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2 Freiburg Materials Research Sensor data quality plays a vital role in Internet of Things (IoT) applications as they are

Center, University of Freiburg, rendered useless if the data quality is bad. This systematic review aims to provide an
Freiburg, Germany introduction and guide for researchers who are interested in quality-related issues of
Eua"v'gs‘lfa%fle?“;htife'g;(zr;‘?tﬁ“ physical sensor data. The process and results of the systematic review are presented
article which aims to answer the following research questions: what are the different types of

physical sensor data errors, how to quantify or detect those errors, how to correct them
and what domains are the solutions in. Out of 6970 literatures obtained from three
databases (ACM Digital Library, IEEE Xplore and ScienceDirect) using the search string
refined via topic modelling, 57 publications were selected and examined. Results show
that the different types of sensor data errors addressed by those papers are mostly
missing data and faults e.g. outliers, bias and drift. The most common solutions for
error detection are based on principal component analysis (PCA) and artificial neural
network (ANN) which accounts for about 40% of all error detection papers found in the
study. Similarly, for fault correction, PCA and ANN are among the most common, along
with Bayesian Networks. Missing values on the other hand, are mostly imputed using
Association Rule Mining. Other techniques include hybrid solutions that combine
several data science methods to detect and correct the errors. Through this systematic
review, it is found that the methods proposed to solve physical sensor data errors can-
not be directly compared due to the non-uniform evaluation process and the high use
of non-publicly available datasets. Bayesian data analysis done on the 57 selected pub-
lications also suggests that publications using publicly available datasets for method
evaluation have higher citation rates.

Keywords: Systematic review, Sensor data quality, Sensor data error detection, Sensor
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Introduction

With the emergence of the Internet of Things (IoT) and wireless sensor networks
(WSNs), sensor devices are deployed across the globe in a variety of fields such as
healthcare, industry, agriculture, home, and transport [1]. Recently, Cisco [2] estimated
that there would be approximately 850 zettabytes (1 zettabyte is 10! bytes) of data gen-
erated from devices. An IoT application may have hundreds or thousands of sensors
which produces vast amounts of data, but the data is rendered useless if it is riddled
with errors as poor sensor data quality caused by the errors may lead to wrong deci-
sion-making results. In this paper, the term sensor refers to a physical sensor [3, Chap 3],
which measures the changes in physical quantity e.g. temperature, humidity, and light
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Fig. 1 loT architecture. A high-level view of a typical loT architecture which shows the data flow

intensity of the sample or surroundings. Furthermore, the term error relates to the soft
faults that occur in sensor data found commonly in the systematic review such as outli-
ers, bias, drifts, missing values, and uncertainty, which should be detected or quantified
and removed or corrected in order to improve sensor data quality.

This is slightly different from the data quality (DQ) dimensions introduced by Wang
and Strong [4], which categorize the quality of data in databases or high-level application
architecture (Application Layer in Fig. 1) that are important to data consumers. They are
mostly used to describe data in enterprise-level systems and are used for modelling how
data errors propagate to the consumer’s end. Therefore, apart from incomplete (miss-
ing data) and inaccurate data (uncertainty), which are sensor data quality-related issues,
other DQ dimensions such as inconsistent data and timeliness are not considered in this
review paper as they are more specific to the topics of database design or communica-
tion data quality. A survey related to DQ dimensions is presented in the works of Kark-
ouch et al. [5].

Figure 1 shows an overview of the data flow of a typical IoT application. A physical sen-
sor such as a temperature or humidity sensor measures and collects readings (changes
in the observed property) in the Perception layer. The readings are then transmitted
through the Network layer, which determines the routes to send the sensor data and is
implemented using wireless technologies such as WiFi, 2G/3G/4G, Bluetooth, and LoRa.
Next, the Application layer receives data from the network layer and it is where the data
processing, predictive analytics [6], and storage takes place. The application layer is
designed and implemented using big data architectures such as Apache Hadoop, Spark,
or Kafka. The added complexity of the architecture causes new errors to be potentially
introduced in each layer. For example, in the Network Layer, poor data quality arises
from congested and unstable wireless communication links in sensor networks which
causes data loss and corruption [7]. In the Perception Layer, damage or exhaustion of
battery in sensor devices also causes data quality to degrade, as towards the end of its
battery life, sensors tend to produce unstable readings [8]. The hostile environment in
which in-situ sensors are deployed also plays a big part in the quality of the transmitted
data. For example, sensors for temperature, light, or humidity measurements are often
placed outdoors and are subjected to extreme local weather conditions such as strong
winds and snow, which might affect the operation of the sensor.
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Although the factors that cause errors and affect sensor data quality are known, sim-
ple strategies to overcome data quality problems, such as using industry grade sensors,
which are more accurate, stable and robust, are not feasible for applications that require
the deployment of large and dense sensors networks, which is the case for many IoT
applications. For example, in horticulture, sensors need to be deployed such that they
have high coverage and accuracy through large and dense sensor networks. Having to
deploy many highly accurate but expensive sensors will incur higher deployment costs.
Therefore, most IoT applications use low-cost sensors, though at the expense of data
quality. The use of both industry grade or low-cost sensors also results in high time and
maintenance cost as experts would have to go out to the field themselves to test and
calibrate the entire network of in-situ sensors to ensure data quality. Other than that,
re-transmitting the data when experiencing data quality errors (e.g. missing data) also
does not work well in an IoT application. This is because the nodes in the network are
powered on limited battery and memory which makes it expensive in terms of power
and computational resources to resend the missing data across the network, especially
if there is a big load of data to re-transmit. Retransmission also delays decision-making
which in turn may lead to inaccurate results [9].

Other than that, though studies in previous years tend to focus on high-level solutions
in the Application Layer for solving data quality issues [4, 10], it is not possible nowadays
due to the separation of the layers and complexity of the architecture. The advance of
Big Data where the sheer volume of data hinders the transport to the central system [1]
also encourages edge computing, or a decentralized solution, where the processing of
data quality is done in the Perception Layer i.e. in the sensor devices themselves and only
data with good quality is passed to the central server. Since sensor data errors may be
present and propagated in all layers, this review paper focuses on algorithms that solves
the fundamental issue of sensor data quality by detecting and correcting those errors
regardless of the IoT (or big data) architecture and layers. As such, the high-level design
and decision of the IoT architecture is not discussed in this paper, however, it is available
in [5, 11-13].

Therefore, the purpose of this systematic review paper is to investigate the different
types of sensor data errors which contribute to the degradation of sensor data quality
and the existing solutions to detect and correct those errors which can be applied in any
layer of the IoT architecture. The different domains the solutions are presented in and
the datasets used for evaluation are also studied. This systematic review acts as an intro-
duction for new researchers to the field of sensor data quality or as a guide for research-
ers who are interested in the techniques used to solve problems related to the sensor
data quality topic. In short, a systematic review is a rigorous and structured way of con-
ducting a literature review which allows it to be reproducible. It also helps researchers
identify knowledge gaps in the area of interest by extracting and analysing existing solu-
tions. Other review papers about sensor data quality are present, such as the works of
Li et al. [14] and Prathiba et al. [15]. However, those review papers do not mention the
methods used with respect to the different type of sensor errors and are not systematic
reviews.

This systematic review also focuses on stationary wireless sensor networks. This
is because many of the mobile sensor network problems are related to network



Teh et al. J Big Data (2020) 7:11 Page 4 of 49

connectivity issues rather than sensor data quality. The field of imaging has also been
excluded as it is found that the methods used to improve image data quality varies sig-
nificantly compared to other physical sensor data. The remainder of this paper is organ-
ized as follows: “Research methodology” section describes the methodology used in the
systematic review and the results from the review are provided in “Results” section. A
discussion about the challenges found in the research area is presented in “Discussion”
section. Lastly, “Conclusion” section concludes the study.

Research methodology

A systematic review is a standardized way of extracting and synthesizing information
available from existing primary studies with respect to a set of defined research ques-
tions. It helps researchers focus on the topic at hand and to identify knowledge gaps in
a research area. It is frequently used in the field of medicine and though not as common
in the field of computer science [16], a systematic review is still applicable and beneficial
in terms of providing a formal way of conducting a computer science-related literature
review.

The systematic review in this paper follows the guidelines of Kofod-Petersen [16] and
Silva and Neiva [17] for conducting a systematic review in computer science-related
fields. It is also done in accordance with the PRISMA [18] (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) checklist which is an “evidence-based
minimum set of items for reporting in systematic reviews and meta-analyses”. Since the
PRISMA checklist is constructed mostly for medical review literature, some of the items
such as the meta-analyses criteria are not considered in this review paper.

The systematic review process is broken down to several steps, starting with the defi-
nition of research questions in which this paper aims to answer. Next, the search pro-
cess and strategy are described, which specifies the keywords and search string used to
find the relevant and available publications literature databases. The search strategy also
involves a topic modelling step which was carried out to help refine the keywords and
search string. The inclusion and exclusion criteria, as well as the quality criteria, are then
defined to assist with the selection of relevant literature. Next, data extraction is carried
out which extracts data such as the title, abstract and publication year of the literature as
well as the types of sensor errors addressed, types of methods for detecting or correcting
errors and the domain from the selected studies after screening which is then synthe-
sized and presented in the next section, “Results” Finally, the risk of bias or limitations of
this review process is discussed. The steps for the systematic review and its risk of bias
are described in detail in the following subsections.

Research questions

The motivation for this systematic review is to provide new researchers an introduc-
tion to the field of sensor data quality and the errors that might occur, or as a guide for
researchers who are interested in solving sensor data quality related issues. Thus, the fol-
lowing research questions (RQs) are designed in which this paper aims to answer:

+ RQ1I1: What are the different types of errors in sensor data?
+ RQ2: How to quantify or detect errors in sensor data?
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+ RQ3: How to correct the errors in sensor data?
+ RQ4: What domains are the different types of methods proposed in?

With RQ1, we are able to investigate the common errors that leads to the degradation
of sensor data quality in this field. Moreover, RQ2 allows us to find existing solutions to
quantify or detect the aforementioned errors and RQ3 takes it one step further by find-
ing techniques to correct them. RQ4 on the other hand, gives an insight to how various
domains use different (or similar) techniques to solve sensor data quality problems and
the datasets used to evaluate the methods.

Search process
For this review paper, three computer science-related literature databases are used to
search for relevant literature about sensor data quality. The three databases are:

+ ACM Digital Library"
« IEEE Xplore?
+ ScienceDirect®

These databases are last searched on the September 27th 2018 and the search results
are exported into BibTeX format which is then downloaded and stored in the reference
manager Zotero. * For ACM Digital Library, the export function for BibTeX format only
exports the citation data of the literature, but not the abstracts. Thus, Zotero’s Google
Chrome plugin is used which allows the citation information, including the abstract, to

be imported directly into Zotero.

Improving search strategy by topic modelling
At the start of the search process, the keywords defined are “sensor data” and “data qual-
ity” which are used in the initial search string:

“sensor data’ AND (quality OR “data quality’” OR “sensor data quality”) 1)

The initial search results using query (1) returned 13,057 publications from three data-
bases, ACM Digital Library, IEEE Xplore, and ScienceDirect. In order to check, if this
initial search query retrieves publications which match the scope of this review, we are
using a text mining approach from natural language processing known as topic mod-
elling. Topic models are “probabilistic models for uncovering the underlying semantic
structure of a document collection based on a hierarchical Bayesian analysis of the origi-
nal texts” [19, p. 71]. The idea of the topic modelling step is to identify keywords and
groups of keywords that describe the content of the initial set of publications returned
by search query (1). In order to do so, topic modelling via Latent Dirichlet Allocation
(LDA) [20] is used to find groups of words that are likely to occur together and represent

! https://dl.acm.org.
2 https://ieeexplore.ieee.org/Xplore.
3 https://www.sciencedirect.com.

* https://www.zotero.org.
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Fig. 2 Topic modelling with LDA. Topic model of 13,057 titles and abstracts found from the search string 1.
Topic modelling is performed using a LDA model with 12 topics: a intertopic distance showing the marginal
topic distribution of each topic, b—d top 30 most relevant terms for Topic 1, 2 and 8 respectively, along with
its estimated term frequencies. Topic 1 and 2 have terms related to sensor and data, but Topic 1 is more
focused on systems and applications whereas Topic 2 is associated with methods and algorithms. Topic 8
consists mostly of keywords related to imaging and satellite imaging

a specific topic. For example, assume that the researcher decides to model three topics,
named Topic A, B, and C for convenience. After fitting, the LDA model assigns each
document the probability of it covering a specific topic, e.g. Document 1 has a 20% prob-
ability of being in Topic A, 75% being in Topic B and 5% being in Topic C. The LDA
learns these topic models by going through each document and cluster words that have a
high likelihood of term co-occurrence. By analysing the words that describe the cluster,
the researcher can then interpret the topic for each cluster.

Here, the LDA model is implemented using scikit-learn’s [21] estimator Latent-
DirichletAllocation. For the purpose of this analysis, the title and abstract
of the publications, which have been identified from search query (1), are used for
modelling the underlying topics. The visualization of the LDA model with 12 top-
ics obtained from the 13,057 documents (title and abstracts) of search string (1) is
shown in Fig. 2a with the intertopic distance showing the marginal topic distribu-
tion. Figure 2b—d lists the top 30 most relevant terms for Topic 1, Topic 2 and Topic

Page 6 of 49
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8 respectively. Topic 1 and Topic 2 both have top terms related to sensor and data.
However, Topic 1 seems to be more focused on systems and applications, whereas
Topic 2 is more related to methods and algorithms. Looking at the top 30 keywords of
Topic 8, one might classify that topic as “Imaging” or “Satellite Imaging” since words
such as “image”, “video’, “resolution’, “camera’, “satellite” and “pixel” occur in that
cluster. Through this topic modelling step, it can be seen that there are a handful of
papers related to “imaging” in the initial search results. Because imaging is a topic we
do not want to focus on, we are using the terms of Topic 8 to refine the search string
and set them to be one of the exclusion criteria in this paper.

Through the topic modelling, we decided that the field of imaging is not to be con-
sidered in this paper as the techniques used for improving image data quality is very
different compared to other physical sensor data. It is made an exclusion criterion
(see “Inclusion and exclusion criteria”) and the final search string used to search the
literature databases is defined as:

sensor data AND (quality OR “data quality" OR “sensor data quality")
AND NOT (“imaging") AND NOT (“satellite imaging") @

However, readers interested in that field of research can look at review papers [22—-24]
that investigates data quality in imaging, e.g. camera captured document images and
healthcare imaging.

Inclusion and exclusion criteria

The eligibility criteria are criteria used for screening and selecting relevant literature
from the search results. The eligibility criteria are composed of the inclusion and
exclusion criteria. As mentioned in “Introduction” section, this systematic review
focuses on stationary wireless sensor networks as mobile sensor networks tend to
lean towards network connectivity issues. Moreover, the field of imaging is to be
excluded as the techniques used for improving data quality for images vary signifi-
cantly from physical sensor data.

Inclusion criteria (IC):

IC1 Papers that involve sensor data,

IC2 Papers that mainly focus on data quality of sensor data,
IC3 Papers about stationary wireless sensor network,

IC4 Papers that consider different types of sensors.

Exclusion criteria (EC):

EC1 Papers that are duplicates,

EC2 Papers not in English,

EC3 Papers without methodology,

EC4 Papers that are secondary studies (e.g. survey, reviews, demos, posters,
tutorials),

EC5 Papers about imaging (camera images, 3D images, video streams) or satellite
imaging.
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Even though imaging-related publications are directly filtered from the search query (2),

EC5 is added as an exclusion criterion because there are still publications with imag-
ing-related topics present in the result obtained from the search. This is due to the use
of the same search string for all databases, which produces different results in different
databases. For example, in the substring “..AND NOT (“imaging”) ..” of search string
(2), ACM Digital Library removes all lemmatized terms related to “imaging” e.g. images,
image, imaging but IEEE Xplore removes only the specified word “imaging”.

Study quality assessment

In addition to the inclusion and exclusion criteria, the quality criteria are defined to
evaluate the quality of papers selected after full-text screening. Using these criteria, the
quality of the selected literature can be assessed to see if they are fully appropriate for
this systematic review, based on their importance with respect to answering the research
questions. The following are the quality criteria (QC):

QC1 Does the study contain validation?
QC2 Does the study propose a way to quantify/detect uncertainty?
QC3 Does it propose a solution to correct the uncertainty/erroneous data?

The papers are scored according to whether they are able to meet the above quality
criteria i.e. Yes, No, or Partially. The scores are Yes = 1, No = 0 and Partially = 0.5. It is
seen that 54 out of 57 publications have a QC score of two or above and only three pub-
lications [25—27] have QC scores of one, which shows that the quality of the majority of
the selected literature is of good quality and they are relevant to the systematic review.
The three publications with a QC score of one are still included in this systematic review
as two of them are related to enterprise-level systems, which gives an insight into how
existing methods are integrated into practice. The third paper, which is one of the earli-
est publications that presented a PCA-based solution for sensor fault detection, is also
included as it is highly cited by other papers that proposed PCA-based methods.

Study selection
The initial search query (1) returned 13,057 publications. After the process of topic mod-
elling, the refined search query (2) resulted in 6970 publications. The 6970 publications
obtained from the three literature databases are then screened to remove duplicates.
There are 107 duplicates which are removed. Next, the duplicate-free set of papers are
screened based on their title and abstract. Irrelevant papers, based on the inclusion and
exclusion criteria, are excluded and this resulted in the selection of 285 papers. Those
screened papers are then read and evaluated in full-text to assess based on their abil-
ity and contribution to answering the research questions. About 228 papers are consid-
ered irrelevant and are rejected and the other 57 papers that are eligible are chosen to be
included in the study.

The selection process is visualized in Fig. 3 as a PRISMA flow diagram [28], showing
the number of papers obtained from each stage of the review process i.e. search results,
duplicate removal, title and abstract screening, full-text screening, and final selected

papers.
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Fig. 3 PRISMA flow diagram. Extended PRISMA flow diagram visualizing the selection process starting from
the 13,057 publications from the initial topic model to the 6970 publications obtained from search query (2)
and the subsequent selection process resulting in the final number of 57 considered publications

Data extraction
Data extraction is carried out for all 57 selected publications and the results are tabu-

lated using an Excel spreadsheet. The data extracted from the selected literature are:

« Title and abstract of literature,

« Authors’ names,

« Database,

«+ DPublication year,

+ Types of sensor data errors addressed (RQ1),

+ Types of methods for detecting or mitigating errors (RQ2 and RQ3),
+ The domain in which the methods have been developed (RQ4).

Page 9 of 49
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Data synthesis

After the data extraction step, the extracted data is analysed to answer the research ques-
tions. For RQ1, the definitions of the different types of errors addressed in the papers
were analysed as they might have been termed differently in different publications but
referred to the same type of error (“Types of errors in sensor data”). Once establishing
the definitions of each error, they are then classified so that the errors with the same def-
inition are in the same category. For RQ2 and RQ3, the different types of methods pro-
posed in the literature are analysed and their state-of-the-art techniques are categorized
and studied (“Methods for detecting and quantifying errors in sensor data’, “Methods
for correcting errors in sensor data” and “Methods for detecting and correcting errors
in sensor data”). The extracted domains are extracted along with publicly available data-
sets used for method evaluation in those domains to answer RQ4 (“Types of domains”).
Moreover, for literature with validation, the evaluation conditions and results of the
methods are also analysed to compare and identify the gaps in knowledge (“Discussion”).

Risk of bias

This systematic review is not without bias. Firstly, there is a risk of bias in the review
process as only one reviewer screening the literature where the subjectivity of the inclu-
sion and exclusion criteria may affect the selection of relevant publications. Moreover,
the year range was not specified during the search process. This means that the search
results returned are from all available years, that is from the earliest publication found
in the respective databases until recently (September 2018). The databases returned dif-
ferent earliest start years e.g., the earliest publication from ACM Digital Library is from
1998, IEEE Xplore is from 1979, and ScienceDirect is from 1995.

Furthermore, there are publications missed in the search process because the search
was done only on three databases, and there are many more databases (e.g., Google
Scholar, Scopus, SpringerLink) that might have other literature addressing the men-
tioned sensor data quality problems. Thus, this systematic review paper is not an exhaus-
tive list of methods available for detecting and correcting sensor data errors. Other than
that, there was no snowballing done in this systematic review, i.e. the review process
did not include searching and extracting information from the references of the selected
papers for the purposes of this systematic review.

Results

This section presents the findings from the extracted data with respect to the research
questions formulated in “Research questions” section. In “Types of errors in sensor data”
section, RQ1 is addressed to discuss the different types of errors that exist in sensor data
which leads to the degradation of sensor data quality. Next, in “Methods for detecting

” o«

and quantifying errors in sensor data’, “Methods for correcting errors in sensor data’; and
“Methods for detecting and correcting errors in sensor data” sections, RQ2 and RQ3 are
answered with respect to the type of errors. The nomenclature in Table 1 is used in those
three subsections. “Methods for detecting and quantifying errors in sensor data” sec-
tion addresses methods proposed only for fault detection and uncertainty quantification

(RQ2) and “Methods for correcting errors in sensor data” section discusses solutions
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Table 1 Nomenclature used for “Methods for detecting and quantifying errors in sensor
data’;"Methods for correcting errors in sensor data” and “Methods for detecting and
correcting errors in sensor data” sections

Symbol Description

Xi () Measured data value x; of sensor i at a specific point in time t;

Estimated sensor data value

X Sensor data vector, where X = (x1,...,X,...,Xy)is a row vector obtained at the
same point in time

~

Time in sensor data stream, e.g x; is the observed sensor data value at time t
Columnindexi=1,...,V

Rowindexj=1,...,N

Feature

Size of moving window

Number of samples

Number of variables e.g. temperature, humidity, voltage
Number of sensor unit

Number of features

Sensor data stream in the form of a time series, Z = ( X1 X X1 e )

X N "= < =9 ™

Sensor data matrix where X € R"Y X = (%;,...,%;,..., %)

Depending on how the samples are obtained, the variables in sensor data vector x might be produced by more than one
sensor. For example, in environmental monitoring, the data may be produced by several sensors, each measuring one
variable e.g. temperature and humidity. On the other hand, some variables are produced by one sensor alone, such as an
accelerometer which produces readings for three variables i.e. the acceleration in the direction x, y, and z

for missing data imputation and de-noising (RQ3). As for methods that address both
research questions simultaneously i.e. fault detection and correction (RQ2 and RQ3),
the results are presented in “Methods for detecting and correcting errors in sensor data”
section. This is followed by “Types of domains” section where the domains in which the
methods are proposed in (RQ4) are detailed.

Types of errors in sensor data

According to the International Standardization Organization (ISO) [29], an error is
defined as “the result of a measurement minus the true value of the measurand” There
are several types of errors related to sensor data quality. Table 2 shows the different types
of errors extracted from the selected literature (RQ1), along with the papers that address

Table 2 Types of errors addressed, along with its respective papers and total number
of papers that address that error

Type of error Papers Total
Qutliers [7,30-60] 32
Missing data [7,9,25,26,31,38,46,51,61-68] 16
Bias [30-32, 41,43, 59, 60, 69-73] 12
Drift [31,32,34,35,54,60,69, 70, 72-75] 12
Noise [35,52,53,72,73,75-77] 8
Constant value [30, 35,52,53,72,73,78] 7
Uncertainty [25, 26, 68, 79-81] 6
Stuck-at-zero [30,32,53,72,73,78] 6
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them and the total number of papers. Note that some literature address different types of
errors in the same paper, for example, [30—32] addressed both outliers and bias in their
proposed solution.

The type of error that is most commonly addressed in publications related to sensor
data quality is outliers and is addressed by 32 papers, which is more than half of the total
number of selected studies. Outliers, also known as anomalies [82] and spikes [36, 83],
are values that exceed thresholds or largely deviate from the normal behaviour provided
by the model. A sensor data measurement is also considered an outlier if it is signif-
icantly different from its previous and next observations or observations from neigh-
bouring sensor nodes [38, 45, 48]. Outliers are also known as faults, though faults also
include other types of errors such as bias, drifts, noise, constant value, and stuck-at-zero.
Though some papers [50, 55] might not have specified the type of fault, most of them
breakdown the fault error to the different types of errors as mentioned previously.

The second most commonly found error in sensor data is missing data, which is
addressed in 16 publications. It is also known as incomplete data, and it is one of the
data quality (DQ) dimensions introduced by Wang and Strong [4]. DQ dimensions cat-
egorize the quality of data in databases that are important to data consumers. They are
mostly used to describe data in enterprise-level systems and are used for modelling how
data errors propagate to the consumer’s end. However, apart from incomplete (missing
data) and inaccurate data (uncertainty), which are sensor data quality-related issues,
other DQ dimensions such as inconsistent data and timeliness are not considered in this
review paper as they are more related to the topics of database design or communication
data quality. According to Li and Parker [9], missing data is caused by various factors
such as unstable wireless connection due to network congestion, sensor device outages
due to its limited battery life, environmental interferences e.g. human blockage, walls,
and weather conditions, and malicious attacks. There are cases where sensor data is
missing for extended periods of time, which might lead to incorrect decision making on
the consumer side. Though the simplest way to solve this problem is to re-transmit the
data, most IoT applications are in real-time, which would render the data useless if there
is a delay. Besides that, the computational and energy cost causes it to be inefficient as
these sensor devices are usually limited in terms of battery, memory, and computational
resources.

Bias, also known as an offset, is a fault with a constant offset or as Rabatel et al. [84]
defines, “a value that is shifted in comparison with the normal behaviour of a sensor”
This type of error would usually require calibration to subtract the offset from the
observed reading to get its true value. Drifts are readings that deviate from its true value
over time due to the degradation of sensing material which is an irreversible chemi-
cal reaction [60] whereas constant values are readings with a constant value over time,
though it might belong to a normal range. It is usually caused by a faulty sensor or trans-
mission problems [84]. Another type of fault is a stuck-at-zero or dead sensor fault. As
its name implies, it refers to values that are constantly at zero over an extended period
of time. Lastly, noise is also a type of fault, and they are small variations in the data-
set. Noise is similar to uncertainty, which is another type of error and DQ dimension.
According to the ISO [29], the definition of uncertainty is, “a parameter, associated with
the result of a measurement, that characterizes the dispersion of the values that could
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Table 3 Types of methods addressing error detection and quantification (RQ2) only,
along with its addressed errors, respective papers, and the total number of papers

that proposed that method

Method Errors addressed Papers Total

Principal component analysis Outliers, bias, drift, stuck-at-zero [27,32,47,48,50,59,69] 7

Artificial neural network Outliers, bias, drift, constant values, [34, 36, 54,70,78,81] 6
noise, stuck-at-zero, uncertainty

Ensemble classifiers Outliers, drift, constant values, noise, [33,35,37,79] 4
uncertainty

Support vector machine Outliers [57, 58] 2

Clustering Outliers [39, 45] 2

Ontology/knowledge-based systems  Uncertainty (inaccurate data), missing  [25, 26] 2
data (incomplete data)

Univariate autoregressive models Outliers [40] 1

Statistical generative models Outliers [49] 1

Grey prediction model Outliers, noise, constant values [52] 1

Particle filtering Bias, scaling [71] 1

Association rule mining Outliers [56] 1

Bayesian network Outliers, noise [44] 1

Euclidean distance Outliers [42] 1

Hybrid methods

Polynomial predictive filter and fuzzy Outliers [53] 1
rules
Dempster-Shafer theory and math-  Drift, noise [75] 1

ematical modelling

reasonably be attributed to the measurement” Thus, uncertainty can also be seen as the
quantification of an error in statistical terms. Moreover, Mansouri et al. [47] states that
sensor data uncertainty includes “measurement noise, sensor imprecision and variabil-
ity of measured quantity” According to that definition, noise contributes to uncertainty.
However, the methods of correcting those two errors are relatively different where noise
correction techniques mostly includes signal processing solutions whereas uncertainty
quantification and correction involves ontology-based methods (refer to “Methods for

” «

detecting and quantifying errors in sensor data’, “Methods for correcting errors in sen-

sor data” and “Methods for detecting and correcting errors in sensor data” sections).

Methods for detecting and quantifying errors in sensor data

Most solutions suggest ways to quantify or detect errors in existing literature either address
the detection of faults i.e. outliers, bias, drifts, constant values, or to quantify the uncertainty
in the sensor data. These publications only address the problem of detecting those errors,
but not correcting them. There are 32 publications that proposed methods to solve this
problem, which is 56% of the total number of selected literature. Table 3 obtained from the
data extraction process of the 32 papers shows the different existing methods to quantify
or detect sensor data errors (RQ2), along with the errors addressed, the respective papers
that presented the method and the total number of papers. It can be seen that the three
most common approaches are principal component analysis, artificial neural network and

Ensemble Classifiers, which constitutes more than half of the reviewed publications which



Teh et al. J Big Data (2020) 7:11 Page 14 of 49

proposed error detection and quantification methods, with 7, 6 and 4 papers proposing
those methods respectively. There are also hybrid approaches, which incorporates more
than one type of method in detecting sensor data errors. The following is a brief overview
of each method, where “Anomaly/fault detection” section discusses methods for detecting
anomalies or faults in the sensor data and “Uncertainty quantification” section presents
approaches for quantifying the quality of the data.

Anomaly/fault detection
Firstly, to detect faults, several methods such as statistical and machine learning, clustering,
ontology, and hybrid approaches have been suggested.

Principal component analysis (PCA) Principal component analysis (PCA) [27] is com-
monly used to find patterns in the data i.e. the correlation between variables, by gener-
ating orthogonal principal components. Therefore, other than being used as a feature
reduction technique, PCA can also be used for fault detection. In sensor data matrix X
with N rows (measurements at different points in time) and V' columns (measurement of
different sensors), PCA is done by firstly standardizing the matrix X if the variables are
of different units of measurements (e.g. °C, lux, km/h) or if each variable is to receive
equal weight in the analysis. To standardize the matrix, each data point x;,; of matrix X
is subtracted by the mean of the respective column w; and the differences (x;; — ;) are
divided by the column’s standard deviation o;. This process is known as whitening in sta-
tistics. Next, the covariance matrix X7 X, which quantifies the correlation between each
of the variables, is calculated by multiplying the transpose of the standardized sensor data
matrix with itself. The eigenvectors and their corresponding eigenvalues of the covari-
ance matrix are calculated [85, Chap 11], which produces two matrices: P, which is the
modal matrix where the columns are eigenvectors and D = P~!XTXP, which is the spec-
tral matrix where the diagonal elements are the eigenvalues. The pairs of eigenvalues and
eigenvectors are sorted from largest to smallest eigenvalue, such that the first eigenvector
(or principal component) accounts for the largest amount of variance, which is given by
the corresponding eigenvalue. The orthogonal transformation

T =XP

converts the sensor data matrix X into a set of values from linearly uncorrelated vari-
ables, the so-called principal components. The top few principal components capture
most of the variability in the dataset. This is also how it is used as a dimension-reduction
technique, because it projects the dataset into a lower-dimensional subspace.

Following the steps for PCA, two orthogonal projection subspaces are obtained from
the selection of the top few principal components and the standardized data matrix X
can then be decomposed into the following:

X=X+E,

where X is the principal component subspace which is the modelled variations of X
and includes the signal in the dataset, containing the first / eigenvectors i.e. the first
[ columns of P (where [ is the number of selected principal components) and E is the
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unmodelled variations of X, also known as the residual matrix which includes mainly
noise and useless information and consist of the last V' — [ columns of P. They are repre-
sented as the following:

)
X=TP] =) up] =XC,
i=1
where C = PP and similarly,
1%
E=TP! = > tp/.
i=I+1

Therefore, a new sample vector, X can be projected into the principal component

subspace:
x=x+e
x = xPPT = xC

and into the residual subspace:

A
5
- X,

¢ =x%—xPPT =1 - C).
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C and (I — C) are also known as the model projection matrix and residual projection
matrix respectively. Fault detection can be done by monitoring the residual subspace of
the PCA as it increases in magnitude when there is a change in the correlation among
the variables in x. The squared prediction error, also known as Q-statistic, defined as:

S112
Q=llell” < Qa>

where Q, is the Q-statistic threshold. Details on how to obtain Q, is found in [32, 42, 69].

Dunia et al. [27] proposed a Sensor Validation Index (SVI) as a means for fault detec-
tion and isolation (identifying faulty sensors) through an iterative reconstruction process
that assumes each sensor fails, reconstructs the faulty sensor and compare the Q-statis-
tics before and after reconstruction. The SVI, which ranges from 0 to 1, shows that when
a sensor is faulty, it is close to zero and vice versa. Alawi et al. [69], on the other hand,
introduced a combined contributions index using the Q-statistics, which measures the
variance of random noise in the residual subspace and Hotelling’s T2-statistics, which
represents the variance in the model subspace. This is because an occurrence of a fault
(bias and constant value mentioned in this paper) usually leads to changes in either sta-
tistical metric.

Rassam et al. [48] proposed a variation of PCA called the One-Class Principal Com-
ponent Classifier for local and unsupervised anomaly detection. The approach is divided
into two parts, with the first being the offline training phase which trains a PCA model
using normal data collected from each sensor to build the normal behaviour model and
it is stored locally in each sensor node. The dissimilarity measure is calculated using
the sum of squares of the normalized principal components, and this represents the
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maximum and minimum thresholds for anomaly detection. The second phase is the
online detection phase where current observations would be projected into the fea-
ture subspace and compared with normal behaviour model based on its the dissimilar-
ity matrix. The normal PCA model is also updated and retrained with new mean and
standard deviation of the new data. In order to deal with non-linear systems, Sharifi and
Langari [50], suggested a Mixture Probabilistic PCA model for fault diagnosis which
separates the input space into several local linear regions and subsequently has linear
sensor fault diagnosis applied to each linear region.

Moreover, Zhao and Fu [59] have also proposed a sensor fault detection for outliers
and bias using PCA by modelling the normal behaviour for continuous glucose moni-
toring applications. Harkat et al. [32] also applied the PCA technique to detect outliers,
drifts, bias, stuck-at-zero faults. However, rather than just using the SVI [27], a test on
the sum of squares of the residual matrix, i.e. the last (V — /) principal components is
done to detect faults. Recently, Mansouri et al. [47] came up with another variation of
PCA called the Midpoint-radii PCA for fault detection. The Midpoint-radii PCA allows
interval-valued data, which considers the uncertainty in the data, to be modelled.

PCA is a powerful technique used for many applications, including fault detection in
which 7 out of 32 methods proposed are based on. It can be adapted to multiple varia-
tions, which have their own advantages such as the One-Class PCA classifier, which is
able to perform locally with no extra communication overhead, making it suitable for
Edge Computing applications. However, PCA requires fault-free training data which is
rare and difficult to obtain. There is also a need to choose the optimal number of princi-
pal components, which differs from one application to another.

Artificial neural network An artificial neural network (ANN) is a framework that is
vaguely modelled upon the biological neural network of a brain. It is mainly used to learn
patterns or models from complex processes such as pattern recognition. ANNs consist of
a densely interconnected set of neurons, also known as perceptrons, whereby each unit
takes several real-valued inputs (combined using an input function), runs it through its
activation function e.g. linear, sigmoid and rectified linear unit, and produces a single
real-valued output. Each input has a weight related to it, which determines the contri-
bution of the inputs to the output. Learning the weights of the input values such that it
produces the correct output value is the basis that trains an ANN to learn. There are also
many ways of doing so, such as the perceptron rule for linearly-separable datasets, gradi-
ent descent for non-linear datasets and backpropagation.

Jager et al. [78] introduced a framework to detect four different types of fault: outliers,
offset, noise and stuck-at-zero, using a supervised time-delay neural network (TDNN).
It is a type of multi-layer feed-forward ANN that allows the mapping between past and
present values by analysing the sliding windows of a signal. The difference between
TDNN and the classic multilayer perceptron is that the neurons receive not only the
output from the neurons below but also the delayed (past) outputs of those neurons.
However, it is seen that TDNN is only able to detect 2 out of the 4 fault types reliably,
namely the offset and stuck-at-zero. Bosman et al. [36] proposed a decentralized learn-
ing approach for fault detection i.e. for anomalies such as outliers, drift, noise, and con-
stant values, which learns the normal sensor behaviour model in each sensor node, while
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Anomaly detection using HTM

HTM a(xy) s .
2 —p] t t
Prediction |——p| ANOMaly | __
error likelihood
w(xy)

Fig. 4 Framework of HTM for anomaly detection [34, Fig 3(a)] Input vector X; of the data stream is sent to
the HTM where it produces a sparse binary vector representing the current input, a(x,) and prediction for
the next time step, 7 (X;). The prediction error, s is calculated and is used to obtain the anomaly likelihood, L;.
Image obtained under the Creative Commons license. No revisions were made to the image.

incorporating neighbourhood information. The approach uses Recursive Least Squares
to learn linear models and so-called Extreme Learning Machines (see “Artificial neural
network” section) for learning non-linear models.

Smarsly and Law [70] suggested a decentralized fault detection and isolation software
package framework for bias and drifts using backpropagation feedforward neural net-
work, which is embedded in each wireless sensor nodes of the system. Once again, the
Neural Network learns the normal behaviour model of the system and outputs an esti-
mated value in which the current observed value will be compared against and detected
if it is anomalous. Xiao et al. [54], on the other hand, introduced an Auto-associative
Neural Network (AANN) solution for fault detection and prognosis for outliers and
drifts. AANN is a feedforward neural network with an odd number of hidden layers that
are used to produce an approximation of the identity mapping between input and output
layers (auto-encoder) [86]. It has a bottleneck hidden layer which compresses informa-
tion, which forces it to eliminate redundancy and capture the input patterns. The faults
are detected using shallow and deep AANN, and the prognosis is done using Autore-
gressive Moving Average.

Ahmad et al. [34] proposed a framework for anomaly detection using hierarchical
temporal memory (HTM), a type of unsupervised artificial intelligence learning method
based on neuroscience research. It is similar to an artificial neural network, but unlike
most neural networks, HTM can learn time-based patterns in an unlabeled data stream.
It is firstly described in the book “On Intelligence” by Hawkins and Blakeslee [87] in 2004
and has since been continuously developed by his company, Numenta [88]. Numenta
also provides an open-source anomaly detection benchmark, numenta anomaly bench-
mark (NAB) for evaluating anomaly detection algorithms in real-world streaming data
which consists of labelled anomalies. The steps of a HTM is seen in Fig. 4, where the
input of the data stream, x; which is an observed data vector at time ¢ is sent to the HTM
system. Then, the HTM returns a sparse binary vector representing the current input,
a(¥x;) and the prediction for the next time step, 77 (X;), which is the estimation of a(%X;1)
in sparse binary vector form. The prediction error, s; is calculated and the probabilistic
model of it is used to compute the likelihood of the data being an anomaly, L;.

Along with PCA, ANN is also another common technique for fault detection and it
also has multiple variations such as TDNN, AANN and HTM. There are 6 out of 32
papers that have presented an ANN-based approach, which has its own pros and cons.
The advantages and disadvantages depend heavily on the type of Neural Network
applied. For example, TDNN has several disadvantages such as not being able to detect



Teh et al. J Big Data (2020) 7:11 Page 18 of 49

noise and outliers reliably and requires many parameter decisions, whereas AANN is
robust against training data with missing values.

Ensemble classifiers Ensemble learning use multiple machine learning classifiers to
arrive at a better predictive performance compared to when using those algorithms
individually by aggregating the results of the classifiers. Bosman et al. [35] proposed a
decentralized, online fault detection for anomalies, drifts, noise and constant value using
ensemble classifiers where each classifier will learn a normal behaviour model and com-
pare it with the current reading to identify if it is an anomaly. The results are then aggre-
gated using simple heuristic rules or applying algebraic combiners e.g. median or Fisher’s
method [89]. The classifiers mentioned in the paper are Sliding Window Mean, Recur-
sive Least Squares, Extreme Learning Machines, Polynomial Function Approximation.
Curiac and Volosencu [37] also suggested an anomaly detection technique using ensem-
ble-based classifiers which models the normal behaviour of the sensors whose votes (if a
sensor reading is anomalous or not as compared with the normal behaviour model) are
then collected and aggregated. The types of classifiers used in the paper are the Average-
based classifier, Auto-Regressive Linear Predictor-based classifier, Neural Network-based
classifier, Neural Network Auto-Regressive Predictor-based classifier and the Adaptive
Neuro-Fuzzy Inference System-based classifier.

Abuaitah and Wang [33] introduced a distributed anomaly detection framework
to detect anomalies using feature extraction and classification algorithms. The feature
extraction is carried out on the child nodes, which incrementally learns new statistical
summaries. The features proposed that can be useful to detect anomalies are mean, vari-
ance, rate of change, spatial distance, temporal and spatial correlations. The statistical
summaries are then sent to the base station (parent node) instead of raw data. There,
a classification algorithm such as AdaBoost, Support Vector Machines or simple deci-
sion trees is applied to the set of feature vectors received from child nodes. The study
showed that AdaBoost performs the best (lowest false positives and negatives) for anom-
aly detection in their case study. Adaboost converts a collection of weak classifiers (error
rate slightly better than random guessing) into a strong one by the weighted combina-
tion of the weak classifiers. During classification, the child node is labelled as “normal”
or “misbehaving’, and the parent nodes will stop using data from “misbehaving” child
nodes.

Ensemble classifier is a supervised method and though it mostly achieves better pre-
dictive performance than its individual classifiers, it is a complex task to build an ensem-
ble classifier. This is due to the need to choose suitable base classifiers, which may be
difficult and complicated, depending on the type of application. Also, based on the indi-
vidual classifiers chosen, some may require feature extraction and fault-free training
examples. Large datasets are also needed to train the supervised classifiers.

Support vector machine A support vector machine (SVM) is a machine learning
algorithm that aims to find a hyperplane to separate and classify the data points in an
F-dimensional space, where F is the number of features. The features are obtained either
directly as the variables themselves, or via a process called feature engineering, which
produces new features based on the data and its set of variables. The hyperplane (a line in
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2D, a plane in 3D, and so on) is a decision boundary in which data points on one side of
the hyperplane belong to one class, and data points on the other side belong to another
class. The objective is to find a hyperplane that has the widest margin, i.e. the maximum
distance between the two data points from the two different classes. Support vectors
are data points that are close to the hyperplane and they are the data points that deter-
mine the hyperplane by maximizing the margin of the classifier. For anomaly detection,
the decision boundary or hyperplane of the normal data is found such that it encom-
passes most of the data in the feature space. Then, newly observed data that fall out of the
boundary are classified as outliers.

In 2009, Zhang et al. [57] proposed an online outlier detection technique using One-
Class (unsupervised) Centered Quarter-Sphere SVM which updates the normal behav-
iour model of the sensed data based on three time windows. The quadratic optimization
problem of modelling the SVM is converted into a linear optimization problem by fixing
the center of the mapped data at the origin in the feature space. Here, the data vectors
X in sensor data matrix X is mapped into a feature space using a non-linear mapping
function such as PCA, which returns the top few principal components that can be used
as features. Other than that, a Python package for feature engineering and selection,
tsfresh [90] can also be used to obtain time series features. The normal behaviour at
each time window is learned using One-Class Centered Quarter-Sphere SVM to find the
minimum radius (hyperplane), which helps detect temporal anomalies. Then, the radius
is broadcasted to all spatially neighbouring nodes i.e. sensor nodes that are within com-
munication range, and the median radius is calculated. The online characteristic allows
the data can be checked against other neighbouring nodes to identify if the temporal
anomaly is also spatially anomalous, thus confirming the detection of an actual anomaly.

In 2013, Zhang et al. [58] presented another type of SVM called the One-Class Cen-
tered Hyper-Ellipsoidal SVM for anomaly detection. The difference between the Quar-
ter-Sphere and Hyper-Ellipsoidal SVM is that the former uses Euclidean distance as a
distance measure, whereas the latter uses the Mahalanobis distance to model the SVM.
Those two types of distance measures are commonly used to measure the similarity of
the data points. However, the Euclidean distance does not take into account the correla-
tion between variables and only calculates the distance in terms of individual variables.
On the other hand, the Mahalanobis distance takes into account the correlation between
variables and calculates the distance by combining all variables together, forming a
covariance matrix. It is also scale-insensitive, but it comes with a higher computational
complexity compared to Euclidean distance. The two variations of SVM are unsuper-
vised, adaptive and distributed.

Clustering Clustering is an unsupervised technique for fault detection which has the
advantage of not requiring prior knowledge of the system model or underlying data dis-
tribution. However, the optimal number of clusters or cluster width has to be determined
by the user. One of the clustering-based outlier detection technique is proposed by Fawzy
et al. [39] for WSNs. The algorithm uses an in-network fixed-width clustering algorithm
along with nearest neighbor and timestamps which helps to identify if it is an erroneous
data or an actual event. It consists of a few steps, starting with pre-processing, where the
fixed-width clustering algorithm is applied to the dataset to separate and group the data.
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In the fixed-width clustering algorithm, each data point is assigned to a cluster and the
data point is within a pre-defined distance from the cluster’s center. If there is no such
cluster, then a new cluster is created with that data point being its center. Next, the outlier
detection step labels each cluster formed as “normal” or “outlier”. This is done by calculat-
ing the Euclidean distance between one cluster to the other clusters. A cluster is detected
as an outlier if its average inter-cluster distance is more than one standard deviation away
from the mean inter-cluster distance. The data points in the outlier clusters are then fur-
ther examined by looking at the neighbouring nodes and timestamps to see if those data
points are events or actual anomalies.

Liu et al. [45] presented another example of the clustering method used for outlier
detection using Time-Relevant k-Means clustering for electric power sensor data. The
k-means clustering algorithm is used to form initial clusters. The k-means algorithm can
be done in the following steps, for an input &, which is the user-defined number of clus-
ters and a dataset, X = {x7, %3, . .., %x} where N is the number of samples:

1. Set centroids (centers of clusters), c1, ¢, . . ., ¢k at random locations.

2. Repeat until convergence:

(a) For each sample x;, assign the sample to the cluster, s with the nearest centroid,

Cs:

arg min D(xj, c) ,
S

where D is the distance function.
(b) Update the centroids of each cluster c;, where s = 1,. . ., k after adding the new
sample in the cluster:

n
1 <.
€= — E xj
ns < 7
j=1

where ; is the number of points in that cluster s.
3. Stop when none of the cluster assignments change, i.e. converge.

In order to choose the appropriate k number of clusters, the quality of the clusters is
measured by the Mean Index Adequacy, which calculates the average distance between
the cluster center and all the other data points in that cluster. The smaller the Mean
Index Adequacy, the better the clustering results. After performing k-means clustering
using the appropriate number of clusters, the data within each cluster are re-clustered
according to the temporal attribute of the data. Outliers are then detected by comparing
the current value with the minimum and maximum data value from each refined cluster.
An outlier correction method is also considered in that framework, though it is by sim-
ple statistical approaches such as imputing the erroneous data using the mean, median

and mode values.

Univariate autoregressive models A univariate autoregressive model is a time series
model which, using sensor measurements from the previous time step in a moving win-
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dow, Z = {xt_g+41,...,%:} as input, predicts the value at the next time step, ;1. Hill and
Minsker [40] proposed an anomaly detection technique using univariate autoregressive
models to model environmental data streams. The different models used and compared
are the nearest cluster, single-layer linear network, and multilayer perceptron. The near-
est cluster estimates the next value as the average of k most similar (based on Euclidean
distance) sensor measurements in the dataset, whereas the single-layer linear network
predicts the next value based on the linear combination of the g previous measurements.
After the predictive modelling, the next sensor data observation can be classified as
anomalous by comparing it with the threshold calculated by the prediction interval value.
Though it is found that the multilayer perceptron works best in their case study, it might
not be the case for other applications.

Statistical generative models  Statistical generative models are probabilistic models that
attempt to describe how data is generated by learning the statistical distribution of the
dataset. For anomaly detection, Sallans et al. [49] presented a statistical generative mod-
elling technique in which new observations will be compared against, and if that new
observation has a low probability in that model, then it is counted as anomalous. Exam-
ples of statistical generative models used in the paper are the Gaussian model, Hidden
Markov model, and Histogram.

Grey prediction model Grey systems theory, initially proposed by Deng [91] in 1982, is
developed to cope with the uncertainty of a system and has the advantage of being able to
model a discrete time series with a small sample size. It does not require prior knowledge
of the underlying data distribution and requires only a small set of training data. In grey
systems, some part of the information is known and some part is unknown, thus having
incomplete information. The subsequence of the original time series data Z helps predict
the future value and can be defined as:

Z(O)={x(o)(u)+c},u=t—q+1,t—q+2,...,t;tzq;qz3,

where Z© consist of the g subsequent observed values up to time ¢ and c is a constant
that satisfies x© (x) + ¢ > 0.

The original subsequence is firstly smoothed by an accumulate generating operation
(AGO). The first-order AGO is defined as:

u

ZW = (xD ()} = { > x<°)(i)},u= t—q+1Lt—q+2,....tt>q.
i=t—q+1

The data series obtained after AGO smoothing can be modelled by a simple first-order
differential equation to give a grey system model GM(1,1). The grey differential equation
is as follows:

dxD (1)

@® —
I +az"V(u)=>b

where a and b are parameters and z)(u) is the adjacent mean generating operation.
The papers [30, 52, 60] provide detailed explanation on how to derive the differential
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equation. Tsang [52] introduced a sensor data validation technique involving outliers,
noise and constant values using grey models where sensor values are compared to the
predicted value of the grey model. The parameters, a and b of the GM(1,1) model is esti-
mated using the recursive orthogonal least-squares estimation algorithm.

Particle filtering Particle filtering is a state estimation technique given partial and noisy
observations in a dynamic system. It is a Monte Carlo algorithm which uses a set of sam-
ples called particles, to represent the posterior probability distribution of a stochastic
process. Essentially, the samples from the distribution are rendered as particles and each
particle has a weight assigned to it that represents the probability of drawing that particle
such that it is close to the actual observed value. It is thus able to model non-linear or
non-Gaussian data.

Tadi¢ and Purovi¢ [71] proposed a sensor fault diagnosis technique for bias and scal-
ing errors using particle filtering. Particle filtering is used to estimate the states of the
non-linear model, and new observations are compared with the estimated particle to
detect whether it is a calibration (bias and scaling) fault. This is done by calculating the
residuals, which is the difference between the particle filter’s estimate and the current
observed data and a fault is detected if it is more than a user-specified threshold, since
the residuals are expected to stay close to zero.

Association rule mining  Association rule mining is a rule-based machine learning algo-
rithm which can be used for error detection and also missing data imputation (see sub-
section “Methods for correcting errors in sensor data”). Association rule mining detects
frequent patterns, correlations, or causal structures by revealing how items are associ-
ated with each other. It helps in predicting the occurrence of a specific item based on the
occurrence of other items and is traditionally used for transactional items e.g. product
placements in supermarkets. It comprises of the antecedent which is something that is
found in the dataset, A, and the consequent, B, which is something that is found in com-
bination with the antecedent. In time series analysis, an association rule A => B means
that if event A occurs somewhere in the dataset, it will most likely be followed by B.
However, to use association rule mining in time series analysis, the data has to firstly be
discretized into a pattern e.g. a string of symbols.

There are many different ways to measure association and the most used ones are sup-
port and confidence. Support is the measure of how frequent an itemset (or an event fol-
lowed by another event) is in the dataset whereas the confidence of a rule is the measure
of how likely an event A occurs when event B occurs. For time-series analysis, the sup-
port of a rule is calculated by:

Count of A followed by B occuring
(k —|AB|+1)

sup(A = B) = )
where k is the length of the discretized pattern and |AB| is the length of the pattern AB
(A followed by B). The confidence of a rule is:

sup(A = B)

conf(A = B) = sup@A)
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which tells us the number of times the relationship is found to be true.

Yu et al. [56] presented an Apriori Association Rule Mining method to improve data
quality by detecting anomalies (unusual change in time series patterns) in soil moisture
probes. The events are discretized and Dynamic Time Warping is used firstly to align
and compare the events of different lengths. The Apriori algorithm is a method that
reduces the computational complexity of finding rules that are above the support and
confidence thresholds (strong rules) by reducing the number of candidate itemsets. The
Apriori principle states that if an itemset is frequent, then all of its subsets must also be
frequent, and vice versa. By comparing the current observed event to historical records
via association rules, anomalies are detected.

Bayesian network A Bayesian network, also known as a belief network, is a probabil-
istic graphical model that uses a directed acyclic graph to model a set of variables and
their conditional dependencies based on Bayesian inference. It can be used to obtain the
posterior probabilities of an unknown variable given evidence from other measured vari-
ables. The joint probability distribution of the variables, A, B, C, and D is represented as,
according to the Chain Rule of probability:

P(A,B,C,D) = P(A) « P(B|A) x P(C|B,A) « P(D|C,B,A).

It also follows the Local Markov property, which states that each variable is condition-
ally independent of its non-descendants given its parent variables, which simplifies the
Chain Rule into a simpler form.

Ibarguengoytia et al. [44] proposed a Bayesian network approach for detecting and
isolating faults e.g. outliers in sensor networks for a gas turbine using two Bayesian net-
works, one for validation and another one for isolation. For validation i.e. detection of
faults, the fitted Bayesian network model is used to produce an estimate. This is done
by taking the particular sensor as a hypothesis while the other related sensors act as the
evidence. The output, which is the posterior probability distribution of the specific vari-
able, is used to estimate the probability of measuring the recorded sensor data value. If
the probability is less than a user-defined threshold, then it is identified as anomalous.
In this case, another Bayesian network is created to isolate the fault i.e. to evaluate if it
is an event or an actual anomaly. When a faulty sensor actually exists, the fault will be
manifested in all the related variables. This can be detected in its Markov blanket, which
is the set of variables that makes the variable independent from the others, such as the
parents, children, and spouses of the variable. However, the downside to Bayesian Net-
works is that it requires expert knowledge to form the probabilistic model of the rela-
tions between the variables.

Euclidean distance For systems which use PCA for fault detection, Hu et al. [42] pro-
posed a data-cleaning solution using an Euclidean distance approach. The data-clean-
ing solution aims to remove outliers in the training data as they can strongly affect the
covariance structure of the PCA method, which in turn affects the performance of the
PCA-based fault detection. This can be done by calculating the z-score of the Euclidean
distances of the samples, which converts the multivariate problem into a univariate data
comparison. After standardizing the original data matrix, X, the training data is now
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a N x V standardized matrix, with N being the number of training samples and V the

number of variables. The Euclidean distance of the jth row, D; is defined as:

where x;; is the ith variable of the jth sample in the normalized data matrix. The mean of

the Euclidean distance of all samples, up is:

1 N
MD = N;D',

and the standard deviation of all samples, op is:

N

1
op = m Z(Dj — up).

j=1
The z-score, which is used to identify outliers in the dataset, is calculated as:

_ 1D — ol

Zi
/ oD

If the z-score of the Euclidean distance of a sample is more than two standard deviations

away from the mean, then it is classified as an outlier and is removed.

Hybrid methods Tsang and Chan [53] came up with a sensor validation technique using
predictive polynomial filters to model the behaviour of normal sensor data and fuzzy rules
to detect faults such as outliers, random error and sensor failure from the error sequence
generated from the model. Predictive polynomial filters divide the signal into small seg-
ments and the small segments are modelled by low degree polynomials. Another hybrid
approach for fault detection uses mathematical modelling and Dempster—Shafer Theory,
proposed by Zahedi et al. [75]. It is an online approach for detection drifts and noise,
which consist of local and global tiers. For local tiers, fault analysis is done and fault vec-
tors are generated by First Order Linear model. For global tiers, fault analysis is done by
refining the result from local tiers using the spatial correlation between sensors, Demp-
ster—Shafer theory for sensor fusion which uses the faulty behaviour information to gen-
erate a robust estimate of the event of interest. The generated reference signal (ground
truth) is fed back to the local tier.

Uncertainty quantification
In order to quantify the uncertainty in the sensor data, the following approaches have
been introduced.

Artificial neural network  For the purpose of uncertainty quantification, Wang et al. [81]
used a special type of learning algorithm for artificial neural networks called Extreme
Learning Machines (ELM). This term refers to a new learning algorithm for single hidden
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layer feedforward neural networks (SLFNs) proposed by Guang-Bin Huang et al. [92],
which randomly assigns input weights and analytically determines the output weights of
SLFNSs. For an SLEN, the output function of the kth hidden node, % is

hi(xj) = G(wi, by, %)),

where wy and by are the parameters, i.e. the weight and the bias or impact factor of the
kth hidden node from the input node. The activation function, G is a non-linear piece-
wise continuous function such as the Sigmoid function and Fourier function. Thus, the
output vector of the SLFN with respect to x;, 6(x;) is:

L
o) =Y Brhi(x) (3)

k=1

where L is the number of hidden nodes and B is the output weight of node k in the hid-
den layer to the output layer. Eq. 3 can be re-written as:

HB = O,

where O is the output matrix of the SLFN, B is the weight matrix of the hidden layer
nodes to the output layer nodes and H is the the hidden layer output matrix. H, given N
training samples is composed of the following:

h(x)) hi(x1) ... hp(xy) G(wi,b1,x1) ... G(wr, br,x1)
H: . = M N . — . . .

h(xn) hN) ... hr(xn) Gwi, b1, xN) ... G(wr, br,xn)

The purpose of the SLEN is to minimize the cost function ||O — T|| where T is the target
label matrix for the respective samples. This allows us to approximate the target class as
accurately as possible, given the samples. However, conventional methods for building
and training neural networks involves gradient-based learning algorithms and the tuning
of parameters e.g. the learning rate and the number of iterations, which are time-con-
suming. ELM, on the other hand, is claimed to be able to learn at a much faster speed. It
starts by randomly assigning values to the weight and bias parameters of the input nodes
to the hidden layer nodes, wy and bg. Then, the hidden layer output matrix, H of the
SLEN is calculated and finally, the output weight of the hidden layer nodes to the output
layer, B can be mathematically determined by finding the least-squares solutions of the
linear system:

B=H'T

where H' is the Moore—Penrose generalized inverse of H. This removes the need for the
tuning of parameters and slow learning algorithms, thus speeding up the training pro-
cess of the SLEN.

Wang et al. [81] used this ELM method to evaluate the uncertainty in sensor measure-
ments. The ELM model the process in which the input values not only consist of raw
sensor data but also the system state, which affects the “ground truth” value. The paper
states that the approximation of “ground truth” value can be calculated as p(%¢|s¢)p(s¢|x¢)
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where p(&;|s;) denotes the occurrence probability of an individual measurement condi-
tioned on another, x; and x; are the observed measurement and approximate “ground
truth” respectively and s; is the system process state. Thus, using two networks of ELM,
a measurement model that represents the measurements and system state is built in the
first ELM to find p(s¢|x;). Then, the second ELM is established to estimate p(&;|s;) given
the estimated part quality from the first ELM.

Ensemble classifiers Rahman et al. [79] proposed a supervised classification framework
for automatic quality assessment through ensemble Decision Trees and Bayesian Net-
work classifiers. The uncertainty in the data is represented as quality flags, e.g. “Good
data’; “Bad data’, “Probably good data” and “Bad but correctable data” The classifier is
trained on training data labelled with quality flags by domain experts. However, since
class imbalance exists (a small number of anomalies), it is trained on under-sampled data
which is sampled on clusters obtained from k-means clustering. The sampling from the
clusters formed by the k-means clustering algorithm ensures that it is representative of
the significant areas of the data. The decisions by the base classifiers are fused using a
majority voting fusion rule based on the mode of the decisions.

Ontology/knowledge-based systems Kuka and Nicklas [26] proposed a framework for
quality indicators for inaccurate and incomplete data, and also other quality indicators
such as inconsistent data and timeliness using ontology (Sensor Network Ontology) to
enrich sensor data streams by propagating quality semantics. The paper defines the qual-
ity indicators as:

1. Timeliness—the timestamp (start timestamp of the measured data to the time when
the data reaches the system) divided by the frequency of sensing device.

2. Accuracy—the variance of the observation and uncertainty, modelled as a mixture of
Gaussian models with mean and variance.

3. Completeness—the number of attribute values that are not null, for probabilistic
attributes i.e. ones with the Accuracy property, Cumulative distribution functions are
used.

4. Consistency—the similarity of two observations measuring the same variable from
different sensing devices are valid at the same time.

Bamgboye et al. [25] also suggested a software architecture solution based on semantic
technology for Smart Spaces applications, a part of the Smart Cities ecosystem, which
improves data stream quality by quantifying inaccurate and incomplete data, (along with
other DQ dimensions e.g. inconsistent data, availability, and timeliness) based on expert
knowledge. The semantic framework aims at homogenizing, annotating and reasoning

over the sensor data and it consists of 4 layers:

1. Data abstraction layer—collects raw data from sensor devices using the Global Sen-
sor Network middleware and uses static knowledge base to perform filtering of data
points with quality related problems.
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Table 4 Methods for error correction (RQ3), along with its addressed errors, respective
papers, and the total number of papers that proposed that method

Method Errors addressed Papers Total
Association rule mining Missing data [61,62, 64, 66] 4
Clustering Missing data [65] 1
k-Nearest Neighbour Missing data [9] 1
Singular value decomposition Missing data [67] 1
Empirical mode decomposition Noise [76] 1
Savitzky-Golay filter and multivariate thresholding Noise [77] 1
Hybrid methods

Clustering and probabilistic matrix factorization Missing data [63] 1

2. Modelling and integration layer—Provides a platform for interoperability and inte-
gration for the heterogeneous data from different types of sensor devices by imple-
menting domain ontology from semantic sensor network.

3. Reasoning layer—consists of predefined rules obtained from domain expert knowl-
edge and semantically annotated data streams from the second layer to perform rea-
soning.

4. Application layer—contains application programs that rely on the sensor generated
data streams and relies on the previous lower layers.

Methods for correcting errors in sensor data

Out of the 57 publications found in this systematic review, there are ten publications
which presented approaches focused on correcting errors in sensor data. The methods
suggested focus only on correcting errors such as missing data and noise but do not
attempt to detect or quantify them. The correctional methods can be termed as missing
data imputation, which tries to estimate sensor measurement values that are missing
and de-noising, which tries to remove the noise associated with a measurement signal.
Table 4 shows the different existing methods proposed to correct sensor data errors
(RQ3), which consists of missing data and noise, along with the errors addressed, the
corresponding papers that proposed the method and the total number of papers. The
most common method for missing data imputation is Association Rule Mining, which
is addressed by half of the papers that deals with missing data estimation techniques.
There are also two clustering techniques presented, though one of them is a hybrid
approach with Probabilistic Matrix Factorization. There are also only two de-noising
methods found in the selected studies, which is the Empirical Mode Decomposition and
Savitzky—Golay Filter.

Missing data imputation
For missing data error, Association rule mining, Clustering, k-Nearest Neighbour, and
singular value decomposition solutions have been proposed to estimate the missing sen-

sor values.
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Association rule mining Gruenwald et al. [64] came up with an association rule mining
approach called FARM (Freshness Association Rule Mining) to estimate missing values in
sensor data. The central idea of this approach is that more recent sensor data values should
have a higher contribution to the association rule, that will be used for imputing missing
data at a specific point in time. This is because usually, the current state of a sensed physi-
cal environment is more dependent on its nearest previous states, rather than historical
states that are obtained long ago. For this purpose, round weights are added to each row
of data. The FARM approach also uses the Apriori Association Rule mining algorithm to
estimate the missing sensor value based on the weighted average of the current reading
of the sensors related to the sensor with the missing readings (obtained by the Associa-
tion Rule Mining). Since the freshness concept is introduced, the weighted support and

confidence measure is modified to the following:

> round weights where A and B report the same state, e

supy(A = B) =

)

>~ round weights
> round weights where A and B report the same state, e

confu(d = B) = > round weights where e is reported by X

In 2009, Chok and Gruenwald [61] refined the approach to cope with the complexity
of data streaming environments using a MASTER-Tree data structure. Moreover, Wang
et al. [66] proposed the Time-Space relationship and Association Rule Mining method
for interpolating missing data in activity recognition applications. This differs from the
FARM approach [64] as it incorporates the spatial correlation between sensor nodes
using Pearson’s correlation coefficient. This reduces complexity for the Association Rule
Mining algorithm as it only needs to search for rules from sensors that have a correlation
coefficient above a certain user-defined threshold.

D’Aniello et al. [62] incorporated association rule mining in their virtual sensor frame-
work to impute missing data values. Their framework also uses ontology to represent
sensors and data quality along with fuzzy logic to evaluate the quality of data received.
For example, the sensor is characterized by several quality criteria such as those declared
in the manufacturer specifications e.g. accuracy, precision and time since last calibra-
tion. Users can also specify their quality requirements, e.g. requiring response time <
30 ms £ 2 ms, which can be expressed in fuzzy sets, e.g. low response time. The virtual
sensor thus attempts to meet those quality requirements of the users by providing the
real reading if it meets those criteria or the reconstructed value if the value is missing or
if it does not meet the criteria. The reconstructed value is computed using association
rule mining, which exploits the spatio-temporal correlation among sensor readings to

estimate missing data.

Clustering Tang et al. [65] introduced a method for missing data imputation using
fuzzy C-means clustering, which has its parameter optimized using Genetic Algorithm.
The fuzzy C-means clustering algorithm aims to classify data into different clusters to
maximize their similarity. The weekly traffic volume data from sensors are analysed and
converted from a vector-based data structure into a matrix data structure. The Fuzzy
C-means clustering model is then built using Genetic Algorithm to optimize the mem-

bership degrees and cluster centers.
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k-Nearest Neighbour Li and Parker [9] proposed an imputation technique for missing
data using the Nearest Neighbour approach which takes advantage of spatio-temporal
correlations in the sensor data. The method uses a kd-tree structure to search for the
nearest neighbours, formed using weighted Euclidean metric which takes into account
the percentage of missing data for each sensor. Then, the algorithm searches the tree to
find the nearest neighbours and impute missing values based on the values obtained from
its neighbours (hot deck imputation).

Singular value decomposition Xu et al. [67] presented a mathematical approach for
recovering missing data by representing the spatio-temporal sensor data as a multi-
dimensional tensor (tensors are a multi-dimensional extension of a matrix) and intro-
duced a tensor-based recovery method i.e. tensor singular value decomposition (t-SVD)
to recover the missing values. One of the advantages of this method is that it does not
require non-missing training data. The spatial correlations between the sensors are
firstly obtained using Nearest Neighbour search, which forms a two-dimensional,
lat x long matrix, which represents its latitude and longitude. Apart from the spa-
tial correlation, the temporal correlation is also represented in the same tensor. This is
done by either formulating it as a three-order, lat x long x hour tensor, or a four-order,
lat x long x hour x day tensor which includes the models of the same hours in a day,
or a five-order, lat x long x hour x day x week tensor, which models the similarity of
the same hours in different days, and the same day in different weeks. After having the
appropriate tensor representation of the data, t-SVD is applied, which recovers the miss-
ing values.

Hybrid methods Fekade et al. [63] proposed a k-means clustering and Probabilistic
Matrix Factorization (PMF) approach to recover missing values. Firstly, k-means cluster-
ing is done to divide the data into clusters, and within each cluster, PMF is applied. PMF
decomposes a single matrix into a product of two matrices, which has the property to
obtain the original matrix by computing the product of two matrices, thus enables the

recovery of missing values in the original matrix.

De-noising
Other than handling missing data, there are two publications found in the 57 selected
studies that presented noise error correction (de-noising).

Signal processing Omitaomu et al. [76] suggested an approach for de-noising sensor
signals using the shrinkage method (thresholding) to de-noise high-frequency intrinsic
mode functions (IMF). IMF is an oscillatory signal which is a subset of the frequency
components from the original signal. It can be obtained by applying Empirical Mode
Decomposition, which forms low-frequency and high-frequency IMFs. They can then be
separated by mutual information. The method studied in this paper only considers appli-
cations with signals that are corrupted by high-frequency noise, whereby de-noising the
low-frequency IMF can lead to loss of signal information.
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Table 5 Methods combining error detection and correction (RQ2 and RQ3), along with its
addressed errors, respective papers, and the total number of papers that proposed

that method

Method Errors addressed Papers Total
Principal component analysis Outliers, bias, drift, constant values, noise, [46, 55] 2
stuck-at-zero
Artificial neural network Outliers, bias [41,43] 2
Bayesian network Outliers, missing data [7,38] 2
Grey prediction model Outliers, bias, constant values, stuck-at-zero [30] 1
Dempster-Shafer theory Uncertainty [80] 1
Calibration-based method Bias, drift, noise, stuck-at-zero [73] 1
Hybrid methods
Principal component analysis-based Outliers, bias, drift, noise, constant values, [60,72,74] 3
methods stuck-at-zero
Kalman filter-based methods Outliers, bias, drift, missing data [31,51] 2
Dempster-Shafer theory & Ontology Uncertainty (inaccurate data), missing data [68] 1

(incomplete data)

Savitzky—Golay filter and multivariate thresholding Sadikoglu and Kavalcioglu [77]
presented a de-noising approach for a healthcare application, specifically continuous glu-
cose monitoring systems, using Savitzky—Golay Filter and Simple Multivariate Thresh-
olding. The Savitzky—Golay Filter is a method of data smoothing based on local least-
squares polynomial approximation whereas the Simple Multivariate Thresholding is a
multivariate extension of a wavelet de-noising strategy which combines univariate (one-
dimensional) wavelets de-noising algorithms and PCA for dimensionality reduction.

Methods for detecting and correcting errors in sensor data

There are 15 out of 57 publications that answer both RQ2 and RQ3 simultaneously by
detecting the error and correcting them. They are usually termed as fault detection, iso-
lation, and recovery. Those introduced methods usually come in the form of building a
normal behaviour model of the system and comparing the new observed values with the
normal model. If the current observed data is significantly different from the estimated
value, it is identified as anomalous and is imputed with the estimated value from the
model. Table 5 shows the different existing methods presented to detect and correct sen-
sor data errors (RQ2 and RQ3), along with the errors addressed, the respective papers
that proposed the method and the total number of papers. The six hybrid methods sug-
gested for fault detection and correction can be classified into PCA-based hybrid meth-
ods, Kalman filter-based hybrid methods, and Dempster—Shafer Theory-based methods.
It is seen that PCA-based methods are most commonly found in this area, which con-
sists of one-third of the total papers addressing the fault detection, isolation, and recov-
ery problem.

Fault detection, isolation and recovery
The following are the different approaches proposed to detect, isolate (identify) and cor-

rect errors in sensor data.
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Principal component analysis Liu et al. [55] presented a PCA-based self-validating
sensor approach for wastewater treatment plants which is able to identify faulty sensors
before soft sensor prediction, using the Squared Prediction Error (Q-statistic) and Sen-
sor Validity Index (SVI) [27]. The reconstructed vector, ¥* of a faulty sensor data can be
obtained by subtracting the fault from the observed data, x:

=5 fi, (@)

where f; is the magnitude of the fault and €; is the direction of the fault. Thus, the goal is
to find f; such that Eq. 4 is most consistent with the PCA model. The approach is further
refined in [46] where another variation of PCA called the Variable Bayesian PCA is sug-
gested to handle missing data in the training set, which can cause over-fitting and locally
bad optimal solutions.

Artificial neural network Huang [43] introduced a technique for sensor fault e.g. outliers
and bias diagnosis and reconstruction using auto-associative neural networks (AANN)
which learn the internal relationship between all inputs by encoding (compressing) and
decoding (decompressing) the data. Moreover, Hou et al. [41] came up with a technique
for sensor fault diagnosis and validation using rough sets for pre-processing (for dimen-
sionality reduction and to learn classification rules) and artificial neural networks to learn
the normal behaviour model.

Bayesian network Dereszynski and Dietterich [38] proposed a data imputation method
for missing values and anomalies based on a dynamic Bayesian network which learns the
normal behaviour model of sensor measurements. The discrepancy between the current
estimate from the Bayesian network model and the current observed reading detects if
the reading is anomalous. Since a normal static Bayesian network only models the spatial
correlation in the dataset, a dynamic Bayesian network is used to also incorporate the
temporal correlations, since environmental data tend to be temporally correlated e.g. pat-
terns for the 24-h cycle is relatively similar. It relates variables to each other over adjacent
time steps. Zhang et al. [7], also suggested a data reconstruction technique for missing
data and inaccurate values in medical body sensor networks by learning a Bayesian net-
work. The Bayesian network learns the probabilistic graphical model and estimates the
sensor value by calculating its conditional probability.

Grey prediction model Chen et al. [30] proposed a self-validating strategy for multi-
functional sensors using the Grey Bootstrap model (GM(1,1) with bootstrap) which pro-
duces a prediction model. Current observations will then be compared to the predicted
value to detect, isolate, and recover faults such as outliers, bias, constant value, and near-
zero values. Bootstrapping can be done by drawing random samples from the dataset
with replacement to generate B bootstrap samples and calculate the estimate for each
resample, which gives the approximation of uncertainty. The bootstrap method allows
the uncertainty to be estimated without having prior information about the probability
distribution of the measurements. For each bootstrap sample, a grey predictive model,
GM(1,1) is used to predict the next value.
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Dempster—Shafer theory Richter [80] presented a method for assessing uncertainty and
increasing reliability for context-based applications (activity recognition). The reliabil-
ity assessment is done via mean squared error and to increase reliability, data fusion by
Dempster—Shafer theory of evidence is used in which measurement result is combined
with other sensor events that have higher reliability and are spatio-temporally related.
The Dempster—Shafer theory combines evidence gathered from multiple sources to
derive a new degree of belief, also known as belief mass, by data fusion and calculates
the confidence interval which includes the exact probability without needing prior infor-
mation. Thus, it provides more flexibility compared to Bayesian Networks as it requires
weaker conditions.

Calibration-based method Yu and Li [73] introduced an online in-situ calibration tech-
nique based on a calibration method. The calibration technique corrects faults such as
bias, drifts, noise, and sensor failure. An environment evaluation is firstly carried out, in
which a benchmark is established and measured values can be compared to the bench-
mark and calibrated via a mapping to the benchmark. However, this method requires an
accurate environment evaluation.

Principal component analysis-based hybrid methods Wang et al. [74] presented methods
for online blind detection and automatic calibration of sensor drifts via signal space pro-
jection using Principal component analysis to learn the normal sensor behaviour model
and detect the sensor drifts. Then, Kalman filter is applied to estimate the sensor drift
value and the drift value is subtracted from the sensor reading to give a better estimate of
the true value. Yang et al. [60] suggested a data validation technique to detect, identify and
correct faults such as bias, drifts, and impacts in a multifunctional sensor. The technique
separates (using Maximal Information Coefficient) the variables into independent and
dependent variables. Different fault detection, identification, and correction techniques
are used for the two types of variables. For independent variables, k-Nearest Neighbour is
used for fault detection and identification and a Grey Predictive Model GM(1,1) is used
for fault correction. For related variables, kernel Principal component analysis is used for
fault detection. Iterative Reconstruction-Based Contribution is used for fault identifica-
tion which assumes that the sensors are faulty and iteratively reconstruct the data until its
Squared Prediction Error (Q-statistics) is below a certain threshold and finally, variables
in the estimated fault direction are deemed to be faulty. For fault correction of the related
variables, fuzzy similarity is used, which involves reconstructing the faulty variable based
on the relationships between the related variables. Furthermore, Uren et al. [72] proposed
a PCA-based sensor fault detection, isolation, and reconstruction for bias, drifts, noise,
constant value, and stuck-at-zero errors. For fault detection, non-temporal parity space
is used to check for inconsistencies among a set of redundant sensors. With the assump-
tion that not all sensors may fail simultaneously in a particular channel, the non-temporal
parity space technique compares and validates the sensor measurements with a set of
redundant measurements. An estimate is obtained from the most consistent subset of
redundant measurements of a process variable and the faulty sensor can be identified via
parity checks. Fuzzy rule base is then used for fault isolation and Principal Component
Analysis is used to model and reconstruct the sensor measurements.
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Table 6 Domains of sensor data quality application from the 57 selected papers,
along with its respective papers and total number of papers that solve sensor data errors
in that domain

Domain Papers Total
General [26,27,33-37,39,46,48-53, 29
e.g. WSNs, loT, streaming data 57,58, 60-64,67-69, 74-76,
78]

Industrial processes [30, 43, 44,70-72,81] 7
e.g. Chemical gas process monitoring, power plants, part injection

molding
Environmental sensing [32,38, 40,47, 56, 79] 6
e.g. air quality monitoring, marine environment, soil moisture
Smart city [25,45, 46, 54, 55, 65] 6
e.g. Smart Spaces, Smart Grid, Wastewater treatment, Traffic flow
Healthcare [7,31,59,77] 4

e.g. body sensor networks, artificial pancreas, continuous glucose moni-
tor

HVAC systems [41,42,73] 3
Context-based application / activity recognition [66, 80] 2

Kalman filter-based hybrid methods Solomakhina et al. [51] suggested an approach
for detecting and correcting anomalous sensor data using Kalman Filter, Autoregressive
Integrated Moving Average (ARIMA), smoothing operators and knowledge-based systems.
The errors, e.g. missing data and outliers, are detected using the ARIMA and Kalman fil-
ter, and the Knowledge-based system is consulted to confirm the error. In the healthcare
domain, Feng et al. [31] also introduced a Kalman filter-based hybrid approach for sensor
fault identification and correction for missing data, bias, drifts and outliers. The method
uses Outlier Robust Kalman filter (ORKF) and locally-weighted partial least squares (LW -
PLS) for artificial pancreas control systems. Both algorithms are used to model the nor-
mal sensor behaviour to provide a more robust fault detection since one might report an
error, but the other might not. The ORKF has the advantage of fast detection and online
auto-smoothing i.e. de-noising ability, which works well for short-duration errors such as
outliers. For long-duration errors, such as drifts, LW-PLS is more advantageous as it is
based on historical data. The errors are then replaced by the estimated value which has

the highest performance score e.g. model accuracy, smoothness from the models.

Dempster—Shafer theory-based hybrid method To evaluate the quality of sensor data
based on inaccurate and incomplete data, (as well as inconsistent data and timeliness),
Hermans et al. [68] presented a framework using heuristics in the local and cluster heads,
and an inference engine in the cluster head which fuses correlated sensor readings using
Dempster—Shafer theory to arrive at a more accurate estimate.

Types of domains

The domains of the applications (RQ4) in the 57 selected papers are extracted and the
results are tabulated in Table 6. About half of the publications suggested methods that
generally apply to WSNs or IoT applications without a specific application domain.
However, some publications solve data quality problems in specific areas such as indus-
trial processes, environmental sensing, and smart city solutions. Other domains also
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Table 7 Real-world publicly available datasets and its respective domains, along with the
respective papers and total number of papers which used the datasets for performance

evaluation
Dataset Domain Papers Total
SensorScope Environmental sensing [35,57,58] 7
(GSB, LUCE, FishNet) [38] (GSB and FishNet)
[48] (GSB and LUCE)
Intel Berkeley Environmental sensing [35, 36, 39,48, 62, 63] 6
UCl machine learning repository water  Smart city [46, 55]
treatment plant dataset (wastewater treatment)
Numenta anomaly benchmark General [34] 1
(streaming data)
Networked aquatic microbial observing Environmental sensing [48] 1
system (NAMOS) (marine environment)
TasMAN Sullivans Cove Marine Environmental sensing [79] 1
(marine environment)
MERLSense Environmental sensing [66] 1
Caltrans PeMS traffic monitoring Smart city [9] 1
(traffic flow monitoring)
PhysioNet Healthcare [7] 1

include healthcare, heating, ventilation, and air conditioning (HVAC) systems, and
activity recognition applications.

There are several publicly available datasets that are used in method evaluation and
are domain-specific. The nine publicly available datasets are: SensorScope dataset [93,
94], which includes the Grand St. Bernard (GSB), FishNet and Lausanne Urban Canopy
Experiment (LUCE) deployments, Intel Berkeley dataset [95], University of California
Irvine (UCI) Machine Learning Repository’s water treatment plant dataset [96], Net-
worked aquatic microbial observing system (NAMOS) dataset [97] from the University
of Southern California, numenta anomaly benchmark dataset (NAB) [88, 98], California’s
Department of Transportation (Caltrans) Performance Measurement System (PeMS)
traffic monitoring dataset [99], Tasmania Marine Analysis Network (TasMAN) Sullivans
Cove CSIRO Wharf marine dataset [100], US Mitsubishi Electric Research Laboratories
MERLSense dataset [101, 102], and PhysioNet [103]. The datasets and papers that used
them for method evaluation and the total number of papers are listed in Table 7. These
datasets are last searched on May 8th 2019.

The following are brief descriptions of the publicly available datasets. SensorScope
has deployed many outdoor networks for environmental monitoring which produced
datasets, three of which have been used by seven of the selected papers for method
evaluation. Those publications include ones without a specific domain (general
papers) such as [57] or papers that are environmental sensing domain-specific such as
[38]. The GSB SensorScope network has been deployed at the Grand St. Bernard pass,
located at the border of Switzerland and Italy, in late 2007 for approximately 1 month
(September—October). It comprises of 23 stations. Another SensorScope network is
the FishNet deployment, which is deployed 1 month before GSB (August—September)
for around a month as well, but only with six stations. It is used to monitor a river to
improve its quality. The last SensorScope dataset seen in the selected literature is the
LUCE dataset, which is a more extensive dataset, with 97 stations deployed for almost
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a year from July 2006 to May 2007, which aims to understand the atmospheric behav-
iour in urban environments better.

Another dataset related to indoor environmental monitoring is the Intel Berkeley
Research Lab dataset. There are six papers in total that have used this dataset to test
their proposed methods. The Intel Lab data has 54 sensors deployed indoors in the
lab itself, collecting data about the environment such as the temperature, humid-
ity, and light. It also consists of the date, time, epoch, sensor ID, and voltage values.
The units for the data types are also specified, where the temperature is recorded in
degrees Celsius (°C), the humidity is in percentage (%), which is the relative humid-
ity, and the light intensity is measured in Lux. The dataset consists of 2.3 million
readings, obtained every 30 seconds from the sensors for about a month (February
28th to April 5th 2004). MERLSense is also another environmental sensing dataset,
where it captured and recorded motion data. It is also deployed in a research lab, and
data of the people working in the lab is collected for 2 years from March 2006 and
March 2008, totalling up to 50 million raw records from 200 sensors. However, Wang
et al. [66] has used the temperature attribute to evaluate their missing data imputa-
tion technique.

The NAMOS and TasMAN datasets are both marine datasets, collected to moni-
tor marine environments. NAMOS consists of several datasets from devices deployed
by the University of Southern California at different locations e.g. buoys, boats and
weather stations around California. It is one of the three datasets, along with the Intel
Lab and SensorScope LUCE datasets that Rassam et al. [48] used to evaluate their
method for outlier detection. The NAMOS dataset used is from the buoy no. 103 col-
lected in August 2006 in Lake Fulmor. The TasMAN dataset, on the other hand, is
from Sullivans Cove, Hobart, Tasmania. The dataset consists of the seawater tempera-
ture and conductivity from February 2008 to July 2012. Numenta anomaly benchmark
(NAB) is an open-sourced benchmark for evaluating techniques for anomaly detec-
tion for streaming data. It provides numerous real-world streaming datasets such as
Amazon’s AWS server metrics, online advertisement clicking rates, temperature sens-
ing, and traffic monitoring datasets. The datasets provided by NAB are the only ones,
among the other datasets found in this systematic review, complete with labelled
streaming data comprising of normal and erroneous measurements e.g. spatio-tem-
poral outliers, noise and drift. It also has a novel scoring system called the NAB score,
which takes into account true positives, true negatives, false positives, false negatives,
and windows to reward early detection.

Moreover, another publicly available dataset comes from the University of Cali-
fornia, Irvine (UCI) Machine Learning Repository. The repository contains a wide
range of 468 different datasets, from healthcare to games, robotics to social science,
environmental sensing and many more. There are two of the selected papers [46, 55]
that have used water treatment plant dataset from this repository. It has 527 sam-
ples and 38 attributes, which consists of the daily measurement from sensors in an
urban wastewater treatment plant. It is a relatively complex system, where the aim is
to predict faults through the operational state of the process. Another publicly avail-
able smart city dataset comes from California’s Department of Transportation, who
released their traffic monitoring datasets. However, a user has to sign up for a free
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Table 8 Types of datasets used in method evaluation and their availability online
or reproducibility, the total number of datasets used for each type of dataset
and the respective papers and the total number of papers that used those datasets

Dataset type Availability No. datasets Papers No. papers
Real-world datasets Published and currently 21 [7,9,34-36, 38, 39,46,48,55, 16
available 57,58,62,63,66,79]
Unpublished or currently not 33 [9, 30, 31, 33, 35-37, 40-42, 32
available 44,45,47,49, 50, 52-54, 56,
60, 61,64, 65,67-70,72,73,
75,76, 81]
Simulated datasets  Published or reproducible 2 [46, 54] 2
Not reproducible 16 [35,37,39,43,47,51,57-59, 15
69,71,74,76-78]

account to access those datasets. It provides an extensive traffic monitoring dataset,
where users can choose to obtain data from up to almost 100 freeways in Califor-
nia gathered by 18,305 stations. The website also provides real-time information dis-
played on a dashboard. The last publicly available dataset found to be used for method
evaluation for one of the 57 selected papers is PhysioNet. It provides healthcare-based
sets of data, which is split into two categories: clinical databases and waveform data-
bases. The former provides data such as demographics, images and vital sign meas-
urements where Zhanget al. [7] used one of the datasets, whereas the latter presents
a digitalized signal or waveforms of physiologic data, such as the heart monitoring
electrocardiogram device signal.

Discussion

In this section, we discuss the challenges found through the systematic review, which
affects the comparability of methods introduced in this research area. The evaluation
of the performances of methods presented in the selected studies are done on a wide
range of datasets and have different dataset pre-processing conditions. This makes it
impossible to compare the efficiency of these methods just by reading the respective
publications. Furthermore, there are various evaluation metrics used in the literature
and even within the same problem, e.g. outlier detection, the evaluation metrics used
are different. This shows that there is no generally accepted way of comparing differ-
ent methods. An analysis of the problems is detailed in the subsections that follow.
“Datasets and error imputation and labelling” section discusses the different datasets
used and their availability online or reproducibility, and the preparation or pre-pro-
cessing of the dataset which includes error introduction for evaluating the methods.
“Evaluation metrics” section, on the other hand, details the different evaluation met-
rics used and the situations they are used in.

Datasets and error imputation and labelling

There are many different datasets used in the performance evaluation of methods found
in the literature. They can be categorized into two types of datasets: real-world datasets
and simulated datasets. Real-world datasets consist of data from real-world experiments
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or deployments, whereas simulated datasets contain data that have been synthetically
produced. Within those two categories, the datasets can be further split into published
or unpublished datasets. Published datasets are datasets that are currently publicly avail-
able (last checked on May 8th 2019) or reproducible datasets, by having the dataset
itself or source code published online. The published datasets are described in “Types of
domains” section with respect to their domains. Unpublished datasets refer to the data-
sets that are not currently available publicly or cannot be reproduced. Table 8 shows the
different types of datasets and the number of papers that used them for evaluation. Out
of the 57 final selected publications, 52 publications have proper validation and from
these, there are a total of 72 datasets used for evaluating the introduced algorithms.
From these 72 datasets, there are 54 real-world datasets of which only 21 of them are
published datasets. Furthermore, among the 18 simulated datasets, only two can be
reproduced as the simulator is publicly available. Note, that some papers evaluated their
methods on more than one dataset, such as the work of Bosman et al. [35], who used
four datasets: the published real-world datasets Intel Lab and SensorScope GSB, an
unpublished real-world dataset, and a simulated dataset.

From the 72 datasets used for method evaluation, it is seen that around 68% of the
datasets are not published nor reproducible, consisting of both real-world and simulated
datasets. This makes it hard for the comparison of different methods in this research
area. Besides that, even for literature working on publicly available datasets, they have
different techniques of imputing errors to evaluate their suggested methods. For exam-
ple, in anomaly detection, Bosman et al. [35] labelled the errors in the Intel Lab and Sen-
sorScope GSB datasets using a semi-automated approach. Anomalies were identified by
heuristics (e.g. a value that is not changing for over ten samples is labelled as a con-
stant-value error), which will then be corrected manually by a person. Rassam et al. [48],
on the other hand, also used the Intel Lab dataset and the SensorScope dataset (LUCE,
NAMOS) to evaluate their proposed method but have a different heuristics of histo-
gram-based labelling. They assessed their solution on simulated errors whereby they
artificially injected 100 anomalies. For missing data imputation, the Intel Lab dataset has
also been used by D’Aniello et al. [62] and Fekade et al. [63], where the former simulated
the missing errors at 5%, 10%, 20%, 30%, 40% and 50% rates and the latter simulated the
missing error by making 10% of the total data empty.

Other than having different error injection and labelling methods, though even if two
publications might use the same online dataset, it is still not directly comparable as
they might have pre-processed the dataset. For example, Bosman et al. [36] and Fawzy
et al. [39] both used the entire Intel lab dataset for evaluation, though with different
error introduction techniques, whereas Rassam et al. [48] only used 3 out of the total 54
sensor nodes. D’Aniello et al. [62] also removed known errors from the dataset before
proceeding to test their missing data imputation methods on a subset (March 1st—14th)
of the Intel Lab dataset. Although the NAB is a unified benchmark that provides publicly
available datasets complete with labelled errors, it is only for the comparison of anomaly
detection algorithms. It does not provide a benchmarking system for missing data impu-
tation and fault correction, which is the other two main types of errors found in the liter-
ature. There is also only one publication [34] among the 52 publications with validation
that has used this benchmarking system.
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Fig. 5 Heatmap of dataset availability. The two heatmaps describing the problem of availability of the
datasets used in sensor data quality literature. Both heatmaps show the number of available datasets, P
against the total number of datasets, D used for method evaluation in the 57 selected papers where the
number in each cell represents: a the number of papers that have used P publicly available datasets out of
its D total number of datasets for method evaluation and b the average citation rate for the papers that have
used P publicly available datasets out of its D total number of datasets for method evaluation

In order to analyse the problem of the availability of the datasets used in the literature,
we are introducing two data set metrics, which are retrieved for each of the 57 reviewed
publications. The first metric is the number P of publicly available data sets, which
have been used for evaluating purposes in the kth paper. The second metric is the total
number of data sets Dy, which have been used for the evaluation of algorithms in the
kth paper. Consequently, the difference (Dy — Py) is the number of datasets, which have
been evaluated in the kth paper but are not publicly available. However, up to this point,
our model does not take into account the possible influence of open access publications
of the respective papers on its citation rate.

Figure 5a shows a heatmap of the number of publicly available datasets Py against the
total number of datasets Dy used in the sensor data quality literature. The heatmap vis-
ualizes the joint distribution of P = (Py,...,Ps57) and D = (Dy, ..., Ds7): The numbers
in each cell corresponds to the number of publications that have used the respective
number of publicly available datasets P and the total number of datasets D to evaluate
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their methods. The darker colour (higher numbers) in the lower quadrant shows that
the majority of the reviewed sensor data quality publications evaluate their methods on
fewer datasets and more importantly, on datasets that are not publicly available. How-
ever, a problem found through this systematic review, which is the direct comparabil-
ity of the methods introduced, can only be solved if researchers in the research area
evaluate their techniques on the same datasets (given the same error injection and pre-
processing conditions). Thus, having used publicly available datasets might prove to be
beneficial to the research area. This prompts for a need to further analyse the effects of
using publicly available datasets for method evaluation.

In order to do so, we are analysing the citation rate R of the reviewed publications. The
citation rate Ry is computed as the quotient of the number of citations of the kth paper
and its years since publication. The number of citations for each publication has been
obtained from Google Scholar® on April 5th 2019. Google scholar was chosen because it
can be accessed without a license fee. Note, that Google Scholar’s citation count includes
citations from various sources including self-citations and preprint repositories. Thus,
the citation count might differ from other citation databases, e.g. Web of Science. The
citation rates Ry are binned with respect to their total number of datasets D; and number
of publicly available data sets P; and are averaged for each bin:

57
> 1p,=ilp—;Rk
Rij = "= with To_p = {
> 1p,=ilp=;
k=1

1: a=0b,
0: a#b.

(5)

From this observation, the heatmap in Fig. 5b is plotted to study the effects of using
publicly or non-publicly available datasets on the citation rate of a publication. The cita-
tion rate is used to study the effects of using publicly or non-publicly available datasets
as a high citation rate might imply that researchers working on the same research area
can compare their results with those studies using the same dataset. If the dataset is not
publicly available, it makes it hard for comparison. The heatmap shows that the average
citation rate for the literature involving publicly available datasets tends to be higher.
To confirm this observation, a Bayesian analysis [104] is carried out to test if there is a
significant difference in the citation rate between two groups: the available group, which
consists of papers that evaluated their methods on publicly available datasets and the
non-available group, which consists of papers that evaluated their methods on non-pub-
licly available datasets.

Shown in Fig. 6, the Bayesian estimation is carried out using the Python module
PyMC [105], which is designed to implement Bayesian statistical models. A Bayesian
estimation is done instead of the classical ¢-test, as it shows the complete distributional
information, i.e. the probability of every possible difference of means and every possible
difference of standard deviations which allows the estimation of the difference between
the two groups rather than simply testing whether the two groups are different based
on the observed data [104]. Figure 6a, b show the posterior distribution of the mean
citation rates for both groups, i.e. the available group and the non-available group. The

> https://scholar.google.com.
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Fig. 6 Bayesian analysis. Bayesian analysis which shows a significant difference in the citation rate between
the available group, and the non-available group: a the mean citation rate, 6.79 of the available group which
consists of the collection of papers that used publicly available datasets to evaluate their methods whereas
b the mean citation rate, 2.16 of the non-available group which involves the group of papers that did not use
publicly available datasets for method evaluation. ¢ The difference of means from both groups. The papers in
the available group has a 99.9% posterior probability of having higher number of citations compared to the
papers from the non-available group
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Table 9 Confusion matrix where the positive class are faults and the negative class are
normal data points

Actual positive Actual negative
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

Thus, TP faults correctly predicted as faults, FP normal data point incorrectly predicted as fault (Type | error), FN fault
incorrectly predicted as normal data point (Type Il error) and TN normal data point correctly predicted as normal data point

Table 10 Types of performance measures used in method evaluation for the 39 papers
which has quantitative performance values and their respective formulas, papers
and total number of papers, where TP = true positive, TN = true negative, FP = false
positive, FN = false negative, x; = observed value or ground truth of sample i, x; =
predicted value of sample i and n = number of samples

Evaluation metric Formula Papers Total
Recall TPT+7PFN [31,35,36,38,39,42,45,48,51,57, 13
58, 60, 78]
False positive rate (FPR) % [31,33,38-40,44,47,54,57-59,711 12
i FN

False negative rate (FNR) e [40, 44, 47,48, 54, 71] 6
isi P

Precision TP [35, 36, 38,51, 78] 5

TP+TN
Accuracy Ll [37,48,51,79] 4
F-score 2 precision x recall [35, 36] 2
precision+recall
Matthew’s correlation coefficient TPXTN—FPxFN [65] 1
(MCC) (TP+FP)(TP+FN) (IN+FP) (TN-+FN)

Regression metrics

Root mean squared error (RMSE) VMSE [46, 62, 64, 66] 4

Mean squared error (MSE) % Z,n:w o — ;(,.)2 [72,76] 2

Mean absolute error (MAE) % Z?:w Ixi — % [61,67] 2

Mean relative error (MRE) 1 Z’n [xi =51 [30, 671 2
n =1 X

mean of the available group, available_mean is approximately 6.87 whereas the mean of
the non-available group, non_available_mean is 2.16. In order to compare the means of
both groups, Fig. 6¢ shows the posterior distribution of the difference of means of both
groups. There is a 99.9% probability that the mean citation rate of publications, which
are using public datasets, is larger than the mean citation rate of publications, which
are not using public datasets. This suggests that the publicly available datasets are easier
to access, which leads to a higher citation rate for papers that involve publicly available
datasets for method evaluation. Moreover, the ease of access for publicly available data-
sets allows researchers to directly test and compare their methods with other existing
solutions for solving sensor data quality problems which are done on the same dataset.

Evaluation metrics

Apart from the different datasets used, various evaluation metrics are also seen in the
selected literature. This is due to the different sensor data quality problems, for exam-
ple, methods for detecting errors and methods for missing data imputation would have
used different evaluation metrics to quantify its performance. The former uses classifica-
tion metrics such as recall and precision and is based on the confusion matrix (Table 9)
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whereas the latter uses a regression metrics such as root mean squared error and mean
absolute error that would quantify the difference in the estimated value and actual value.
In the 39 papers out of the 57 papers that have quantitative measurements, Table 10
shows the different evaluation metrics used in those 39 papers.

Classification metrics

Recall, also known as sensitivity or true positive rate (TPR), is commonly used in error
detection to calculate the number of correctly detected faults (TP) over all faults, which
includes both faults that are correctly detected (TP) and faults that are incorrectly
detected as a normal data point (FN). It is used as an indication of the method’s abil-
ity to detect faults, which places more importance on false classification of normal data
points, which are supposed to be faults, i.e. false negatives. For example, if fault detec-
tion is being used as a data-cleaning solution for the training dataset which will then be
used for some other machine learning methods e.g. for prediction or analysis [31, 42],
incorrectly labelling a fault as a normal data point (FN) might have some adverse effect
on the next machine learning model. Other than that, precision is also used as a classifi-
cation metric for fault detection. It is the number of correctly identified faults (TP) over
the total faults identified, which includes both faults that are correctly detected (TP) and
incorrectly detected (FP). It shows how precise the model is, by measuring in terms of
all the detected faults, how many of them are actual faults. Precision differs from recall
as it places more weight on the false positives instead, which is the incorrect detection
of faults. This metric might be used for example, in environmental sensing applications
[38] where it penalizes incorrect fault detection as this might lead to waste of manpower,
cost and time, as a technician might be sent out to the deployed sensor to test and cali-
brate the sensor device.

The False Positive Rate (FPR), also known as the Type I error rate, is the probability
of a false alarm. It is the ratio of incorrectly labelling a normal data point as a fault (FP),
over all normal data points, either correctly or incorrectly labelled (TN, FP). This metric
is used when Type I errors (FP) should be given higher weights. For example, in [59],
FPR is used in evaluating a method for fault detection of a continuous glucose monitor-
ing device used an artificial pancreas system. A continuous glucose monitor should not
raise too many false alarms (FP) as it might cause a panic, or increase the level of distrust
towards the device. False Negative Rate (FNR), on the other hand, is known as a Type
IT error rate or miss rate and it is the number of incorrectly labelled faults (FN) over all
faults, either correctly or incorrectly labelled (TP, EN). For applications which penalize
Type 1I errors (FN), this metric is used to evaluate the proposed method. In industrial
power plants, faults that are incorrectly classified as normal data points (FN) might be
detrimental to the system, as it might lead to a complete system failure. Thus, papers
such as [44] have used FNR as a performance metric for their method, along with FPR.

Other performance metrics for fault detection includes accuracy, F-score, and Mat-
thew’s correlation coefficient. The accuracy takes into account all four categories of
the confusion matrix: true positives, true negatives, false positives, and false negatives.
However, for imbalanced datasets where the class distribution is uneven, the accuracy
metric is not an ideal performance measure of a model. In sensor data, there might be
more normal data points than anomalous one, contributing to the true negatives, thus
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making the accuracy metrics unfair for performance evaluation. F-score, on the other
hand, is a function of precision and recall which balances between the two and does not
take into account the number of true negatives. However, this is also a down-side to the
E-score, as not including the true negatives in the calculation might give a misleading
result. Moreover, both of the metrics i.e. accuracy and F-score, do not take into account
the proportion of each category in the confusion matrix.

To solve this, Matthew’s correlation coefficient (MCC) is a metric that correctly con-
siders the ratio of the size of all four confusion matrix categories, allowing a higher score
only if the model does well on both positive and negative categories [106]. It ranges
from —1 to 1, which indicates perfect disagreement and agreement between the pre-
diction and actual class respectively. An MCC score of 0 indicates a by chance result,
which could be achieved by simply guessing that there are not any faults at all. Based
on the example discussed by Chicco [106], assume that a classifier is trained on a heav-
ily imbalanced dataset with 95 normal data and 5 anomalous data. Let the normal data
be the positive class and the anomalous data be the negative class. Thus, TP = correct
detection of normal data, FP = incorrect detection of fault as normal data, TN = correct
detection of fault and FN = incorrect detection of normal data as fault. Suppose a model
that randomly guesses all data points as normal is built. Thus, it classifies all points as
positive and we have TP = 95, FP = 5, TN = 0 and FN = 0. Following the formulas for
accuracy and F-score in Table 10, we have Accuracy = 95% and F — score = 97.44%.
However, this random guessing will be detected by MCC as it will be undefined (since
the denominator will return 0), giving an indication that the classifier is not working as
intended, opposed to the accuracy and F-score, which gave a false illusion that the clas-
sifier is doing well. In another example, suppose now the classifier does classify some
points as faults, where TP = 90, FP = 4, TN = 1and FN = 5, but it poorly classifies the
faults as it only correctly detects 1 out of 5 faults. The accuracy and F-score are still high,
resulting in Accuracy = 91% and F — score = 95.24%. However, the MCC has a value of
MCC = 0.14, which shows that it is performing poorly and there is a low correlation
between the predicted class and the actual class. Thus, MCC is evidently more robust
than the other two metrics and should be used more frequently to quantify fault detec-
tion method performance.

Regression metrics

These metrics are used in order to quantify the performance of methods for fault correc-
tion or missing data imputation. These metrics include the Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative
Error (MRE). MSE measures the average squared errors of the predicted values com-
pared to the true values. However, squaring the error gives more weight to large errors.
It is more useful when large errors are particularly unacceptable, but might underesti-
mate the model’s accuracy, because one large error might increase the MSE significantly.
RSME is the square root of MSE, which has the same units as the quantity plotted on
the vertical axis, making it more interpretable. Another metric used to evaluate the pre-
diction of the model is the MAE and MRE. MAE measures the average of the absolute
errors between the predicted values and true values. It is less sensitive to huge differ-
ences, unlike MSE or RMSE, as it takes the absolute value, not the square, of the errors.
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MRE is similar to MAE, however, every data point is divided by its true value. Thus, it
indicates how large the absolute error is with respect to the size of the actual data point.
However, the MRE is problematic for sensor data, for which the true measurement value
might be zero.

Conclusion

This paper presents the results of a systematic review of sensor data quality problems.
It aims to answer the following research questions: what are the different types of errors
in sensor data, how to quantify or detect and correct those errors and what domains are
the different types of methods proposed in. The initial search process resulted in 13,057
publications, and by refining the search string through topic modelling, the final search
string returned 6970 publications. Through the screening of these 6970 publications, 57
papers have been selected for data extraction and synthesis. The analysed publications
discuss sensor data quality problems that are caused by errors in sensor data such as
missing data, uncertainty, and faults, which include outliers, bias, constant values, stuck-
at-zeros, and noise.

Results also show that there is a huge variety of methods suggested to detect or
quantify those errors, as well as to correct them. There are 16 different types of meth-
ods presented for error detection, which are obtained from 32 papers out of the 57
selected papers that introduced techniques for the respective problem. The two most
common approaches are principal component analysis (PCA) and artificial neural net-
works (ANN). They are both used to model the normal sensor behaviour and the newly
observed readings will be compared to the model to determine if it is anomalous. Other
techniques for fault detection include Ensemble Classifiers, Support Vector Machines,
Clustering, and hybrid methods.

For error correction, there are ten publications that proposed methods for missing
data imputation and noise correction. The most common missing data imputation tech-
nique is Association Rule Mining, with half of the respective papers proposing variations
of that approach. Other approaches comprise of k-Nearest Neighbor, clustering, ten-
sor-based singular value decomposition, and Probabilistic Matrix Factorization (PMF).
On the other hand, 15 publications simultaneously address error detection and correc-
tion problems, usually termed as Fault Detection, Isolation, and Recovery (FDIR). The
PCA-based approach is the most common technique for FDIR, though there are other
approaches such as ANN, Bayesian Network, and hybrid methods involving Kalman fil-
ter and Dempster—Shafer theory with Ontology.

However, through this systematic review, there are several challenges that are found in
this research area. From the two subsections, “Datasets and error imputation and label-
ling” and “Evaluation metrics’, it is seen that methods from the selected literature were
evaluated on different datasets, along with different pre-processing conditions and fault
injection processes. The availability and ease of access of the datasets also play an essen-
tial part in helping researchers compare and evaluate their methods with other existing
techniques for a particular sensor data quality problem. The Bayesian analysis of citation
rates done on the 57 selected papers shows the effects of using publicly available datasets
for method evaluation. There is a 99.9% probability that papers that use publicly availa-
ble datasets have a higher citation rate than those that used datasets that are not publicly



Teh et al. J Big Data (2020) 7:11 Page 45 of 49

available, which suggests that more people are able to cite and compare their methods
with those papers due to their availability online and easy access.

However, about 68% of the datasets used for evaluation are not publicly available nor
reproducible. Even for the remaining 23 datasets that are used from nine publicly avail-
able sources, the data pre-processing and the error introduction step, whether by man-
ual labelling or simulating faults artificially, are done differently. Furthermore, even for
the same problem domain e.g. fault detection, fault correction, or missing data impu-
tation, different classification and regression evaluation metrics are being used to pro-
duce a quantifiable performance measure. This provides no formal way of comparing the
methods. Other than that, the use of Matthew’s correlation coefficient is also shown to
be more robust towards imbalanced datasets and optimistic misinterpretations. How-
ever, only one paper from the 57 selected papers is seen to have used that performance
metric.

Both challenges pose a problem for this research area as they make it more difficult
for researchers to compare their proposed methods with existing techniques, which
may lead to counterproductive results. These two challenges show the need for an open
source benchmarking system for techniques that solve sensor data quality problems.
The benchmark should provide datasets complete with all the different types of errors
(that is either labelled or injected artificially) and a proper scoring system that uses the
appropriate evaluation metrics to allow comparability of methods in terms of their per-
formance to solve sensor data quality issues.
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