over 1000 meters 
in altitude across all data logs is maximized, and the total summed time of all data logs 
does not exceed 2 h.” Section "Methods/Experiments" of this paper describes the com-
bined MO KP/SCP PD. This problem is NP-Hard (A proof is available in the appendix of 
Mochocki [8]).

Various stochastic algorithms have recently been used to solve the SCP. One example 
is the Black Cat Swarm Optimization (BCSO) algorithm, proposed by Crawford et  al. 
[9], which was based on the earlier Cat Swarm Optimization (CSO) algorithm defined in 
Chu et al. [10] and adapted to solve discrete optimization problems by Sharafi et al. [11]. 
Another frames the transit route network design problem TrNDP as a MO optimiza-
tion problem, and uses the Route Constructive Genetic Algorithm (RCGA) to translate 
it into a SCP [12], which is then solved using randomized priority search as defined in 
Lan et al. [13]. Additional algorithms used to solve the SCP are the black hole algorithm 
[14, 15], the Harmony Search Algorithm [16] and the hyperedge configuration checking 
strategy [17] .

Numerous Genetic Algorithm (GA)s exist in recent literature which solve the KP [18–
21]. Ezugwu et al. [22] performed a comparative study of various approaches to the 0/1 
Knapsack problem, including GAs and simulated annealing. An additional swarm based 
algorithm used to solve the KP is the moth swarm algorithm [23], and the fruit fly algo-
rithm [24].

There are many examples in the literature of GAs being used to solve a Multiobjec-
tive Optimization Problem (MOP) [7, 25–29]. Due to the complexity of the PD and the 
recorded success of GAs used with MOPs, this paper proposes a GA stochastic popula-
tion based search algorithm and a Hill Climber (HC) stochastic local search algorithm 
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to return answers to the combined KP/SCP PDs. Both are based on a GA developed 
by Beasley and Chu [30], and utilize modified code based on work by Cobonkerr [31]. 
These algorithms are relatively simple and are not expected to push the field of GAs for-
ward significantly, but rather to show that they can be used with a novel database in a 
unique PD to generate information useful for researchers. A literature review did not 
discover other studies with comparable results to those laid out here, nor did it uncover 
the combination of the KP and SCP.

The various modern SCP and KP algorithms referenced in the prior paragraphs could 
also be adapted to solve the combined KP/SCP. Comparing the results in this paper to 
the performance of these other algorithms is difficult, because the results in this paper 
are based on querying a non-standard database with randomized data, populating data 
structures and further randomizing this data, and then running the GA and HC algo-
rithms developed by Beasley and Chu [30]. Even so, the results of this experiment are 
compared to the BCSO in Section "Discussion" and demonstrate that these algorithms 
are competitive when trading off answer quality and speed. If the use of GAs with data-
base queries proves to be useful, additional effort can be made to apply these more mod-
ern stochastic algorithms to the field of database MOPs.

These algorithms are tested against two relational databases, one with 100 naviga-
tion data logs, and one with 1000 data logs. These databases are populated with six files 
of repeated sensor data in the Scorpion Data Model (SDM) format, which is discussed 
in Section "Methods/Experimental", and randomly entered metadata. They are imple-
mented in Java, and use Structured Query Language (SQL) queries to populate Java data 
structures, which then run the algorithms and return answers to the NP-Hard combined 
MO KP/SCP. In application, this Java program functions as part of the User Interface, 
and would interact with the underlying database on behalf of the researcher. The benefit 
is that the queries are simple, but allow for more complex results to be returned. The 
queries in the next section could modified at will. As long as the input to the MO KP/
SCP implementations fits the format defined in this paper, it allows for any sub-queries 
to populate the relevant problem data structures.

Section "Background and related queries" of this paper discusses the background of the 
relational databases used to test the stochastic algorithms. Section "Problem Domain" 
discusses the PD of the SCP and the KP, and the combined KP/SCP. Section "Stochastic 
Algorithms for the Combined MO KP/SCP" develops the pseudo code for the GA and 
the HC. Section "Results" presents the test experiment and results, and Section "Discus-
sion" compares them to a modern SCP algorithm. Section "Conclusion" is the paper con-
clusion, and Section 6 is the authors’ declarations.

Methods/experimental
This section is divided into three parts. Section "Background and related queries" 
describes the background of the database, and which queries are used in order to con-
struct the combined SCP/KP. Section "Problem Domain" goes into detail on the SCP, 
KP, and the combined SCP/KP PDs. Section "Problem Domain" describes the two algo-
rithms developed to solve the combined KP/SCP, and Section "GA and HC algorithm 
expected performance" describes the anticipated algorithm performance based on an 
analysis of the two algorithms and the PD
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Background and related queries

This section covers some specific details of the database design in order to motivate 
how the SCP and KP can combine to help facilitate database queries. This database is 
implemented in PostgreSQL, which is an open source, object-relational database system 
which dates back to 1986 at the University of California at Berkely. This Relational Data-
base Management System (RDBMS) supports arrays and documents (such as JavaScript 
Object Notation (JSON)), is also extensible, in that additional data types, functions, and 
operators can be added [32].

Three potential PostgreSQL relational database designs are compared to store PNT 
data [8]. These designs offer identical ways to store sensor metadata and non-sensor 
metadata, and differing ways to store sensor data which is recorded in the SDM format. 
A database overview from [8] and [33] is shown in Fig. 1. Figure 1 is a simplification of 
the actual design of the database. Wherever table is plural (i.e. tables), there are numer-
ous tables, each which have their own relationships to each other. For additional detail 
on the underlying database design and on how the final design was selected, please refer-
ence [33]. For this paper, the queries were kept relatively simple in order to demonstrate 
the utility of the algorithms, but more complicated queries could be used as long as they 
returned data matching the format described in the algorithms:

The missionDescription table in the overview above depicts the various mis-
sions stored in the database. In other words, a row in the missionDescription 
table, along with all of the other data related to that row in the children tables, together 
comprise all of the available information for that mission. The Sensor Metadata 
table is coupled with the channelInfo table so that specific sensors can be affiliated 
with channels for a given mission, and the SDM Data tables are comprised of the data 
collected by those sensors.

Fig. 1 Relational PNT Database Overview: Every row in missionDescription Table is an independent data 
log in the SDM format which is uploaded in the database. The SDM tables contain all of the navigation data 
associated with the data logs
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For the chosen approach, a new table is created for each SDM data type identified 
in Table 1 and for each mission. As an example, an individual row in the altitude table 
will have: artifact data for the relational database, and data which stores the measured 
SDM altitude data. This measured data includes: altitude (Double Precision), vari-
ance (Double Precision), timeStamp_arrival_sec, (BIGINT), timeStamp_arrival_nsec 
(INT), timeStamp_valid_sec (BIGINT), and timeStamp_valid_nsec (INT). Consult 
[34, 35] for additional detail on the SDM. [8] goes into additional detail on the tests 
which discriminated between these three solutions, provides rational for the solution 
chosen to meet AFIT’s data storage needs, and provides the specific SQL script which 
generates these tables.

For each approach, two databases were created, one with 100 missions and one 
with 1000 missions, in order to help show how these approaches scale as they become 
larger. The missions are composed of six log files in the LCM format, which are 
uploaded repeatedly into the databases, along with randomized sensor and non-sen-
sor metadata which are associated with each data log.

In order to populate the data structures discussed later in this article, a series of 
SQL queries are used in conjunction with the PNT database. The following queries 
are written for the chosen database design and are discussed here, along with their 

use in populating data for this algorithm: 

SELECT
MAX (id)

FROM
missionDescription;

Table 1 SDM Data Types: Describes the standardized types of sensor data recorded in each data log

A new table is created for each data type and for each data log. The IMU table, for instance, would have 430 Million rows for 
the 1000 mission database if they were not split between tables

SDM Data Types Description

IMU Inertial Measurement Unit (IMU) delta velocity and delta rotation 
measurements from the device’s three axis accelerometers and three 
axis gyroscopes.

Velocity (3D) 3-dimensional velocity

Velocity (1D) 1-dimensional velocity

Speed Speed as the magnitude of the velocity vector

Altitude Height above the WGS-84 ellipsoid

GeodeticPosition (3D) 3D WGS-84 GeodeticPosition

ThreeAxisMagnetometer Measures magnetic field as a 3-dimensional vector

PositionVelocityAttitude Includes position, velocity, rotation, and uncertainty

OpticalCameraImage Image from an optical camera

GNSS Raw measurements from a Global Navigation Satellite System (GNSS) 
receiver

GPSEphemeris Ephemeris describing GPS satellite locations.

SensorRegistrationAck Message to register sensor

non_SDM_Message Lightweight Communications and Marshalling (LCM) message is not an 
SDM data type
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Purpose: Every mission is a column which may be part of a returned solution. This 
query identifies the number of missions in the database and updates the total number 

of columns in the problem based on this number 

SELECT
COUNT (DISTINCT type ) AS s ome a l i a s

FROM
sensorTypes

UNION
SELECT

COUNT (DISTINCT t e r r a i n ) AS s ome a l i a s
FROM

terrain;

Purpose: This query determines the number of sensor types and terrain types to be 

covered. This returns the number of rows 

SELECT
mis s i on l eng th s e conds

FROM
mis s i onDesc r ip t i on

ORDER BY
id ;

Purpose: This query returns the weight of each column for the combined KP/SCP 

SELECT
c . m i s s i onDes c r i p t i on id ,
MAX( e . eventNumber ) − MIN( g . eventNumber )

AS value
FROM g e od e t i c p o s i t i o n 3d ? g
INNER JOIN

channe l In fo c
ON c . id = g . channe l i d

WHERE g . a l t i t u d e > 1000
AND c . m i s s i onDe s c r i p t i on i d BETWEEN 1 AND numColumns
GROUP BY
c . m i s s i onDe s c r i p t i on i d ;

Purpose: This query returns the value of each column for the combined KP/SCP. 
The GeodeticPosition (3D) data type is chosen to determine the minimum and 
maximum event numbers because it is a common data type which exists across most 
missions 
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SELECT
id,
type

FROM
sensorTypes

ORDER BY
id;

Purpose: This query returns a list of sensor types and their associated mission identifiers. 

These are the first eight rows to be covered by the KP/SCP 

SELECT
mis s i onDes c r i p t i on id ,
t e r r a i n

FROM
t e r r a i n

ORDER BY
mi s s i onDe s c r i p t i on i d ;

Purpose: This query returns a list of terrains and their associated mission identifiers. 
These are the last 5 rows to be covered by the KP/SCP.

These queries take time and have an overhead observable in the testing data. They take 
approximately 2 s to complete for the 100 mission database, and 17 s to complete for the 
1000 mission database. This will help contextualize the performance of the GA and HC 
algorithms. The next two sections of this paper discuss the combined KP/SCP PDs, and the 
GA and HC algorithm.

Problem domain

In order to define how the problem space of the SCP and KP combine, each one is defined 
individually. Following this, their combination is addressed.

Set covering problem

The general SCP entails having a group of sets which are to be covered (defining the uni-
verse), and a group of families, each which is composed of a subset of sets, so that a com-
plete covering of the sets is composed of a group of families, the combined sets of which 
include all of the sets to be covered. The SCP is defined as [36]:

Set Covering Problem: Given a set R = {r1, . . . , rm} and a family F = {S1, . . . , SN }

of sets Sj ⊂ R any subfamily F ′ = {Sj1, Sj2, . . . Sjk} of F such that ∪k
i=1 Sji = R

is called a subset covering of R, and the Sji are called the covering sets.
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The SCP can be thought of in terms of [3]:

which describes the columns which cover the rows and the rows which are covered by 
the columns. This concept is applied in code by defining two dimensional array lists in 
Java.

Typically the SCP is thought of as having costs such that the goal is to Minimize

which means that the families chosen to be part of the solution have associated costs 
which are to be minimized. This minimization is part of the optimization process.

Solution space The SCP is O(2n) [37]. This is due to a full solution having to consider 
all possible combinations of the available sets.

Problem class NP-Complete [5].
The SCP can be framed as a query for the PNT database described in Sections "Intro-

duction" and "Methods/Experimental": Return a subset of data logs that minimize 
the total summed time of the missions such that all terrain types and sensor types are 
represented.

The knapsack problem

In the general form of the KP problem, objects have an associated weight and value 
which are not (necessarily) related, and bins have a certain weight capacity. An optimal 
answer returns the set of items that fit in this bin that have the maximum value.

Solution space The KP is O(2n) . This is due to a full solution having to consider all pos-
sible combinations of the available sets [5].

Problem class NP-Complete [5].
The KP can be framed as a query for the PNT database described in Sections Intro-

duction" and "Methods/Experimental": Return a subset of data logs where the total 
summed time of missions does not exceed X s, and where the total number of sensor 
measurements taken above Y altitude are maximized.

Combined problem

Find a solution such that both problem domains are satisfied and optimized. SQL que-
ries are used against the PNT database to populate data structures affiliated with the 
combined KP/SCP. These data structures are used with conjunction with a Population 

Ji = {j ∈ J : aij = 1}

Ij = {i ∈ I : aij = 1}

∑

j∈J

cjxj

Knapsack Problem: Given a set of n items. Each item i = 1 . . . n has two parameters,

a weight wi and a value vi. Given a knapsack capacity X , find a subset Xof items

of maximum value that does not exceed the weight restriction. The goal is to

maximize
∑

i∈S

vi such that
∑

i∈S

wi ≤ X[5].
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(GA) and Local Search (HC) algorithm to return answers to the queries in the combined 
KP/SCP problem domains.

English Description Given a knapsack capacity, a set of rows to be covered, and a set of 
families which each have some subset of these rows, and also have an associated value 
and weight. Return a subset of these families which covers all of these rows (combinato-
rial problem, one type of optimization), and for which the combined weight does not 
exceed the knapsack capacity (constraint), and which has the maximum possible com-
bined value for the sets (optimization).

The goal in this problem domain is to optimize the combined value

and to provide a set covering such that

The weight

can be thought of in terms of the cost from the original SCP problem, but this is not a 
perfect corollary. For instance, it does not matter if

or if the combined weight is arbitrarily lower, so just trying to minimize weight is not 
necessarily an optimization goal. The goal is to provide a set covering so that value is 
maximized, while not exceeding the aforementioned constraints. These are competing 
optimizations, as there may be solutions to the Knapsack Problem which have higher 
values yet which do not provide a set cover, and there may be smaller set coverings with 
lower weights which provide less value.

Solution space  Both of these problems could be solved independently if the relevant 
parameters from the other problem were ignored. Even so, each is a permutation prob-
lem, resulting in them having equivalently sized solution spaces. Therefore this problem 
has a solution space of O(2n) , which is the same as if they were solved independently.

Problem class The KP/SCP PD can be thought of as a decision problem. For a given 
answer to a SCP, is it a valid minimal set cover that meets the three combined conditions:

The KP/SCP: Given a capacity X , a set R = {r1, . . . rm}, and a family F = {S1, . . . SN }

of sets Sj ⊂ R and associated weights Fw = {w1, . . . ,wN } and values Fv = {v1, . . . vN },

return a subfamily F ′ = {Sj1, Sj2, . . . Sjk} of F such that ∪k
i=1 Sji = R, which

maximizes
∑

i∈F

vi such that
∑

i∈F

wi ≤ X and for which � ∃[(Sn)|Sn ⊂ (F ′ − Sn)]

(1)
∑

i∈F

vi

∪k
i=1Sji = R

FW = {w1, . . .wN }

∑

i∈F

wi = X

(2)∪k
i=1 Sji = R
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The SCP decision problem reduces to the combined KP/SCP Problem. A proof is avail-
able in [8]. This shows that the KP/SCP decision problem is NP-Complete. The KP/SCP 
problem is likely NP-Hard, as it would be difficult to provide a polynomial time certifier 
that a given answer is indeed optimal. The next section describes the top down design 
of algorithms to solve the combined MO KP/SCP. The SQL queries in Section "Meth-
ods/Experimental" are used to populate data structures, which are used with these algo-
rithms to return answers to this PD.

Stochastic algorithms for the combined MO KP/SCP

The code for the GA and HC algorithms sections are based on the work by Cobonkerr 
[31], which implements the algorithm designed by Chu and Beasley [38]. Some sections 
of the code required major rewrites to implement the modified algorithms. The pseudo 
code is available in the appendix of Mochocki [8].

Genetic algorithm

Consider the general description of a GA [39]: 

1 Initialize a population of chromosomes; (Set of Candidates)
2 Evaluate each chromosome in the population; (Feasibility)
3 Create new chromosomes by mating current chromosomes—apply mutation and 

recombination as the chromosome mate; (Next State Generator)
4 Evaluate the new chromosomes (Feasibility) and insert them into the population; 

(Objective Function)
5 If time is up, stop and return the best chromosome; (Solution), if not, goto 3.

Encoding: Utilize a binary encoding (0/1) for each column to indicate whether or not 
that specific column is considered as part of a given solution. Each column has an asso-
ciate weight and value. A specific solution is represented as a genome (equivalent to a 
chromosome).

Initial Population (Set of Candidates): This is generated at the beginning of the pro-
gram based on the specific column/row/weight/value parameters. Each member of the 
population is checked for feasibility, as detailed below, and to ensure lack of redundancy 
between answers.

Training Solutions (Next State Generator):

• Use a k-ary tournament selection to select two parents, each is the most fit of its 
respective tournament (participants are randomly selected) [7]. This approach gives 
preference to the more fit parent, but does not guarantee that a bit from that parent 
is selected.

(3)
[

(Sn)
∣

∣Sn ⊂
(

F ′ − Sn
)]

(4)
∑

i∈F

wi ≤ X
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• Perform a crossover between the two parents to produce a child. Consider each bit in 
parents. If bits match, pass bit to child. If bits do not match: Generate fitness num-
ber: fprob =

fp2
fp1+fp2

 . Generate a random number r with the range 0 . . . (fp1 + fp2).

• if r > fprob take the bit from p2 else p1.
• Perform a mutation on the child to produce a new solution. Select a random bit from 

child and flip
• Check the child for feasibility, perform a modification on the child to make feasible
• Add the child back to the population, replacing a less fit member. Calculate average 

fitness of population pa = (
∑n

i=1 vi
1
n ) . Randomly choose a member of population. If 

vm ≤ pa replace, else choose a new member.

Feasibility: The feasibility of the population is checked once generated, and every new 
possible solution is checked before being returned to the population.

• Per the SCP, the set of rows which are part of the solution need to be checked to con-
firm that every row is covered.

• The answer needs to be a minimal subset so that there is no column for which every 
covered row is a subset of the rows covered by all of the other combined columns.

• The combined weight of all columns needs to not exceed the weight restriction.

Mathematically, feasibility is defined as: 

1 ∪k
i=1Sji = R

2  ∃[(S)|S ⊂ (F ′ − S)]

3 
∑

i∈F wi ≤ X

In the case a given solution is not feasible, it is fixed or discarded deterministically. Note, 
it is assumed that Feasibility Condition 2 can only occur if Feasibility Condition 1 is 
valid. In other words, a solution cannot be a minimal SCP if it is not an SCP.

Make Feasible: Consider cases in Table 2
Case Descriptions: 

(a) All three conditions are true. This means that the solution is feasible. Return 
genome.

Table 2 Genetic algorithm possible feasibility conditions

Case 1 2 3

a T T T

b T T F

c T F T

d T F F

e F T T

f F T F

g F F T

h F F F
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(b) Min SCP conditions are satisfied but KP condition is not. Discard this genome.
(c) Answer is a SCP and satisfies KP, but is not minimal. Identify redundant family of 

lowest value (if multiple) and delete. Return modified genome.
(d) Answer is a SCP but there are redundant columns and KP weight condition is vio-

lated. Identify redundant columns and remove so that weight falls within restric-
tion. If weight still exceeds limit even once all possible columns are removed, dis-
card this genome.

(e) The solution is not a set cover but the columns proposed so far do not violate 
weight limits. See if any columns can be added which meet condition 1 without 
violating the weight restriction. Then check for redundancy with added rows.

(f ) The solution is not a set cover and it busts the weight limits. Discard this genome.
(g) Condition 2 assumes that condition 1 is valid, so this combination is meaningless.
(h) Condition 2 assumes that condition 1 is valid, so this combination is meaningless.

Fitness (Objective Function): Assuming that all solutions are feasible, the best answer, 
also called the most fit, is the one with the highest value.

Convergence: 

1 Hard time restriction: This value can be set as a problem parameter and sets a limit 
to for how long the algorithm will continue to hunt for better solutions even while 
these solutions are actively being found. This time restriction is only checked in 
between attempts to evolve new solutions, it will not interrupt an evolution attempt.

2 Population fitness has not changed in at least 60 iterations. This implies that a more 
fit solution is relatively difficult to find.

Hill Climber Algorithm

The Hill Climber Algorithm uses the same problem encoding, queries, and generation 
of the initial solution as the GA. The main difference is that the HC only generates a 
single solution, and then explores the neighborhood of that solution looking for better 
answers, terminating when it is completely explored.

Encoding: Use a binary encoding (0/1) for each column/item to indicate whether or 
not that specific column is considered as part of a given solution. Each column/item also 
has an associated weight and value.

Neighborhood: A given subfamily F ′ = {Sj1, SJ2, . . . , Sjk} of F such that ∪k
i=1Sji = R and 

feasibility constraints are met, subject to all possible Swap combinations O(n2).
Initial Population (Set of Candidates): A single solution S0 is generated as the ini-

tial solution. The generation of this solution matches the process described in section 
“Genetic algorithm”.

Next State Generator: Utilize swap operation. ∀F(S1, . . . , SN ) if Sj =“1” and Sk = “0” 
Swap (Sj , Sk) . Then check for feasibility

Feasibility: The solution encoding is identical to section “Genetic algorithm”. There-
fore, the constraints and challenges associated with the feasibility of a particular swap 
operation are the same. The feasibility function returns either the ∅ or Sjn.
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Selection: If Ft+1 > Ft , Make St+1 the new current state, else, discard St+1 and gener-
ate a new next solution per Next State Generator

Solution: Terminate either when: t = T  , i.e. a defined amount of time has elapsed 
or entire neighborhood has been explored and no better solution returned.

Fitness (i.e. Objective Function): Assuming that all solutions are feasible, the best 
answer (i.e. most fit) is the one with the highest value.

GA and HC algorithm expected performance

Section "Stochastic Algorithms for the Combined MO KP/SCP" laid out the back-
ground for the GA and the HC pseudo code. The key difference between them is 
that the GA uses a population based approach, k-ary tournament selection, a fit-
ness-based crossover, mutation, and returns the genome to the population based 
on a fitness comparison with the genome to be replaced. The GA does not run the 
risk of getting stuck in a single neighborhood, even though the fittest answers may 
trend towards a local maximum, and not reach the absolute maximum which may 
be somewhere else in the solution space, especially if the crossover and mutation 
operators alone are not able to get any of the genomes in the population there.

The Hill Climber explores a specific neighborhood, which is defined as the swap of 
all bits for a randomly generated started genome. The make feasible function of the 
GA is used only for the generation of the initial solution, any non-feasible solutions 
for the HC are discarded, even if they might potentially lead to more fit answers. 
Functionally, the HC uses much of the structure of the GA.

Based on their design, we expect that the GA will in general produce more fit 
answers to the combined MO SCP/KP in comparison to the HC. The GA is not 
restricted to a particular neighborhood, and multiple neighborhoods may be repre-
sented in the population. The HC is expected to find its solutions faster than the GA. 
Once the initial solution is discovered, the HC deterministically searches its neigh-
borhood in polynomial time, whereas the GA stochastically generates the entirety of 
its initial population before beginning to the genome mutation process.

In Section "Results", the GA is tested with populations of 10, 25, and 50 genomes 
for the 100 and 1000 mission databases. The PD search space represented by the two 
databases used to test these algorithms is critical when comparing how the GA per-
forms between population sizes. As is discussed in the next section, these databases 
are composed of repeated files and randomized metadata, with values and weights 
stochastically modified after being queried to add nuance to the search space. Even 
so, certain combinations of files with high value and low weight are expected to be 
present in most answers, especially as the weight limits increase, so it is expected 
that GAs with population sizes of 50 will produce similarly fit solutions as the GAs 
with a population sizes of 10. In general, for populations that use a binary encoding 
smaller population sizes are sufficient to find relatively fit answers [40]. For complex 
search spaces (with multiple local maxima) there is not a direct correlation between 
population size and the fitness of the returned answers [41].

Section "Results" reviews the results of the algorithms laid out in this paper, and 
Section "Discussion" compares these results to a modern SCP algorithm.
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Results
The two databases that the GA and HC algorithm interface with are composed of six 
separate files which were replicated 100 times and 1000 times. This replication means 
that there are a predictably finite number of value and weight combinations, which are 
derived directly from the SDM data. As the sensor and terrain metadata is randomly 
entered, the Set Covering portion of each mission varies. Each database is loaded com-
pletely into memory on the 2 TB Solid State Drive (SSD). The database with 100 mis-
sions is 53 GB, and the database with 1000 missions is 346 GB. Table 3 shows the value 
and weight of the six data logs replicated in the databases:

As is discussed in Section "Methods/Experimental", the value is the number of 
recorded events from the GeodeticPosition (3D) table above 1000 meters and the 
weight is the total number of s of the mission. While these are specific units, the result 
of any query could replace these in the algorithm depending on what the researcher is 
attempting to optimize.

In order to prevent the algorithm from converging prematurely due to a lack of poten-
tial higher value answers, the value and weight are randomly altered before being added 
to the problem data structure. The values of the columns are assigned ± 200,000, and the 
weights of the columns are assigned ± 1,000 in comparison to what is shown in Table 3. 
As this adds an additional element of randomness to algorithms which are already sto-
chastic in nature, the Genetic Algorithm and Hill Climber Algorithm are compared on 
the basis of trends in performance, and not on individual experiments. Each experiment 
is repeated 10 times.

In general, each algorithm performs as expected. For a given Weight Limit, the Hill 
Climber Algorithm tends to return less fit answers in a faster time, and the Genetic 
Algorithm tends to return more fit answers in a slower time. The population size does 
not produce much variation in returned value. All testing is done on the laptop shown in 
Table 4:

Both the Genetic and the Hill Climber Algorithms are tested against Weight Limits 
of 6,000, 10,000, and 20,000, and against the databases with 100 missions and with 1000 
missions. Furthermore, the Genetic Algorithm is tested with populations of 10, 25, and 
50 elements. Figure 2 Compares how the GA performed for trials with variations in pop-
ulation and database size.

The population size does not consistently impact the final fitness of the returned solu-
tion for a given weight or database size. With a weight limit of 6000 and a database size 
of 1000, the population of 50 slightly outperforms the population size of 25, while with a 

Table 3 Missions value and weight based on SQL queries

Mission Value Weight

1 418,653 4940

2 606,444 4743

3 1,036,695 4743

4 694,528 5229

5 712,219 5311

6 231,187 1837
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database size of 1000 and weight limit of 10,000, the other two population sizes slightly 
outperform the population size of 50. In general, with the larger database, the vari-
ances of the population sizes are more compact and more similar than with the smaller 
databases.

Figure 3 compares the returned values of the GA against the HC algorithm across ten 
trials. As expected, the GA overall had a lower variance when compared to the HC and 
more fit values. The overall fitness of the answers returned by both the HC increased 
with the larger database, likely because the neighborhoods are larger with more avail-
able solutions. The GA also tended to have lower variance and more fit answers with the 
larger database size. This is likely due to more variety with respect to the higher value 
files and which sets they are covering.

Figure 4 shows the time and variance of the GA and HC algorithm. The HC finished 
in under 2 s for the 100 mission database and around 17 s for the 1000 mission data-
base. Most of this is due to the overhead completing the SQL queries listed in Section 
"Methods/Experimental", and not due to performing the HC algorithm. The GA ranged 
between 18 s and just over 100 s.

Table 4 Testing equipment and software

Manufacturer Lenovo

Model ThinkPad P52 20M9

Processor Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

Installed memory 40GB

System type Windows 10 Pro 64 Bit Processing System

SSD Samsung SSD 970 EVO Plus 2TB

IDE Eclipse Version 2019-09 R (4.13.0)

RDBMS PostgreSQL 11.6

Fig. 2 Genetic Algorithm Population Comparison: Compares GA values with populations of 10, 25, and 50 
with Databases of sizes 100 and 1000
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Table 5 shows the average number of solutions found for the HC and GA. As expected, 
the GA found more solutions than the HC, and both algorithms found more solutions 
when going from the database with 100 missions to the database with 1000 missions.

Fig. 3 Genetic Algorithm and Hill Climber: Compares GC (Population: 25) Values against HC Values

Fig. 4 Genetic Algorithm and Hill Climber: Compares GC (Population: 25) Times against HC Times

Table 5 Number of Solutions Found for HC and GA algorithms (Population: 10)

Algorithm GA HC GA HC GA HC

Weight Limit 6000 6000 10,000 10,000 20,000 20,000

Average Number of Solu-
tions Found: 100 Mission 
Database

793 2 11034 2 72751 4

Average Number of 
Solutions Found: 1000 
Missions Database

4411 4 91003 4 388705 7



Page 17 of 21Mochocki et al. J Big Data            (2021) 8:46  

Discussion
As the Combined KP/SCP problem domain is original, there are not any compara-
ble algorithms available in literature which solve this exact problem. Furthermore, 
this problem is unique in that it is built around a series of database queries, which 
are based on a specific database schema populated with both repeated and rand-
omized data. However, it can be compared to algorithms which solve similar problem 
domains. One such algorithm is the BCSO algorithm, which is designed to work with 
the SCP PD, and is detailed in [9]. They use sets of standardized SCP data to test their 
algorithm, reporting the average time and value [42]. In order to show the quality of 
their solutions, they use Percentage Deviation Relative (RPD) to compare the average 
value of their answer against the known optimal solution for the SCP.

This same equation is used with the results of the GA and HC to get as much of a fair 
comparison as possible between the approaches. Due to the randomized nature of the 
data presented in this paper, there is no known optimal value for the combined KP/SCP. 
Table 3 provides the values and weights of the various columns, with the caveat that val-
ues are changed by ±200,000 and weights are changed by ±1000. Assuming a weight 
limit of 20,000 and four instances of Mission 3 being available in the optimum solution 
with each mission having a bonus of 200,000, the optimum answer would be 4,946,780. 
This is assumed to be the optimal value for comparison. Note that the true optimum 
value could potentially be higher or lower than this value for a given test case. Experi-
mentation showed that both the HC and GA algorithms took about 16 s to complete the 
queries listed in Section "Methods/Experimental" and to populate their data structures. 
For simplicity, it is assumed that the BCSO would also take 16 s to complete these que-
ries, and so 16 s was subtracted from the average times for the GA and HC results shown 
in Table 6. 

Table  6 demonstrates the difference in performance between the BCSO and GA 
and HC algorithms. The BCSO is faster than the GA, with inferior returned values, 
and slower than the HC, with superior returned values. This is perhaps an apples to 
oranges comparison, as they operate within different problem domains, operating on 
different data, and it would be difficult to know exactly how well the BCSO would 
would perform if it were converted to the combined KP/SCP PD and made to solves 
queries for the listed databases. This is an indication, however, that the GA and HC 
algorithms are at least competitive with a modern algorithm, depending on prefer-
ences for speed vs quality of the returned solution.

RPD =
Valueaverage − Valueoptimal

Valueoptimal
∗ 100

Table 6 BCSO Comparison to GA and HC

Average Time (s) RPD

GA 49.8 3.59

HC 0.8 32.9

BCSO 4.55 9.73
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Conclusion
This paper demonstrates two algorithms which successfully return solutions to 
the additive MO KP/SCP problem query. The Genetic Algorithm GA uses a binary 
encoding, a k-ary tournament selection, crossover, mutation, and feasibility functions 
to continuously develop new solutions from a population. New solutions are tested 
for fitness with respect to the population, and are added back in replacing a less fit 
member. The algorithm concludes if a certain amount of time has passed or if the 
most fit member of the population has not changed after 60 iterations of the genetic 
algorithm. The Hill Climber HC algorithm uses the binary encoding from the GA, 
and generates a single valid solution. The algorithm then flips every 0 and 1 in its 
solution (searching the neighborhood), and checks for more fit solutions. The algo-
rithm concludes when all 0s and 1s are flipped.

For the GA, differences in population size did not consistently make a difference 
in performance. This may be due to the relatively small size of the databases and the 
repetitive nature of the data. When comparing the GA and HC algorithms, the GA 
consistently gives answers of higher value, and the HC algorithm consistently returns 
answers more quickly. This difference is more pronounced with the larger database. 
The results for both algorithms were compared to the modern BCSO algorithm. Cor-
recting for the time to perform queries and populate data structures, the HC returned 
less optimal results in a faster time and the GA returned more optimal results in a 
slower time. This is not a perfect comparison, as the combined KP/SCP PD is dif-
ferent from the SCP PD, but it is an indication that the results demonstrated in this 
paper are competitive with a modern SCP algorithm.

During testing, the SQL queries are repeated for each rendition of the algorithm. 
In practice, this is not necessary, and for especially time-consuming SQL queries, 
the queries could be run one time and the algorithms multiple times returning each 
answer based on the users preference. The algorithms used here could be applied to 
any RDBMS, as long as the queries return data which match the format described in 
the algorithms (i.e. a set number of type categories and values distinguished by the 
user and translated into SQL). Thus the power of these algorithms is that relatively 
simple queries return more complex results in the KP/SCP PD.

These algorithms and their associated SQL queries are implemented on two data-
bases which exist entirely on the test laptop’s SSD. The final implementation of the 
AFIT PNT database will be distributed across multiple nodes, due to the anticipated 
growth of the database. While this may impact query speed, it will not impact algo-
rithm performance, as the algorithms will be implemented as part of a programming 
language such as Java or C++ which will be accessible to researchers through a User 
Interface.

There is significant future work for each algorithm implementation. As the database is 
implemented and goes live with SDM data and its associated metadata, these algorithms 
should be tested and compared with these operational data sets. Furthermore, the code 
should be rewritten to make it more useful friendly. Allowing researchers to write their own 
queries which could populate the problem data structures, and to choose an arbitrary num-
ber of row types, could potentially enhance the database usefulness, and may lead to the 
possibility of the algorithms being used with other databases. Another possibility would be 
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to add additional value categories, and to develop a way to prioritize and optimize between 
them.

Furthermore, both the HC and the GA should be kept available, as some filter research-
ers may prefer solutions which are more fit and are willing to wait for them, and others may 
desire solutions which are faster and are willing to accept less fitness. The desired solution 
fitness may vary based on the specific context of a problem, and multiple runs of the GA 
and HC may be necessary to find data sets that meet specifications. While both algorithms 
appear to scale well for databases composed of repeated files and randomized metadata, 
it is impossible to know precisely how they will perform with varied files and non-rand-
omized metadata without testing them in this context. How the HC and GA perform for 
these more interesting and realistic problems should be researched as they become avail-
able, and the algorithms updated as necessary.

Finally, researchers should continue to look for applications of the classical SCP and KP 
PDs and their respective algorithmic solutions in Big Data. This paper laid out two stochas-
tic algorithms and a specific RDBMS, but there are many additional PDs and associated 
algorithms that could be of value, and Big Data databases where they could be used. In gen-
eral, the concept of using simple queries to place data into data structures in order to create 
sophisticated results would have many applications. Ultimately the use cases should come 
from researchers who are using the databases, in conjunction with proficient computer sci-
entists who can fit the use cases with the correct equivalent PDs and algorithms, so that 
research is improved.
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