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Introduction
Nowadays, in the age of big data and more data generation, there is a growing need 
to store and process large-scale data in real-time which has led to the deployment of 
cloud computing. The significant growth of the DC market has led to its rapid growth 
of power consumption as well as cost. By 2025, the DC market is predicted to account 
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for the largest ICT share of global electricity production by 33% and consumes 20% of 
the world’s energy and its carbon footprint is at 5.5% of the global value [1].

The pervasive performance of the cloud, which provides working anywhere, has 
led to widespread broadcasting of cloud users, around the world. In addition, consid-
erations of globalization, security, and disaster recovery encourage organizations to 
distribute their DCs over a long geographically distance and across different regions, 
clearly near to cloud users. These geo-distributed DCs, which replaced the central-
ized one, offer solutions to deal with the high velocity and high volume of big data 
generated from geographically dispersed sources. Hence, deploying multiple geo-dis-
tributed DCs is the subject of most current efforts by cloud providers such as IBM, 
Google, and Facebook.

As the underlying infrastructure of the cloud, DCs have to be active all the time to 
respond to users’ requests. Therefore, they consume a great deal of energy and widely 
affect the local power grid. In addition, electricity cost has turned to one of the most 
important portions of their operational expenses. For example, DC power consumption 
in 2018 has been valued at $21.57 billion and is expected to reach $35.09 billion by 2024 
[2].

The two key components in DC design are efficiency and clean energy. Due to the 
environmental impacts, increasing public awareness, and high energy cost, there is a 
growing desire today among DC providers to use renewable energy and reduce carbon 
footprints. In this regard, RE is applied as a supplementary energy source in DC. The 
green DC market investment in 2018 was valued at $43.24 billion and is expected to 
reach $147.88 billion, by 2024 [2].

Nevertheless, due to the high level of DC power consumption, power management, 
which reduces the DC power consumption and cost, has become increasingly impor-
tant. Power management and tuning essentially require a reliable power modeling or 
forecasting method. While power forecasting can provide new opportunities for partici-
pation in the emerging power market which leads to monetary benefits both for the DC 
as well as the grid.

Practically, the DC power consumption pattern depends on multiple factors such as 
hardware specifications, workload, cooling requirements, types of applications, etc., 
and cannot be measured easily. Thus, precise modeling of a DC’s power consumption 
pattern, either at the whole system or its individual component, is not straightforward. 
Furthermore, it is impractical to perform detailed measurements of power consumption 
of all existing components, since the measurement infrastructure introduces overhead 
to the system. Due to these reasons, power forecasting methods have been developed 
which can predict the power consumption of a DC for a given workload. However, 
power forecasting is also hard especially when variable renewable energies (RE), as well 
as free cooling such as air economizers, are used.

Geo-distributed DCs face an even harder issue: Because the incoming load is bal-
anced among them and hence the power pattern of each of geo-distributed DCs depends 
on others, and in addition to the local conditions, the overall state of the system also 
affects the power pattern of a DC. Hence, there is a wide range of influential factors that 
increasingly complicates the power forecasting for a geo-distributed DCs, so that con-
ventional approaches have become inefficient in such complicated cases.
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A typical DC has thousands of sensors which produce millions of data points that 
record the status of the system at any time. Thus, one alternative is to construct a predic-
tion model to learn how the system consumes power form the variation of these data 
points over time. However, given the clear trade-off between the accuracy and pro-
cessing overhead, we need to obtain an optimal set of most influential features. In this 
regard, one approach is to consider the sectors which consume more energy and exam-
ine the influential factors in these sectors to extract a set of more significant features.

In this study, we considered the correlation between weather parameters and power 
pattern of geo-distributed DCs. We use linear regression (LR) to extract an optimal set 
of most influential features. Afterward, taking advantages of Artificial Neural Network 
(ANN), we propose a reliable power prediction model for a geo-distributed DC.

The rest of the paper is organized as follows: We start with a background in power 
distribution of a DC and overview of related works. "Methodology" section discusses 
the methodology and gives insight into prediction steps and the proposed prediction 
model. "Simulation setup" section presents the experimental setup and an overview of 
the proposed approach. Then "Result and discussion" section provides and combines 
the obtained results and discussion. Finally "Conclusion and future works" section con-
cludes the paper.

Background and related work
Power distribution among geo‑distributed DCs

In this section, we first explore the power distribution of a DC as well as the load distri-
bution considerations among geo-distributed ones.

Among different proposed standards, power usage effectiveness (PUE) is widely used 
by load balancing approaches to distribute the incoming workload among geo-distrib-
uted DCs. PUE is the ratio of the DC total power vs. the amount delivered to the com-
puting equipment. Figure 1 depicts the power distribution of a DC and PUE calculation 
in more details.

As Fig.  1 shows, among different secondary supports, the cooling unit is respon-
sible for a large portion of power consumption and hence, has a significant impact on 
PUE; as far as up to 40% of a DC power consumption is consumed by cooling system 
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[3]. Recently, utilizing free cooling methods, which takes advantage of the outside cold 
weather have increasingly considered in DC design. While, according to [4], such this 
condition, weather parameters such as ambient temperature significantly affect the PUE.

In addition, to reduce the energy expense, most DC owners have persuaded to install 
RE next to their DC. While weather condition could significantly affects the efficiency as 
well as the production capacity of the in-site RE and consequently, the DC power pat-
tern. Thus, using variable energy and free cooling, the DC power pattern is associated 
with weather parameters. Therefore, given the geographical load balancing (GLB) policy 
among collaborating geo-distributed DCs, the variation of weather condition of each DC 
will change the GLB decisions and consequently, all DCs power pattern.

DC power prediction

The large amount of data points generated by thousands of sensors inside a typical 
DC, and the complex interactions between them, makes it difficult to use traditional 
approaches for an accurate power forecasting. While, machine learning creates new 
opportunities for power prediction in a DC. However, regarding the recent advances 
in machine learning, a few studies focused on utilizing them to predict the DC power 
requirement. Authors in [5] use historical power data to predict the future power con-
sumption. They consider two different time scale for data acquisition and accordingly 
propose two different prediction models for DC power consumption that is based on 
the linear recursive Auto Encoder. Li et al. [6] also reinforce their proposed model with 
an additional layer which corrects the prediction results with respect to the prediction 
error analysis. Investigates the relation between DC power consumption and weather 
condition. Authors analyze the correlation between different weather parameters and 
the amount of a single DC power consumption. They extract more effective features and 
utilize them to propose a linear regression (LR) based prediction model for power con-
sumption of a typical single DC. Hsu et al. [7] consider the power consumption mod-
eling based on a wide range of input variables and propose a prediction framework using 
the self-aware computing. The proposed framework dynamically updates the effective 
training variables according to the input variables interaction analysis as well as the pre-
diction error monitoring. Authors evaluate their framework in a real DC and use it along 
with the energy management system. Liu et al. [8] estimates the DC power consump-
tion based on the server power consumption modeling. Authors utilize historical data 
for CPU as well as memory usage in a DC and apply the neural network model to predict 
the near future values. Afterward, according to the DC power consumption modeling in 
their work, they estimate the required power and accordingly explore the opportunity of 
ancillary energy market participation in the DC.

To the best of our knowledge, the existing studies neither pay attention to the power 
prediction in the geo-distributed DC nor take into account the intricate and interde-
pendent impact of local conditions in global power distribution pattern of a geo-distrib-
uted cloud. This work is the first research which considers these issues and analyzes the 
impact of local weather parameters on geo-distributed DCs power pattern.

To sum up, the contributions of this work are as follows:
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•	 Given the wide range of effective factors in DC power consumption in a geo-distrib-
uted cloud, we applied an analyzing algorithm for significant feature extraction to 
obtain a set of more conducive features, wide enough to reach the acceptable accu-
racy, yet narrow enough to prevent the unnecessary complexity.

•	 We formulated a well-known GLB problem and applied its optimization results as 
training data.

•	 Instead of using historical power data, we calculated the DC power consumption 
based on the accurate model of real-time PUE as well as server power consumption 
model.

Methodology
The prediction procedure includes the historical data acquisition, original data pretreat-
ment for noise elimination, feature extraction, training data generation, and finally pre-
diction model construction. The prediction steps is shown in Fig. 2.

Data acquisition and noise elimination

The historical weather data is acquired from the reliable and high-quality local databases 
[9–11] through the automatic python script and stored in comma-separated value (.csv) 
local file. Afterward, we did preprocess to eliminate noise and retrieve the missing data 
through the linear interpolation. Finally, given the wide range of raw data, we normal-
ized them (feature scaling) to the interval of [1, 0] through mapminmax() to provide an 
easy evaluation as well as comparison.

Most significant feature extraction

Considering the clear trade-off between the accuracy and processing overhead, we 
eliminate the redundant features which do not effectively contribute to the model 
training and may lead to over fitting. We utilize LR to evaluate the impact of each 
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feature on the prediction result, because LR has fast computing speed as well as 
prediction reliability that reaches the result after the finite number of adjustment. 
Algorithm  1 illustrates the procedure of most significant feature extraction as we 
considered. 

Given the number of loop execution in Algorithm 1 (for loop, Line 5), our problem 
with five input features (including temperature, humidity, pressure, cloudiness and 
wind speed) has 31 different LR models for each DC. We consider a cloud of four 
geo-distributed DCs and thus a total of 124 different LR models must be considered. 
In this regard, to quickly extract the most important features, we first used the rank-
ing approach to filter out the irrelevant features and then applied the Algorithm 1 to 
the remaining three high ranked features. The basis of ranking techniques is on the 
statistical scores that determine the correlation of features with the outcome vari-
able. Then, the greedy search based on Algorithm 1 creates subsequent models with 
the left features iteratively and evaluates the overall fit of each model in each itera-
tion for evaluation function (line 7). We applied Adjusted R-squared as the γ  param-
eter and evaluate each model considering the model complexity penalty, to control 
its over fitting. Please note that adjusted R-squared is between 0 and 1 and higher 
values mean more variance is explained by the model. Table 1 provides the result of 
ranking approach in each DC.

According to Table  1, three high ranked features in DC1, DC3 and DC4 are the 
same. Hence, the subsequent models are also the same. Tables  2 and 3 show the 
result of subsequent models evaluation, based on Algorithm 1, considering the eval-
uation parameter of adjusted R-squared. 



Page 7 of 16Taheri et al. J Big Data             (2020) 7:8 

The best outcome of R-squared evaluation parameter in the subsequent models 
are shown in italic, in Tables 2 and 3. Hence, the optimal set of most significant fea-
tures in each DC would be as Table 4.

Training data generation

In this study, we generated the training data through off-line data generation. This 
learning technique is useful when the number of training samples is small enough 
that all training samples can be stored in memory. The policy of training data genera-
tion in off-line algorithms is generally independent of the policy applied for predicted 

Table 1  Feature ranking result

Feature ranking

DC1 {Temperature, cloudiness, windspeed, humidity, pressure}

DC2 {Temperature, windspeed, pressure, cloudiness, humidity}

DC3 {Temperature, windspeed, cloudiness, pressure, humidity}

DC4 {Temperature, cloudiness, windspeed, pressure, humidity}

Table 2  R-squared result for subsequent models in DC1, DC3 and DC4

Feature subset of the model DC1 DC3 DC4

{Temperature, cloudiness, windspeed} 0.799 0.779 0.838

{Cloudiness, windspeed} 0.766 0.743 0.535

{Temperature, windspeed} 0.791 0.779 0.570

{Temperature, cloudiness} 0.799 0.753 0.708

{Temperature} 0.747 0.742 0.658

{Cloudiness} 0.673 0.248 0.535

{Wind speed} 0.416 0.723 0.417

Table 3  R-squared result for subsequent models in DC2

Feature subset of the model DC2

{Temperature, windspeed, pressure} 0.773

{Wind speed, pressure} 0.45

{Temperature, windspeed} 0. 739

{Temperature, pressure} 0.724

{Temperature} 0.773

{Pressure} 0.33

{Wind speed} 0.449

Table 4  Result of identifying most significant feature in DCs

DC Selected features

DC1 {Temperature, cloudiness}

DC2 {Temperature}

DC3 {Temperature, windspeed}

DC4 {Temperature, cloudiness, windspeed}
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data. While on-line method directly uses the predicted values as the control values 
concurrently.

For this, we formulated power-aware GLB approach as an off-policy control algo-
rithm to generate the historical data of DCs power consumption, as follows:

Power‑aware GLB formulation

We modeled the IT power consumption of each DC in time slot t(PITj ,t ) based on its 
server type and according to the accurate server power consumption modeling given 
the CPU as well as memory usage of assigned workload as follows:

where |Wt | is the number of incoming workload during time slot t, ui is CPU and mem-
ory utilization requirement for workloadi , pactivej , pidlej are respectively the amount of 
active and idle power consumption of server in DCj, and Xi,j is a boolean parameter 
which represents the assignment of workloadi to DCj:

Clearly Xi,j is set through the power-aware GLB problem optimization. The optimization 
goal is to minimize the total power consumption of incoming workloads by balancing 
them among DCs, while the power efficiency of each DC is a function of its weather 
condition. The problem statement and formulation are as follows:

Problem statement: In a distributed cloud with |L| DCs, each with a load-dependent real-
time PUE ( PUEj,t ) and available RE ( REj,t ), distribute the incoming load in a way that mini-
mizes the total power consumption ( Powert):

Minimize:

As already mentioned, due to using free cooling in DCs, ( PUEj,t ) is widely affected by 
weather conditions. Moreover, the amount of available RE, which covers part of the DC 
power requirement, is also affected by the weather condition.

We formulated the above optimization problem and used the BARON solver through the 
General Algebraic Modeling System (GAMS) 24.6 to solve it. The optimization problem 
results are then used as the training data for the prediction model.

Prediction model construction

We developed a neural network framework that learns from actual operations data to pre-
dict the power consumption of geo-distributed DCs. We utilized the Artificial Neural Net-
work (ANN) prediction model as Fig. 3.

(1)PITj ,t =

|Wt |
∑

i=1

Xi,j(ui(pactivej − pidlej)+ pidlej).

(2)Xi,j =

{

1 if workloadi is assigned to DCj.
0 otherwise.

(3)Powert =

|L|
∑

j=1

PITj ,tPUEj,t − REj,t .
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We adopted the feed forward back propagation ANN and used Smooth Rectified Linear 
Unit (ReLU) as the non-linear activation function to regularize the inner product of the 
input and weight vectors of the neuron. The Smooth ReLU is defined as (4):

We also considered Root Mean Squared Error (RMSE) as well as Mean Absolute Per-
centage Error (MAPE) to evaluate the model accuracy over unseen patterns as (5), (7):

where f (xi) and yi are the predicted and actual values respectively and M is number of 
training data. We considered the accuracy percentage as follows [12]:

Finally, to maximize the accuracy, during the training process we update the weights 
of the interconnected neurons through back propagation. We used an adaptive learn-
ing rate optimization algorithm namely the Adam optimization, in response to the back 
propagated errors [13].

Obviously, the computation complexity of our model is low since (i) the number of 
neurons in the hidden layer is small and (ii) the frequency of the prediction execution is 
low.

(4)f (x) =

{

x if input layer.
ex

1+ex otherwise.

(5)RMSE =

√

√

√

√

1

M

M
∑

i=1

(f (xi)− yi)2.

(6)MAPE =
100

M

M
∑
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(7)Accuracy(%) = 1−MAPE(%).
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Simulation setup
We considered a cloud with 4 geo-distributed DCs located at Manitoba, Quebec, 
Ontario and Minnesota namely DC1, DC2, DC3 and DC4, respectively. To keep the 
comprehensive observation, we also equipped our simulated DCs with different kinds of 
RE. The characteristics of our DCs including the server type and specification as well as 
the number of servers is shown in Table 5.

To calculate the available RE during GLB formulation, we used the PVWatts calculator 
[14] for available solar power and the proposed model in [15] for wind power. For solar 
power, we assumed a fixed photovoltaic array with standard module type facing south at 
20-degree tilt angle, 1.1 dc (direct current) to ac (alternative current) size ratio and 96% 
inverter efficiency. We also considered the diameter of the wind turbine blade 12 meters 
and normalized the available RE in each DC (except DC2 with no RE) with respect to its 
maximum IT power requirement. We also captured data from [16] for real-time PUE 
and scaled it based on our DCs characteristics.

For workload modeling, we employed Google cluster workload through a period of two 
weeks from May 1–14 available in [11]. We set each time slot to 15 min and extracted 
the arrival rate as well as CPU and memory utilization requirement over every time slot. 
Finally, we normalized it with respect to the total amount of available servers in our cloud.

For the prediction model, we considered a model with 9 neurons in the input layer (given 
the total number of selected features as Table 4 plus the workload information), 40 neurons 
in the hidden layer (which set through trial and error) and 4 neurons in the output layer 
(each for power prediction of a DC). Figure 4 represents the overall structure of our model.

Table 5  Cloud specification

Location RE equipment Server type Server number Server spec.

Pactive(kW) Pidle(kW)

Manitoba Solar Intel E5506 1500 0.419 0.146

Quebec None Intel X5570 1000 0.352 0.153

Minnesota Wind AMD EPYC 7601 2000 0.483 0.138

Ontario Solar + wind Intel E5-2699 1500 0.529 0.102

Incoming WorkLoad

 Historical 
Weather  Data

Geo-Distributed Cloud

Local 
Data Base

Model

LR-Based 
Feature 

Evaluation

Selected 
Features

Real-Time 
PUE(j)

Workload(i)

RE (j)

GLB 
Optimization 

Problem

New 
Data

Training 
Data

- Temp(j,t)
-Cloudiness(j,t)
-Wind speed(j,t) 

-Work Load Data(i,t)

Constructed 
Model

Training Result

Model Evaluation 
& tuning

Feature Vectors

IT Power(j,t+1)

Output Vector

Training Phase

Data Acquisition & Evaluation

Training Data Generation

Learning

Prediction

Fig. 4  Overall structure of the proposed model



Page 11 of 16Taheri et al. J Big Data             (2020) 7:8 

Table 6 summarizes the input vectors as well as their repositories.
In our ANN model, we initialized the neural network weights with the uniform dis-

tribution between [1, −1 ], to limit the error and also the formation of the unstable equi-
librium. While, due to the error backward propagation through the hidden layers, the 
identical parameters is necessary.

Finally, our training data set includes 12096 input data through 1344-time samples at 
15-min resolution (14 days of operational data). We used 80% of the total data for train-
ing and the rest was used as test data.

Result and discussion
System evaluation

We begin our evaluation by considering the DCs’ power variation over the consecu-
tive time slots in different approaches of GLB policy. We considered three different 
approaches as:

•	 Power-aware GLB where the incoming workloads are distributed among DCs con-
sidering the amount of RE availability as well as real-time PUE variation (as (3)).

•	 Real-time PUE-aware GLB, where the RE availability is not considered (e.g. due to 
prediction problems) but real-time PUE is calculated and considered in DCs (as (8)). 

•	 Baseline where DCs have a given PUE and the RE availability is not considered dur-
ing GLB procedure (as (9)). 

Figure 5 compares the power consumption of the DCs under these different approaches.
According to Fig. 5 and as we expected, the DCs power consumption is essentially a 

function of the considerations of the GLB algorithm. However, given the real-time state 
of the DCs, the more details are taken into account, the fluctuation in the GLB results 
(and its sensitivity) will be greater. In such this condition, DC’s power consumption 
does not indicate a clear pattern of variations over the consecutive time slots, which is 
clearly due to a wide range of influencing factors. As a result, the DC power prediction 
would be more challenging and requires an in-depth analysis of input variables. While, 

(8)Minimize: Powert =

|L|
∑

j=1

PITj ,tPUEj,t .

(9)Minimize: Powert =

|L|
∑

j=1

PITj ,tPUEj .

Table 6  Input variables of prediction model

Parameter Input variable Repository Selected data

Ui Workload i utilization Google Cluster [11] CPU and RAM util. request

Tempj °C DCj ambient temp. Local Data Base [9] Temperature

Cloudinessj (Okta) DCj cloudiness Local Data Base [10] Cloud-cover-8

Windspeedj (km/h) DCj wind speed Local Data Base [9] Wind-speed
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in simple GLB approach like baseline, the influencing factors are limited to given data 
e.g. server type, hardware efficiency, fixed PUE and etc.

Figure 6 depicts the real-time PUE variation among the DCs and over time.
Figure 6 shows that due to the continuous changes in the DC status (e.g ambient tem-

perature, humidity and so on) there is a considerable fluctuation in real-time PUE. At 
the same time, the wider variations among the real-time DCs status causes the greater 
fluctuation between their PUE. As a result, this affects GLB decisions and extends the 
fluctuations of the DCs power pattern over time.

Best‑fitted LR model with optimal set of features

In this section, we evaluate the reliability of the feature extraction approach, as we 
considered in this paper. As already mentioned, we applied LR for significant features 
extraction and used adjustment R-square as the evaluation parameter among different 
LR subsequent models. Figure 7 shows the result of DC’s power prediction based on the 
best-fitted real LR equation through the optimal set of most significant features, com-
pared with the DC’s actual power data.

We used LR because of its simplicity as well as fast convergence. However, Fig.  7 
shows that the output function for each DC is reliable enough, yet we are able to con-
trol the processing overhead.
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Prediction model evaluation

In this section, we evaluate the accuracy of the prediction model. We applied two evalu-
ation metrics including RMSE as well as MAPE, as mentioned before. During the pre-
diction procedure, we fed the prediction model with the training data and applied some 
test data to verify the prediction accuracy. Table 7 shows the RMSE as well as MAPE as a 
function of the training data size vs. the total data.
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As the results show, although for all training data size the prediction result is reli-
able, however, the larger training data size increases the prediction accuracy. Figure 8 
compares the accuracy of our prediction model during the training and test procedure 
for 80% training data size. We run the 800 epochs with 498s for model construction on 
Intel(R) Pentium G2120 processor with 4GB RAM.

As Fig.  8 shows, our proposed prediction model is able to predict the challenging 
problem of geo-distributed DCs power consumption. Moreover, our policy for effec-
tive feature extraction (Algorithm 1) is robust enough to achieve an optimal set of most 
influential features; While examining them reaches a prediction model with the accept-
able accuracy as well as the computation overhead.

Table 7  Prediction model evaluation

Metric Training/total data

90% 80% 70% 60%

RMSE 62.2 65.2 80.1 95.7

MAPE 22.8 25.3 28.2 29.5
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Conclusion and future works
In this paper, we explored the importance as well the complexity of power pattern 
prediction in geo-distributed DCs.

Regarding the current energy crisis as well as the share of DCs, power prediction 
can create new effective ways for energy management and cost reduction, which is 
the subject of most recent efforts of both the DC owners and the utility grid manag-
ers. However, due to the intricate mesh of interdependent input variables, the power 
prediction for geo-distributed DCs is challenging.

In this study, we used an LR-based feature extraction approach to evaluate the sig-
nificance of input features. Our algorithm obtains an optimal set of most significant 
features, while it is fast and has low processing overhead. According to the obtained 
result in "Best-fitted LR model with optimal set of features" section, the influential 
feature from DC to DC is different and is a function of DC design considerations.

Afterward, we used ANN to propose an accurate prediction model based on the 
selected features. Generally, feed-forward ANN provides an important capability 
which makes it useful for time series forecasting, as follows [17]:

•	 Robustness to noise, whether in input data or in the mapping function which leads 
to learning and prediction support even in the presence of missing values.

•	 Nonlinearity which is a result of the absence of any strong assumptions about the 
mapping functions and readily learns linear and nonlinear relationships.

•	 Multivariate inputs and multi-step that provides an arbitrary number of input fea-
tures and output values to be specified, as well as direct support for multivariate 
and multi-step forecasting.

Regarding the above capabilities, our proposed ANN-based prediction model reached 
the accuracy of 87.2%. Nevertheless, investigating other powerful types of neural 
network methods designed for time series prediction, including Recurrent Neural 
Networks (RNN) as well as Long Short-Term Memory (LSTM) network which can 
successfully learn large architectures, is a top priority in our future work.

We are also going to investigate a wider range of historical data. Moreover, leverag-
ing the result of this study for proposing new approaches of power management in 
geo-distributed DC as well as creating new opportunities for participating in ancillary 
energy markets are among the goals that we left for future work.
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