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Introduction
With recent developments in ICT, various types of data are being generated and accu-
mulated in real time. The amounts and types of available data have increased consider-
ably, and big data, in particular, has garnered significant attention. Big data comprises 
multiple kinds of data from various fields, including social media data, multimedia data, 
sensor data, and log data. Analysis and visualization of big data is expected to enable the 
recognition of phenomena that are not apparent otherwise, thereby making the creation 
of new knowledge possible.

In the field of transportation research, big data such as GPS data and probe vehicle 
data have been analyzed to understand behaviors of travelers [1–3]. In particular, several 
researchers have analyzed smart card data to draw conclusions regarding the behavior of 
transit users [4–6]. Smart cards were originally developed for efficient fare payment and/
or toll collection. However, smart card data also contain information about particular 
ticket gates at particular stations that were passed by passengers at particular times of 
the day as well as at their destination stations. Therefore, they allow analysts to under-
stand the temporal and spatial travel behaviors of smart card users.
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Analyzing smart card data is important for understanding such travel patterns of indi-
viduals. In addition, it is expected that the results of such analysis may be used as new 
material to be considered during the development of traffic policy. However, most pre-
vious studies have focused on only a small number of data items present in smart card 
data—the number of uses on each day of the week and different times of the day, the 
stations of origin and destination at different times of the day, etc. [7, 8]. Alternatively, 
traditional travel behavior analysis has focused on single data items and their specific 
elements [9–11]. Thus, the aforementioned studies have failed to simultaneously con-
sider multiple data items in smart card data.

It is understood that the different attributes present in smart card data (such as ori-
gin station, destination station, the time of the day, the day of the week, and passen-
ger type) affect each other. However, consideration of specific data items extracted from 
smart card data impedes the exploration of effects wielded by the excluded data items 
on travel behaviors. Moreover, the results may vary widely depending on the data items 
being analyzed. From the perspective of effective big data analysis, this study advocates 
the simultaneous analysis of as many data items as possible. To this end, it studies pat-
terns in travel behaviors of individuals based on smart card data collected from a pro-
vincial city in Japan. Five data items (henceforth referred to as attributes) are used in the 
analysis—boarding day of the week (henceforth referred to as day), boarding time of day 
(henceforth, time), passenger type, origin station, and destination station.

Methodologies based on tensor decomposition have been proposed for the simultane-
ous consideration of multiple attributes [12–14]. Tensor decomposition can be an effec-
tive method to analyze data of the 3rd order or higher [15]. Moreover, it enables analysis 
without disturbing the original data structure [16]. A tensor representation allows the 
summarization of multivariate data in a multi-dimensional array. The tensors of the low-
est order are referred to by specific common names—a 0-order tensor is called a sca-
lar, a 1st order tensor is called a vector, and a 2nd order tensor is called a matrix [14, 
17]. Tucker decomposition—a particular model of tensor decomposition—estimates the 
factor matrices that represent the characteristics of each attribute in high-order data 
[18–20]. The characteristics of each attribute are called factors. The number of factors 
are determined arbitrarily [19]. In addition, a core tensor representing the combina-
tion of factors corresponding to each attribute is estimated alongside the factor matri-
ces [18–20]. Tucker decomposition reveals the interactions between attributes in the 
original data based on the estimated factor matrices and core tensors. However, tensor 
decompositions, such as factor analysis, exhibit greater complexity of results when the 
number of attributes is increased. In addition, as the number of elements corresponding 
to each attribute is increased, the unique determination of the number of factors using 
tensor decomposition and interpretation of the components of the factors becomes pro-
gressively more difficult [12]. This complicates the understanding and interpretation 
of factor matrices and core tensors [12]. Finally, tensor decomposition is incapable of 
extracting the characteristics of elements based on a small number of samples.

This study attempts to analyze multiple attributes simultaneously by constructing a graph. 
This approach is different from those used in previous studies and is novel to this study. An 
increase in the number of combinations of attributes, i.e., the number of vertices and edges, 
increases the complexity of the graph structure. It is difficult to grasp data characteristics 
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from a complex graph. To address this problem, this study extracts groups of more relevant 
vertices from a graph based on the similarity between vertices. Several pattern extraction 
methods using the similarity index have been proposed in the literature [21–23]. However, 
they are unsuitable for the extraction of patterns from graphs. Graphs are represented by 
two-dimensional tables, which are symmetric matrices with zero diagonal elements. In this 
case, the combinations of column information for each row are different. This should be 
noted during the selection of the optimal pattern extraction method.

This study implements a data polishing approach to extract travel patterns from the 
graph. It clarifies group boundaries based on a hypothesis—two vertices have multiple 
common neighbors in a graph if both are included within a dense sub-graph of a certain 
size [24]. In data polishing, all vertex pairs possessing at least a certain number of com-
mon neighbors (i.e., those whose neighbors have similarity that is not less than the given 
threshold) are identified, and each pair is connected by an edge [24]. On the other hand, all 
edges whose endpoints do not satisfy the condition are deleted because they are not consid-
ered to lie within the same cluster [24]. The graph is progressively updated by repeating this 
operation.

Data polishing modifies the input data, enabling the extraction of groups of related ver-
tices without the loss of group structures in the data [24]. In addition, it enables the extrac-
tion of vertex groups without depending on the number of samples by focusing on the 
similarity of vertices instead. This advantage is particularly useful in this study as smart 
card data of elderly citizens or children may have small sample sizes. Therefore, we adopt 
data polishing as the preferred method to extract the travel behaviors of such passengers. In 
addition, as data polishing is a soft clustering method, it enables multiple characteristics of 
each vertex to be captured. This makes the extraction and analysis of travel patterns via this 
method particularly flexible.

This study proposes an improved version of the existing data polishing method to ana-
lyze smart card data, which considers multiple attributes simultaneously. We extract the 
travel patterns of smart card users in terms of five attributes. Initially, the “usage vertices” 
comprising three attributes—day, time, and passenger type—are classified in terms of the 
strength of connection with “Origin and Destination (henceforth, OD) vertices” composed 
of two attributes—origin station and destination station. Then, groups of usage vertices 
with similar connections to OD vertices are extracted. In addition, the origin station and 
destination station combinations are clarified with the largest number of users for each 
usage group. Via this process, an understanding of the characteristic travel patterns is gath-
ered in terms of the origin and destination stations of passengers on particular days of the 
week and at particular times of the day.

The remainder of this paper is organized as follows. The smart card data used in this 
study is introduced in  "Data description and aggregate analysis" section. The proposed data 
polishing-based method used to extract travel patterns is described in "Method" section. 
The results of the analysis are presented in "Results" section and discussed in "Discussion" 
section. Finally, the paper is concluded in "Conclusions" section.
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Data description and aggregate analysis
Data description

This study uses smart card data collected in the Kagawa Prefecture in Japan (Fig.  1). 
Kagawa is located in the northeast part of Shikoku, one of the four main islands of Japan. 
It has a population of approximately 980,000 people (as of October 1, 2015). Most of 
them depend on automobiles for transportation. However, people who cannot drive 
automobiles, such as the elderly, rely on public transportation. The aging rate of the 
population in Kagawa is approximately 30%, and it is expected to increase. This makes 
the maintenance of public transportation particularly important. Improvement of transit 
services requires a thorough understanding of the travel behavior of current users.

The smart card used in Kagawa is called IruCa. IruCa was introduced to be used on 
Kotoden trains or buses operated by the Takamatsu Kotohira Electric Railroad Com-
pany and on buses operated by other bus companies in the prefecture. As of March 
2016, 341,706 IruCa cards had been issued. Of these, 75,169 were commuter passes and 
266,546 were non-commuter passes. It is understood that most IruCa users are residents 
of the Kagawa Prefecture because IruCa can be used only within the prefecture. There-
fore, it is reasonable to expect that this study sheds light on the travel behaviors of the 
residents of the Kagawa Prefecture based on IruCa data. Although IruCa can be used 
on both trains and buses, this study only focuses on smart card data related to Kotoden 
trains.

The associated train network comprises 52 stations in total, including the Kotohira, 
Nagao, and Shido lines (as depicted in Fig.  2). Two stations, Takamatsu-Chikko and 
Kataharamachi, are connected to both the Kotohira and Nagao lines. The Kawaramachi 
station is connected to all three lines, enabling Kotoden passengers to transfer to any 
line at this station.

This study focuses on five attributes related to each trip (day, time, passenger type, 
origin station, and destination station) collected within the smart card data as depicted 

Fig. 1  Kagawa prefecture
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in Table 1. “Passenger type” is determined based on the indicated categories. Passengers 
of types (1)–(5) are users of non-commuter passes. On the other hand, passengers of 
types (6)–(11) are commuter pass users. “Commuter for work” represents a person who 
uses a commuter pass to travel to work. “Commuter for school” represents a person who 
uses a commuter pass to travel to school, and “Commuter not for school” represents a 
person who uses a commuter pass to travel but not to school. Smart card data collected 
over a period of 15 months, ranging from December 1, 2013 to February 28, 2015, is 
used. 9,033,748 data points were collected during this period. Of these, this study uses 
9,008,709 data points corresponding to “valid” Kotoden trips determined on the basis of 
the following criteria—(1) the card was used for any train ride during the hours of opera-
tion between 5 a.m. and 12 p.m. on any of the three lines, and (2) it took at least 60 s to 
move between the origin and destination stations.

Aggregate analysis

Figures 3, 4 and 5 depict the average number of daily users, sorted by day, time, and pas-
senger type, respectively. These reveal the usage patterns of the Kotoden train network. 

Fig. 2  Kotoden route map

Table 1  Five attributes

Attribute No. of categories Description

Day 8 (1) Monday, (2) Tuesday, (3) Wednesday, (4) Thursday, (5) Friday, (6) 
Saturday, (7) Sunday, (8) Public holiday

Time 20 (1) 5:00–5:59, (2) 6:00–6:59, (3) 7:00–7:59, …, (20) 24:00–24:59

Passenger type 11 (1) Adult, (2) Student, (3) Child,
(4) Elderly person, (5) Person with disability,
(6) Adult commuter for work, (7) Adult commuter for school,
(8) Child commuter not for school, (9) Child commuter for school,
(10) Disabled commuter for work,
(11) Disabled commuter for school

Origin station 52 52 stations

Destination station 52 52 stations
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Fig. 3  Average number of train users sorted by the day of the week
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Fig. 4  Average number of train users sorted by the time of the day
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Fig. 5  Average number of train users sorted by passenger type
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From the results sorted by the days of the week presented in Fig. 3, it is evident that the 
average numbers of users on different weekdays are nearly identical. The average num-
ber of users on weekdays is 24,794, which is approximately 2.7 times the average number 
of users on Saturdays, Sundays, and public holidays (approximately 9026). This is con-
sistent with the large number of weekday trips that are taken for commuting to schools 
and offices.

From the results of usage sorted by the times of the day presented in Fig. 4, it is evi-
dent that the average number of users is highest between 7:00 and 7:59 hrs. The aver-
age number of users steadily increases between 5:00 and 7:59 hrs, which is understood 
to be accounted for by commuters to work and school. The average number of users 
then decreases between 8:00 and 11:59 hrs, and thereafter, the average daily number of 
users remains approximately constant until 14:59 hrs. After 15:00 hrs, the average daily 
number of users exhibits another increment, and is particularly high between 17:00 and 
18:59 hrs. This is understood to be accounted for by people returning home after 17:00 
hrs.

The results of usage sorted by passenger type, as presented in Fig. 5, reveals that the 
average number of users classified as “Adult” is high, and that the average number of 
adult commuters to work is as high as 47% (almost half ) of the total number of users. By 
contrast, it is revealed that the average number of child commuters to work and persons 
with disabilities commuting to work or school are as small as 0.00497%, 0.02696%, and 
0.00002%, respectively.

Method
Preliminaries

A graph consists of a vertex set, V  , and an edge set, E . All graphs denoted in this paper 
are undirected graphs.

Given a pair of vertices, u and v , they are termed “adjacent” if they are connected by an 
edge. A vertex, u , adjacent to v is also called a neighbor of v . The set of neighbors of v is 
denoted by N (v) . A vertex, w , is a common neighbor of the vertices, u and v , if w is adja-
cent to both u and v . N [v] denotes N (v) ∪ {v} and is called the closed neighborhood of v . 
The number of vertices adjacent to the vertex v is denoted by|N (v)|.

A vertex set in which every pair of vertices is connected by an edge is called a clique 
and is usually denoted by C . Although cliques are usually in terms of a subgraph, we 
adopt the aforementioned definition in his paper, following Uno et al. [24]. A clique that 
is not completely included in any other distinct clique is called a maximal clique.

Extraction of travel patterns via data polishing

This section explains a new methodology for the extraction of travel patterns from smart 
card data based on the method of data polishing. We define travel patterns in terms of 
combinations of five attributes—day (8 categories), time (20 categories), passenger type 
(11 categories), origin station (52 categories), and destination station (52 categories). 
These five attributes are considered simultaneously to analyze the types of people who 
move between particular origin and destination stations at different times of the day on 
different days of the week.
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Uno et al. [24] focused on the extraction of maximal cliques and proposed a cluster-
ing method comprising three sub-procedures—(1) construction of a similarity graph, (2) 
application of data polishing to the similarity graph, and (3) enumeration of maximal 
cliques. This study introduces additional steps to the aforementioned clustering method 
proposed by Uno et al. and proposes a corresponding method for the analysis of smart 
card data. In addition, we do not focus solely on maximal cliques, but on all cliques 
(Please consult Enumeration of Cliques (Sect. 4 in this section) for further details).

The procedure for extracting travel patterns proposed in this study comprises five 
steps—(1) construction of the co-occurrence graph, (2) construction of the similar-
ity graph, (3) application of data polishing to the similarity graph, (4) enumeration of 
cliques, and (5) extraction of combinations of origin and destination stations related to 
each clique. Each step is explained below in order by using conceptual figures. In this 
study, an iMac (CPU: Intel Core i7, Memory: 32 GB) was used to execute all the afore-
mentioned steps. The total execution time was approximately 30 minutes (using pro-
grams written in the R language).

1) Construction of the co-occurrence graph.

•	 This study defines the graph constructed based on the co-occurrence relationships 
between usage vertices and OD vertices to be the co-occurrence graph, Gc . The graph 
depicted in Fig. 6 is denoted by G for the construction of the co-occurrence graph, 
Gc . The graph, G , is constructed based on the matrix (OD information × Usage infor-
mation) generated by smart card data. However, the diagonal component of the 
matrix is 0. The sum of the row corresponds to an OD vertex, the sum of each col-
umn corresponds to a usage vertex, and each element in the matrix corresponds to 
edge information. The vertices and edges in the graph, G , are defined as follows.

•	 A vertex representing a particular combination of day, l = 1, . . . , 8 ; time, 
m = 1, . . . , 20 ; and passenger type, n = 1, . . . , 11 is denoted by “usage vertex xlmn ,” 
and the vertex set of all usage vertices is denoted by “usage vertex set X  .” The 
number of elements in the usage vertex set X  is 1,760 because it contains one 
user vertex for each of the total number of day × time × passenger type combina-
tions. Each usage vertex, xlmn , encodes the information about the number of pas-
sengers of type n who used the train network at time m on day l  . For example, in 
Fig.  6, the usage vertex ( xl=1,m=1,n=1 ) representing the combination of Monday, 
5:00–5:59 hrs, and Adult passenger type contains information on the total number 

Fig. 6  Graph G representing connections between usage vertices and OD vertices
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of adult users on Mondays during 5:00–5:59 hrs. In addition, a vertex represent-
ing a particular combination of origin station o = 1, . . . , 52 and destination station 
d = 1, . . . , 52 is denoted by “OD vertex yod ,” and the vertex set of all OD vertices 
is denoted by “OD vertex set Y  .” The number of elements in the OD vertex set 
Y  is 52 × 52–52=2,652 because it contains one vertex for each of the total num-
ber of origin stations × total number of destination stations combinations, except 
duplicates. Each OD vertex, yod , encodes information regarding the total number 
of users travelling from the origin station o to the destination station d . For exam-
ple, in Fig. 6, the OD vertex (yo=1,d=2 ) representing O1→D2 captures the informa-
tion on the total number of users travelling from origin station O1 to destination 
station D2. Further, each edge connecting a usage vertex xlmn with an OD vertex 
yod encodes the information regarding the number of users of passenger type n 
who travelled from the origin station o to the destination station d at time m on 
day l  . For example, in Fig. 6, the edge connecting the usage vertex ( xl=1,m=1,n=1 ) 
corresponding to Monday × 5:00–5:59 × Adults and the OD vertex ( yo=1,d=2 ) 
corresponding to O1→D2 encodes information regarding the number of adult 
users travelling from origin station O1 to destination station D2 on Monday dur-
ing 5:00–5:59 hrs. The maximum number of edges in the graph, G , is 4,667,520 
(= 1760 × 2652).

•	 We construct the co-occurrence graph, Gc , by extracting combinations that share 
co-occurrence relationships with respect to all combinations of usage vertices and 
OD vertices in the graph G . In this case, co-occurrence is expressed by the ratio 
of common users among the users corresponding to each pair of usage and OD 
vertices. Further, a statistical test is performed to determine the significance of co-
occurrence to rule out the possibility that its manifestation is coincidental instead 
of causal. In this paper, t-values are used as the criteria for co-occurrence in the 
natural language processing field, and the statistical significance of co-occurrence 
is adjudged by a t-test. The t-value used as the test statistic for the t-test is calcu-
lated using (1), where W denotes the total number of users (= 9,008,709).

This study considers co-occurrence to be significant if the absolute value of the 
t-value is equal to or greater than 1.65 (significance level 10%). If the combina-
tion of a usage vertex and an OD vertex is determined to exhibit a statistically sig-
nificant co-occurrence relation, the number of users associated with the edge 
in the graph, G , is replaced with 1, and it is set to 0 otherwise. Conversion of the 
numerical information associated to the edges of G into binary variables ena-
bles the detection of travel patterns of boarding and alighting, as well as combina-
tions with high-frequency users, even if the combinations contain relatively low 
frequency users. The co-occurrence graph, Gc , is constructed using only combina-
tions that exhibit significant co-occurrence. In the graph, Gc , the usage vertex set 

(1)t-value =

(

∣

∣xlmn ∩ yod
∣

∣−
|xlmn|×|yod|

W

)

√

∣

∣xlmn ∩ yod
∣

∣
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is denoted by U = {ui|i = 1, . . . , I(I ≤ 1,760)} and the OD vertex set is denoted by 
V =

{

vj
∣

∣j = 1, . . . , J (J ≤ 2,652)}.
2) Construction of the similarity graph.

The similarity graph, Gs , is constructed on the basis of the co-occurrence graph, Gc , 
and captures the similarity between different usage vertices. In this study, we focus on 
the determination of similar connections between usage vertices and OD vertices and 
construct a similarity graph with high-similarity usage vertices. Although Simpson 
and Dice coefficients can be used as similarity measures, this study uses the Jaccard 
coefficient following Uno et al. [24]. The similarity between any two usage vertices, ui 
and u′i , is defined to be (2).

Using this, a similarity graph is constructed comprising usage vertices with similari-
ties exceeding a predefined threshold, θs . The construction of the similarity graph from 
the co-occurrence graph is illustrated using an example presented in Fig. 7 (the example 
graph comprises a usage vertex set U = {ui|i = 1, . . . , 6} , each vertex of which is high-
lighted by a blue circle and an OD vertex set V =

{

vj|j = 1, . . . , 7
}

 , each vertex of which 
is highlighted by an orange circle). For usage vertices, u1 and u2 , |N (u1) ∩ N (u2)| = 1 
and |N (u1) ∪ N (u2)| = 4 since N (u1) = {v1, v3} and N (u2) = {v3, v4, v5} . Therefore, by 
(2), the similarity between u1 and u2 is 1/4 = 0.25 . Following the same procedure, the 
similarities between all pairs of usage vertices are calculated, and a new graph is con-
structed using the usage vertices as vertices. Edges are only inserted between those 
pairs of usage vertices whose similarities exceed a predefined threshold. In the example 
depicted in Fig. 7, the threshold value, θs , is set to 0.4, and the similarity graph depicted 
in Fig. 8 is obtained from it. In this case, each usage vertex of the co-occurrence graph 
u1 , u2 , u3 , u4 , u5 , and u6 in Fig. 7 is renamed by s1 , s2 , s3 , s4 , s5 and, s6 , respectively. The 
construction of the similarity graph dictates that usage vertices that exhibit similar con-
nections with OD vertices are connected by edges in the similarity graph, i.e., neigh-
bors in the similarity graph correspond to similar user travel behaviors in terms of 
origin and destination stations. For example, usage vertices s1 , s4 , and s5 are connected 
to each other in Fig. 8, and this implies that the users grouped in these vertices share 
similar travel behaviors. In the similarity graph Gs , the usage vertex set is denoted by 
S =

{

sk |sk ∈ U , k = 1, . . . ,K (K ≤ 1,760)
}

.

(2)sim
(

ui,u
′
i

)

=

∣

∣N (ui) ∩ N
(

u′i
)∣

∣

∣

∣N (ui) ∪ N
(

u′i
)∣

∣

s.t.ui,u
′
i ∈ U , vj ∈ V

Fig. 7  An illustrative co-occurrence graph
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3) Application of data polishing to the similarity graph.

•	 Next, data polishing is applied to the similarity graph obtained in the previous 
step to group usage vertices sk ∈ U  in a fashion that ensures that only pairs of 
usage vertices with strong connections in the similarity graph remain connected 
by edges. The similarity measure of sets is used to adjudge whether usage vertex 
pairs share a strong connection. In this study, the Jaccard coefficient is used as the 
similarity measure as in the case of the construction of the similarity graph. The 
similarity between any two usage vertices, sk and s′k , is defined by (3).

Equation (3) represents the similarity between the closed neighborhoods of sk and 
s′k . We illustrate the application of the data polishing procedure using the similarity 
graph presented in Fig.  8. First, the similarities between all pairs of usage vertices 
constituting the similarity graph are calculated using (3). For example, in the case of 
and s2, |N [s1] ∩ N [s2]| = 1 and |N [s1] ∪ N [s2]| = 7 since the closed neighborhood of s1 
is N [s1] = {s1, s4, s5} and the closed neighborhood of s2 is N [s2] = {s2, s3, s5, s6} . There-
fore, the similarity between the usage vertices, s1 and s2 , is 1/7 = 0.14 . Then, we select 
a threshold value, θp , and vertex pairs whose similarities are equal to or greater than θp 
and are connected by edges. By contrast, edges between pairs of vertices whose simi-
larities are less than the threshold are deleted. If θp is set, data polishing is repeated 
using this newly constructed graph as the input graph, and the process is performed 
until the deformation of the graph converges. Normally, data polishing is required to 
be applied several times to achieve convergence. However, in this example, the shape 
of the graph does not change from that of Fig.  9 even if data polishing is repeated. 
Therefore, data polishing is terminated after only one application in this case. This 
example requires only one polishing because of the simplicity of the co-occurrence 
graph. The final graph achieved via data polishing is called the polishing graph, Gp . In 
Gp , the usage vertex set is denoted by P = {pt |pt ∈ S, t = 1, . . . ,T (T ≤ 1,760)}.

4) Enumeration of cliques.

(3)sim
(

sk , s
′
k

)

=

∣

∣N [sk ] ∩ N
[

s′k
]∣

∣

∣

∣N [sk ] ∪ N
[

s′k
]∣

∣

s.t.sk , s
′
k ∈ S

Fig. 8  The corresponding similarity graph
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This step involves the enumeration of all cliques in the polishing graph. In the 
illustrative polishing graph depicted in Fig. 9, there are three cliques—C1 = {p2, p3} , 
C2 = {p2, p6} , and C3 =

{

p1, p4, p5
}

 . Among them, there is one maximal 
clique—C3 =

{

p1, p4, p5
}

 . In this study, we contend that various travel patterns of 
IruCa users can be understood by enumerating all cliques, including maximal ones. 
To this end, we extract all cliques, in contrast to the approach undertaken by Uno 
et  al. [24], in which they extracted only the maximal cliques. Cliques extracted by 
the proposed method represent groups of usage vertices, pt ∈ S , corresponding to 
similar user travel behaviors, as described in subsection 2 of this section. This reveals 
groups of users who exhibit similar travel behaviors. If a usage vertex belongs to more 
than one clique (such as p2 in Fig. 9), it suggests that users grouped within this vertex 
exhibit more than one travel pattern. By contrast, users in maximal cliques exhibit 
unique travel patterns.

5) Extraction of the combination of origin station and destination station associated to 
each clique.

•	 Next, we attempt to estimate the most frequent origin and destination stations corre-
sponding to users in each extracted clique. As an example, we consider the case of an 
extracted clique consisting of two usage verticesxl=1,m=1,n=1 (Monday × 5:00–5:59 
hrs × Adult) and xl=1,m=2,n=1 (Monday × 6:00–6:59 hrs × Adult). First, we extract the 
OD vertices exhibiting co-occurrence with both usage vertices on the basis of the 
co-occurrence graph, Gc . Then, we identify the most frequent OD vertices in the co-
occurring combinations on the basis of the graph, G . Via this process, we identify the 
types of passengers who travel between different sets of origin and destination sta-
tions at different times of the day on different days of the week.

Results
The threshold

In the proposed method, two threshold parameters are used—the threshold, θs , during 
the construction of the similarity graph, Gs , and the threshold, θp , during the construc-
tion of the polishing graph, Gp . As both θs and θp are criteria for judging similarity, this 
study considers them to share the same value. Therefore, only one parameter needs to 
be defined to extract the cliques. Although the threshold value � ( = θs = θp ) influences 
the extraction of cliques, there is no clear criterion for selecting its optimal value. In 

Fig. 9  The corresponding polishing graph
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previous studies [24], the threshold was set arbitrarily. This study uses the average of the 
clustering coefficients to determine � . This approach is unique to this study.

The clustering coefficient is a measure of the degree to which nodes in a graph tend to 
cluster together. It is higher in a graph in which vertices adjacent to each other are con-
nected by edges. In our case, as all the vertices in a clique are connected by edges, it can 
be argued that the clustering coefficients of the vertices in the polishing graph increase 
on average when the clique is generated. The cluster coefficient of vertex, i,, is defined by 
(4), where ei denotes the number of edges connecting the neighborhoods of vertex i and ki 
denotes the number of vertices adjacent to i.

The average clustering coefficient is the average of the clustering coefficients of all verti-
ces in a graph. It is calculated using (5), where N denotes the total number of vertices.

In this study, we focus on the relationship between the average clustering coefficient and 
similarity. To construct the cliques, we set the threshold � to the maximum value of the 
average clustering coefficient. First, the similarities between all pairs of usage vertices in 
the co-occurrence graph are calculated, and the value of � is set to 0.01. Next, any edge is 
deleted if the similarity between the associated pair of vertices is less than � , and the average 
clustering coefficient is calculated. Subsequently, usage vertices that are not adjacent to any 
other usage vertices are removed, � is increased by 0.01, edges corresponding to similarity 
less than � are removed, and the average clustering coefficient is calculated again. These 
steps are repeated until � reaches 1.00.

The average clustering coefficient corresponding to each threshold is depicted in Fig. 10. 
Although the decision was made to set the threshold to be the maximum of the average 
clustering coefficients, there are multiple maxima for the average clustering coefficients. 
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Fig. 10  The average clustering coefficient and the graph density
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Therefore, it is not possible to unambiguously select the threshold solely based on average 
clustering coefficients. To address this problem, the graph density was also calculated. This 
is defined using (6), where E denotes the edge set, and V  denotes the vertex set.

The graph density is observed to increase as the number of edges approaches the max-
imal number of edges. In other words, a dense graph exhibits high graph density. How-
ever, the boundary of the vertex groups (cliques) cannot be determined when the graph 
is dense. Therefore, this study utilizes the threshold that corresponds to the lowest graph 
density. By using two indices, it is possible to extract cliques such that the boundaries 
between them are clear.

The graph density corresponding to each threshold is presented in Fig.  10. In this 
study, the threshold was set at the point where the average clustering coefficient was at a 
maximum and the graph density was at a minimum. As is evident from the results pre-
sented in Fig. 10, the threshold was set at 0.54.

(6)D =
|E|

|V |(|V | − 1)/2

Fig. 11  The polishing graph obtained in this study
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Similarity of usage vertices

By applying the proposed method to the smart card data, the polishing graph depicted 
in Fig. 11 was constructed. To simplify the references to each usage vertex, the numbers 
assigned to them have been indicated in Fig. 11.

The total number of extracted cliques in the polishing graph is observed to be 127. Of 
these, 52 cliques consist of two usage vertices, 32 of three usage vertices, 5 of four usage 
vertices, 30 of five usage vertices, 3 of six usage vertices, and 1 each of nine, ten, four-
teen, sixteen, and twenty-one usage vertices.

It is not possible to explicitly depict the compositions of all extracted cliques for the 
want of space. Instead, we highlight the differences between different combinations of 
day, time, and passenger type. The total number of cliques in terms of different com-
binations are depicted in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, each of which presents 

Table 2  52 cliques consisting of two usage vertices

Combination No. of cliques

Time and passenger type are the same 37

Day and passenger type are the same 2

Only passenger type is the same 10

Day, time, and passenger type are all distinct 3

Table 3  32 cliques consisting of three usage vertices

Combination No. of cliques

Time and passenger type are the same 28

Day and passenger type are the same 0

Only passenger type is the same 4

Day, time, and passenger type are all distinct 0

Table 4  5 cliques consisting of four usage vertices

Combination No. 
of cliques

Time and passenger type are the same 4

Day and passenger type are the same 0

Only passenger type is the same 1

Day, time, and passenger type are all distinct 0

Table 5  30 cliques consisting of five usage vertices

Combination No. of cliques

Time and passenger type are the same 28

Day and passenger type are the same 0

Only passenger type is the same 2

Day, time, and passenger type are all distinct 0
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Table 6  3 cliques consisting of six usage vertices

Combination No. 
of cliques

Time and passenger type are the same 0

Day and passenger type are the same 0

Only passenger type is the same 3

Day, time, and passenger type are all distinct 0

Table 7  1 clique consisting of nine usage vertices

Combination No. 
of cliques

Time and passenger type are the same 0

Day and passenger type are the same 0

Only passenger type is the same 1

Day, time, and passenger type are all distinct 0

Table 8  1 clique consisting of ten usage vertices

Combination No. 
of cliques

Time and passenger type are the same 0

Day and passenger type are the same 0

Only passenger type is the same 1

Day, time, and passenger type are all distinct 0

Table 9  1 clique consisting of fourteen usage vertices

Combination No. 
of cliques

Time and passenger type are the same 0

Day and passenger type are the same 0

Only passenger type is the same 1

Day, time, and passenger type are all distinct 0

Table 10  1 clique consisting of sixteen usage vertices

Combination No. 
of cliques

Time and passenger type are the same 0

Day and passenger type are the same 0

Only passenger type is the same 1

Day, time, and passenger type are all distinct 0
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the results for the cliques with a given number of usage vertices (as listed in the previ-
ous paragraph). For example, Table 3 presents the results for cliques consisting of three 
usage vertices. Among the 32 extracted cliques, the number of combinations in which 
time and passenger type are the same is 28; in the other 4 cliques, only the passenger 
type is identical.

From the data presented in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, it is apparent that 
many of the extracted cliques contain combinations in which time and passenger type 
are identical. Indeed, cliques with this combination constitute 76% of the total number 
of extracted cliques. These cliques represent behaviors of users of the same type at the 
same time but on different days of the week.

The number of cliques in which only the passenger type is identical comprises the 
second largest proportion of the total (approximately 19%). For the cliques with six, 
nine, ten, fourteen, sixteen, and twenty-one usage vertices, this is the only combination 
observed. This can be interpreted to reflect the behaviors of the same type of users at dif-
ferent times of the day on different days of the week.

Combinations in which day and passenger type are identical or in which day, pas-
senger type, and time are all distinct exist only in cliques with two usage vertices. For 
example, in the clique containing “Thursday × 10:00–10:59 hrs × Disabled commuter 
for work” and “Thursday × 12:00–12:59 hrs × Disabled commuter for work,” the day 
of travel and passenger type are identical. This suggests that card users identified as 
“Disabled commuter for work” exhibit similar travel behaviors between “10:00–10:59 
hrs” and “12:00–12:59 hrs” on every “Thursday.” However, in the clique containing 
“Saturday × 23:00–23:59 hrs × Child” and “Public holiday × 24:00–24:59 hrs × Adult,” 
day, time, and passenger type are all distinct. Thus, it can be concluded that “Child” 
passengers and “Adult” passengers exhibit similar travel behaviors at midnight on 
holidays.

Further, the extracted cliques are compared in terms of passenger type. Cliques with 
two, three, four, and five usage vertices are observed to be related to various passenger 
types, as depicted in Fig. 12. Thus, it can be concluded that several travel patterns of 
different passenger types can be surmised based on the results of cliques comprising 
small numbers of usage vertices. On the other hand, travel patterns of three specific 
passenger types can be effectively assumed from cliques comprising large numbers of 
usage vertices, as all cliques with six or more usage vertices are observed to be related 
to adult or child commuters.

Table 11  1 clique consisting of twenty-one usage vertices

Combination No. 
of cliques

Time and passenger type are the same 0

Day and passenger type are the same 0

Only passenger type is the same 1

Day, time, and passenger type are all distinct 0
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Travel patterns of IruCa users

In this section, we present the characteristic combinations of origin and destination sta-
tions corresponding to each clique based on the results of the extracted cliques. This 
corresponds to step (5) of the aforementioned procedure. Due to the large number of 
cliques, it is impossible to explicitly present the combinations of origin and destina-
tion stations corresponding to all cliques. Hence, we focus on cliques related to children 
(“Child,” “Child commuter not for school,” and “Child commuter for school”), the elderly, 
and people with disabilities (“Person with disability,” “Disabled commuter for work,” and 
“Disabled commuter for school”), as examples. The number of extracted cliques associ-
ated to child commuters is 35, that associated to the elderly is 2, and that associated to 
people with disabilities is 28. Although most of these cliques consist of identical pas-
senger types, three cliques comprise different passenger types. Henceforth, we focus 
on these three cliques and clarify the origin and destination station combinations cor-
responding to the largest number of users in each. The details of the three cliques are as 
follows:

(C1) “Sunday × 6:00–6:59 hrs × Child commuter for school” and “Thursday × 17:00–
17:59 hrs × Child commuter not for school.”

(C2) “Public holiday × 13:00–13:59 hrs × Child commuter for school” and “Wednes-
day × 18:00–18:59 hrs × Child commuter not for school.”

(C3) “Saturday × 23:00–23:59 hrs × Child” and “Public holiday × 24:00–24:59 
hrs × Adult.”
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Fig. 12  Cliques compared in terms of passenger types

Table 12  Combinations of origin and destination stations

Cliques Origin station Destination station

(C1)
“Sunday × 6:00–6:59 × Child commuter for school” “Thurs‑

day × 17:00–17:59 × Child commuter not for school”

Ota Shioya

(C2)
“Public holiday × 13:00–13:59 × Child commuter for school”
“Wednesday × 18:00–18:59 × Child commuter not for school”

Sanjo Fusazaki

(C3)
“Saturday × 23:00–23:59 × Child”
“Public holiday × 24:00–24:59 × Adult”

Kawaramachi Kotoden-Kotohira
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The origin and destination station combinations corresponding to the largest number 
of users in each of the aforementioned cliques are depicted in Table 12. From the table, 
it is evident that the travel behaviors of “Child commuter for school” at “6:00–6:59 hrs” 
on “Sunday” and the travel behavior of “Child commuter not for school” at “17:00–17:59 
hrs” on “Thursday” are similar, and they travel from “Ota” to “Shioya.” Moreover, it can 
be concluded that they travel from “Ota” to “Kawaramachi” and then to “Shioya,” based 
on the Kotoden route map in section II. Thus, it is likely that the users in C2 also transfer 
at Kawaramachi. In C3, we conclude that passengers of type “Child” at “23:00–23:59 hrs” 
on “Sunday” and those of type “Adult” at “24:00–24:59 hrs” on “Public holiday” travel 
from “Kawaramachi” to “Kotoden-Kotohira.” By extracting the OD vertex corresponding 
to the largest number of users in each clique, the types of passengers who travel between 
different stations at different times on different days can be ascertained. In other words, 
the characteristic travel patterns can be discovered using the proposed method. How-
ever, it should be noted that the origin and destination stations thus identified need not 
correspond to the actual origin and destination of any individual user. Although this 
study attempts to estimate the actual origins and destinations, this is not possible from 
the information encoded within the cliques. For example, in C1, the actual origin is esti-
mated to be residential owing to the presence of a residential area around “Ota.” By con-
trast, there are cultural facilities and beaches around “Shioya.” However, it is not clear 
whether these places are related to trips of the actual users. We intend to clarify these 
issues in future research.

Discussion
Based on the obtained results, several of the 127 extracted cliques were observed to be 
composed of identical passenger types. However, it was suggested that the similarity 
between different passenger types could be quantitatively clarified based on cliques con-
taining different combinations of day, time, and passenger type.

The prediction of such usage vertex combinations in advance may be difficult. For 
example, in this study, a clique consisting of the “Saturday × 23:00–23:59 hrs × Child” 
usage vertex and the “Public holiday × 24:00–24:59 hrs × Adult”’ usage vertex was 
extracted. This combination cannot be identified via basic analysis, such as aggregate 
analysis. Even though one existing additional method can be used to identify similar 
combinations of day and time of travel corresponding to each passenger type, it is not 
practicable because the number of combinations become significantly high for efficient 
processing with the increase in the number of considered categories. Therefore, we con-
clude that a combination comprising “Saturday × 23:00–23:59 hrs × Child” and “Public 
holiday × 24:00–24:59 hrs × Adult” cannot be extracted by any method other than the 
proposed one, which is capable of considering multiple attributes simultaneously.

This study also provided an understanding of the travel patterns of passengers of dif-
ferent types at different times of the day and on different days of the week. Characteristic 
travel behaviors of smart card users and origin station and destination station combina-
tions could be successfully extracted for each clique.

The results demonstrate that the proposed method is capable of effectively extract-
ing travel patterns of IruCa users based on graphs comprising day × time × passenger 
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type × origin station × destination station tensors. The travel patterns based on the 
extracted cliques provide conclusions about the behaviors of adult commuters and stu-
dents traveling in the morning and returning home in the afternoon. These patterns are 
intuitive, which corroborate the success of pattern extraction performed. Moreover, the 
performance of the proposed method is not dependent on the number of samples, as 
approximately half of all cliques were observed to be related to small groups of smart 
card users, such as children, the elderly, and people with disabilities.

With respect to the promotion of public transportation in society, it is important to 
enhance the utilization frequency of not only users who avail it regularly but also those 
who avail it sporadically. However, it is difficult to identify their travel patterns via data 
analysis because of the low number of associated samples. This study demonstrates that 
data polishing is effective even in case of users who avail public transport sporadically, 
and the distribution of the number of samples is biased.

The operational plans of public transportation are usually formulated to effectively 
serve the needs of commuters and students who constitute the majority of the users in 
most cases. In such a scenario, elderly commuters or children with small sample sizes 
may be inadvertently inconvenienced. Thus, ensuring the availability of proper public 
transportation for all people without automobiles remains a critical problem in regional 
traffic. The conclusions of this study are expected to be beneficial in the formulation of 
public transport policies that can effectively serve the needs of low-frequency users such 
as elderly people and children, besides the commuters and students who constitute the 
majority of commuters.

Conclusions
This study proposed a method for extracting travel patterns from smart card data using 
data polishing. In particular, we presented a method comprising five steps—(1) construc-
tion of the co-occurrence graph, (2) construction of the similarity graph, (3) application 
of data polishing to the similarity graph, (4) enumeration of cliques, and (5) extraction of 
combinations of origin and destination stations associated to each clique. We used this 
method to estimate the applicability of data polishing to pattern recognition based on 
smart card data.

Data collected from the IruCa smart card, used on the Kotoden rail system in the 
Kagawa Prefecture in Japan, were used in this study. To analyze the data, we constructed 
a graph representing the relationships between various categories of the five attributes—
day (8 categories), time (20 categories), passenger type (11 categories), origin station (52 
categories), and destination station (52 categories)—and applied the proposed method 
to this graph.

  Usage vertices with highly similar interrelationships were grouped together by apply-
ing data polishing to the similarity graph. The groups were extracted as cliques, revealing 
the similarities between behaviors of card users in the extracted cliques and clarifying 
user groups with similar behaviors. Then, the origin and destination station combina-
tion corresponding to the largest number of users in each usage vertex was identified. 
Via these processes, this study provided a comprehensive account of the travel patterns 
of passengers of different types at different times of the day and on different days of the 
week.
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In future research, we intend to develop an efficient algorithm that eliminates complex 
calculation and requires fewer processing steps. Further study is needed to clarify the 
occurrence factors and similarity factors in the extracted travel patterns.
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