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Abstract 

Multi-dimensional arrays (also known as raster data or gridded data) play a key role in 
many, if not all science and engineering domains where they typically represent spatio-
temporal sensor, image, simulation output, or statistics “datacubes”. As classic database 
technology does not support arrays adequately, such data today are maintained 
mostly in silo solutions, with architectures that tend to erode and not keep up with the 
increasing requirements on performance and service quality. Array Database systems 
attempt to close this gap by providing declarative query support for flexible ad-hoc 
analytics on large n-D arrays, similar to what SQL offers on set-oriented data, XQuery 
on hierarchical data, and SPARQL and CIPHER on graph data. Today, Petascale Array 
Database installations exist, employing massive parallelism and distributed processing. 
Hence, questions arise about technology and standards available, usability, and overall 
maturity. Several papers have compared models and formalisms, and benchmarks have 
been undertaken as well, typically comparing two systems against each other. While 
each of these represent valuable research to the best of our knowledge there is no 
comprehensive survey combining model, query language, architecture, and practical 
usability, and performance aspects. The size of this comparison differentiates our study 
as well with 19 systems compared, four benchmarked to an extent and depth clearly 
exceeding previous papers in the field; for example, subsetting tests were designed 
in a way that systems cannot be tuned to specifically these queries. It is hoped that 
this gives a representative overview to all who want to immerse into the field as well 
as a clear guidance to those who need to choose the best suited datacube tool for 
their application. This article presents results of the Research Data Alliance (RDA) Array 
Database Assessment Working Group (ADA:WG), a subgroup of the Big Data Interest 
Group. It has elicited the state of the art in Array Databases, technically supported by 
IEEE GRSS and CODATA Germany, to answer the question: how can data scientists and 
engineers benefit from Array Database technology? As it turns out, Array Databases 
can offer significant advantages in terms of flexibility, functionality, extensibility, as well 
as performance and scalability—in total, the database approach of offering “datacubes” 
analysis-ready heralds a new level of service quality. Investigation shows that there is 
a lively ecosystem of technology with increasing uptake, and proven array analytics 
standards are in place. Consequently, such approaches have to be considered a serious 
option for datacube services in science, engineering and beyond. Tools, though, vary 
greatly in functionality and performance as it turns out.
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Introduction
As The Fourth Paradigm puts it [51], “The speed at which any given scientific dis-
cipline advances will depend on how researchers collaborate with one another, and 
with technologists, in areas of eScience such as databases”. This reflects the insight 
that a meaningful structuring of data, together with suitable access methods, is 
instrumental for any data analysis done in any domain, including business, science, 
and engineering.

Since the advent of databases with high-level, declarative access interfaces [34], tabu-
lar data organization has prevailed, supported by the relational data model and query 
standard, SQL [57]. Long this was considered adequate for managing employees in 
enterprises and metadata about measurements in science, until further use cases—such 
as Computer Aided Design and Manufacturing (CAD/CAM) data management [28] and 
Computer Graphics [52] with their need for hierarchies—provoked thoughts about how 
to support these through data structures and query operators, too. In response, hierar-
chical data models were proposed. In a similar way, new requirements also triggered the 
need for general graph support in large-scale databases; main drivers here have been 
ontologies requiring comparatively small, heterogeneous graphs [49] and social net-
works with their large, homogeneous graphs [105]. A further relevant data structure is 
comprised by multi-dimensional arrays. First conceptualized in OLAP they also appear 
practically everywhere in science and engineering. These four data structuring princi-
ples—sets, hierarchies, graphs, and arrays (Fig. 1)—all are fundamentally different and, 
hence, call for dedicated database modeling and querying support, following Michael 
Stonebraker’s observation of “ no one size fits all” [108]. 

In database research, arrays have been treated systematically in the context of 
OLAP; however, these statistical “datacubes” are very sparse, while the majority of 
arrays in science and engineering, such as satellite images and weather forecasts, are 
dense. General array support in databases, while started early [14, 18], has become a 
general field of study only relatively recently [4, 13, 30, 32, 33, 36, 39, 43, 58, 61, 98, 
104, 107, 109, 112, 122, 126], with a view on the multitude of hitherto unsupported 
domains.

The significant increase in scientific data that occurred in the past decade—such 
as NASA’s archive growth from some hundred Terabytes in 2000 [46] to 32 Peta-
bytes of climate observation data [119], as well as ECMWF’s climate archive of over 
220 Petabytes [19]—marked a change in the workflow of researchers and program-
mers. Early approaches consisted mainly of retrieving a number of files from an FTP 
server, followed by manual filtering and extracting, and then either running a batch of 

Fig. 1 Sets, hierarchies, graphs, and arrays as principal data structures in databases
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computation processes on the user’s local workstation, or tediously writing and opti-
mizing sophisticated single-use-case software designed to run on expensive super-
computing infrastructures. This is not feasible any more when dealing with Petabytes 
of data which need to be stored, filtered and processed beforehand. When data pro-
viders discovered this they started providing custom tools themselves, often leading 
to silo solutions which turn out to erode over time and make maintenance and evolu-
tion hard if not impossible. An alternative finding attention only recently are data-
base-centric approaches, as these have shown significant potential; meantime, we find 
both small institutions [80] and large datacenters [19] using modern database archi-
tectures for massive spatio-temporal data sets.

Arrays—also called “raster data” or “gridded data” or, more recently, “datacubes” 
[21]—constitute an abstraction that appears in virtually all areas of science and engi-
neering and beyond:

• Earth sciences: 1-D sensor data, 2-D satellite imagery, 3-D x/y/t image timeseries 
and x/y/z subsurface voxel data, 4-D x/y/z/t atmospheric and ocean data; etc.

• Life sciences: microarray data, image modalities like X-ray, sonography, PET, and 
fMRI deliver 2-D up to 4-D data about human and non-human brains and further 
organs; gene expression data come as 2-D through 4-D; etc.

• Space sciences: optical and radio telescope data; 4-D x/y/z/t cosmological simu-
lateion output; planetary surface and subsurface data; etc.

• Statistics: “Datacubes” are known since long in the context of Data Warehous-
ing and OLAP [25] where, instead of spatial, abstract axes are defined, usually 
together with a time axis. A main difference to the above data is that statistical 
datacubes are rather sparse (say, 3–5% of the data space is occupied by values) 
whereas Earth, Space, and Life science and engineering data tend to be rather 
dense, often completely dense (i.e., most or all cell positions in the grid hold some 
non-null value).

Figure 2 gives a visual impression of the variety of different observed data specifi-
cally in Ocean science. Generally, arrays typically represent sensor, image, simulation, 
and statistics data of spatio-temporal or “abstract” dimensions. 

Faced with these recent developments in theory, architecture, application, and stand-
ardization in of Array Databases it is not easy to get and maintain overview. To the best 
of our knowledge there is no comprehensive system overview on the state of the art in 
this field. Benchmarks have been conducted earlier, but they typically compare only two 
systems [33, 35, 66, 90], as opposed to 19 in this review, and mostly without a scien-
tifically justified benchmark design underneath (e.g., Planthaber [90]), as opposed to the 
benchmark design in this review which has been justified by Baumann et al. in [20].

With this technology survey this gap is to be closed. First, the approach is motivated 
by inspecting relevant array service standards. Also, it is motivated that availability as 
open-source code was not a criterion—open-source software is a business model, not a 
capability of the software.

As core contribution, a total of 19 relevant tools is inspected, from the fields of 
Array DBMSs, array command line tools and libraries, and array extensions to 
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MapReduce-type systems. These are classified from various perspectives: functionality, 
standards support, and architecture.

Additionally, four Array DBMs are subject to a performance benchmark. This bench-
mark, which is publicly available, inspects both array data access and analysis functions 
applied to array data. The benchmark is designed in a way that a system cannot be tuned 
unilaterally; for example, cutouts walk over the array and cutouts are produced along 
various dimensions, always based on the same object, with one given data tiling on disk. 
Further, a clear distinction is made between implementation of functionality by the sys-
tem itself, or implementation through User-Defined Functions (UDFs), i.e., code the ser-
vice operator must provide and which obviously would not be testable. In addition to 
these comparisons of expressive power of the model, down-to-earth aspects have been 
considered, too, including array import and export capabilities, client APIs, and support 
for standards. Overall, more than 30 functional criteria are assessed.

Next, tuning capabilities of the systems have been inspected. Database sstems have a 
long tradition of providing both administrator-accessible tuning and automatic self-tun-
ing (“optimization”). In the comparatively young field of Array DBMSs this is not always 
common yet and, therefore, worth investigating. Eight criteria have been inspected, con-
sidering both storage and processing optimization.

Architectural features investigated were the overall architectural paradigm, storage 
organization details, processing, and the parallelization approach adopted.

Necessarily, the criteria had to be adapted to the three categories of Array DBMSs, 
command line tools and libraries, and Hadoop-style systems, although emphasis was 
put on keeping criteria comparable as much as ever possible. In particular, we concen-
trate on array-supporting systems; for example, we investigate SciHadoop specifically, 
but do not look at Hadoop in general as it does not support arrays, and even less so we 
inspect underlying technology such as virtualization paradigms (e.g., Virtual Machines 
and Docker containers) nor processing models (such as CPU vs. GPU vs. quantum 
computing).

This investigation—consisting of agreement on the comparison criteria, collecting 
and analyzing 19 systems and benchmarking four systems – has been carried out pro-
duced by over a timeframe of 2 years by the survey authors in the context and with the 

Fig. 2 Basic structure of a multi-dimensional array and its cells, with extent spanned by axes x/y/z (left); 
sample array data from Earth, Space, and Life Sciences as well as Engineering (right)
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help of the Research Data Alliance (RDA) Array Database Assessment Working Group 
(ADA:WG) from which the original report is available [16]. In summary, the main con-
tributions of this article are the following:

• A general presentation of an array model, generic enough to form a basis for a com-
parison of heterogeneous array systems.

• An overview on Array DBMSs and further systems offering arrays as a service, with a 
detailed feature comparison for 19 such systems.

• A systematic benchmark with explicit design rationales, applied to four different 
Array DBMSs.

• An overview on standards for array services.

The remainder of this technology review is organized as follows. In the next Section 
we discuss the need for database support for massive arrays, introducing the concepts of 
array querying. An overview on Array (database) standards is given in Sect. "Array stand-
ards", followed by an overview of technology currently available in Sect.  "Array tech-
nology" and a collection of publicly accessible array (database) services in Sect.  "Array 
systems assessment". In Sect. "Case study" we provide a technical comparison of the var-
ious technologies, including a performance benchmark. Section "Conclusion" concludes 
the plot.

Arrays in databases
General considerations

For decades now, SQL has proven its value in any-size data services in companies as 
well as public administration. Part of this success is the versatility of the query language 
approach, as well as the degree of freedom for vendors to enhance performance through 
server-side scalability methods. Unfortunately, scientific and engineering environments 
could benefit only to a limited extent. The main reason is a fundamental lack in data 
structure support: While flat tables are suitable for accounting and product catalogues, 
science needs additional information categories, such as hierarchies, graphs, and arrays. 
The consequence of this missing support has been a historical divide between ”data” 
which are conceived as large, constrained to download, with no search and ”metadata” 
which commonly are considered small, agile, and searchable.

Still, databases have worked out some key components of a powerful, flexible, scalable 
data management; these principles have proven successful over decades on sets (rela-
tional DBMSs), hierarchical data (e.g., XML [118] databases), graph data (e.g., RDF and 
graph databases), and now array databases are offering their benefits as well:

A high-level query language allows users (typically: application developers such as data 
scientists) to describe the result, rather than a particular algorithm leading to this result. 
For example, a two-line array query typically would translate into pages of procedural 
code. In other words: users do not need to deal with the particularities of programming. 
The data center, conversely, has a safe client interface—accepting any kind of C + + or 
python code and running it inside the firewall is a favorite nightmare of system adminis-
trators. Notably also NoSQL approaches (initially spelt out as “No SQL”, later “Not Only 
SQL”), while initially denying usefulness of high-level query languages, are gradually 
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(re-) introducing them – prominent examples include MongoDB, Hive, Pig Latin, etc. 
[60].

Transparent storage management (“data independence”). While this idea sometimes 
still is alien to data centers which are used to knowing the location of each byte on disk 
this transparency has the great advantage of (i) simplifying user access and (ii) allowing 
to reorganize internally without affecting users—for example, to horizontally scale a ser-
vice. And, honestly: in a JPEG file, do we know the location of a particular pixel? We can 
operate them well without knowing these details, rather relying on high-level interfaces 
abstracting away the details of storage organization.

Concurrency and access control Given that a large number and variety of users are 
querying large amounts of data it is indispensable to manage access. Avoiding incon-
sistencies due to parallel modifications of data is addressed by concurrency control with 
transaction support. Role-based access control allows adjusting access for user groups 
individually. Particularly with arrays, granularity of access control must go below object 
level for selectively managing access to arbitrary areas within datacubes, essentially per-
forming access control down to pixel level. Also, due to the high processing load that 
array queries may generate it is important to enforce quota.

Array databases [6] provide flexible, scalable services on massive multi-dimensional 
arrays, consisting of storage management and processing functionality for multi-dimen-
sional arrays which form a core data structure in science and engineering. They have 
been specifically designed to fill the gaps of the relational world when dealing with large 
binary datasets of structured information and have gained traction in the last years, in 
scientific communities as well as in industrial sectors like agriculture, mineral resource 
exploitation etc. 1-D sensor data, 2-D satellite and medical imagery, 3-D image time-
series, 4-D climate models are all at the core of virtually all science and engineering 
domains. The currently most influential array database implementations are, in histori-
cal order, rasdaman [14, 18, 38, 96] and SciDB [30, 36]; Fig. 3 gives a brief outline on 
the early historical development of this field. Each of the systems allows, to a larger or 
smaller extent, querying the data based on the array’s properties and contents using 
declarative languages that usually allow for a large degree of flexibility in both query for-
mulation and internal query optimization techniques. Processing of arrays is core func-
tionality in such databases with large sets of operations, ranging from simple sub-setting 
up to statistics, signal and image processing, and general Linear Algebra. A first Array 
Database workshop has been held in Uppsala already in 2011 [13]. 

An array query model for databases

Array data

Arrays being ordered homogeneous collections with a multi-dimensional addressing 
scheme have long been supported by programming languages, dating back to lan-
guages like APL [59]. This mostly includes primitives for accessing single array ele-
ments combined with general looping constructs. Our perspective, though, is on a 
different level: high-level, declarative functionality where the iteration is implicit, 
for reasons of user friendliness and server-side optimization opportunities, the 
role model always being the SQL language. Also following the tradition of query 
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languages, an algebraic formalization of its semantics should also be available for an 
array query language.

Several formal models have been suggested for array databases [12]. Tomlin has 
established a so-called Map Algebra [117] which categorizes array operations depend-
ing on how many cells of an input array contribute to each cell of the result array. 
Map Algebra originally was 2-D and has been extended to 3-D meanwhile, which still 
is too restricted for general arrays, Further, no operational model is indicated. AFATL 
Image Algebra [97] has been developed to express image and signal processing as well 
as statistics algorithms. It is is multi-dimensional by design and has seen implemen-
tationsin libraries for various languages. Array Algebra [5] has been influenced by 
AFATL Image Algebra when establishing a formal framework for n-D arrays suitable 
for a declarative query language.

We choose Array Algebra [5] as our basis, for the following reasons. It is fully multi-
dimensional; it is practically proven through implementations running on multi-Peta-
byte operational services [114]; it models all array operations whereas some other 
approaches work with black box APPLY() functions effectively hiding important parts of 
the semantics. Finally, the algebra is minimal in that only two operators allow expressing, 
e.g., all array operations of the SQL/MDA standard of which it is the formal basis.

We briefly present formal conceptualization of array services through Array Alge-
bra. Readers may skip it safely, it is helpful but not strictly necessary to understand the 
technology analysis provided later on. Formally, a d-dimensional array is a function.

with a domain consisting of the d-fold Cartesian cross product of closed integer 
intervals:

a : D → V

Fig. 3 Early history of array database systems
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where V is some non-empty value set, called the array’s cell type. Single elements in such 
an array we call cells. Arrays popularly are referred to as datacubes.

This understanding is identical to mathematics where vectors (or sequences) represent 
1-D arrays, matrices form 2-D arrays, and tensors represent higher-dimensional arrays.

Tomlin has established a so-called Map Algebra [117] which categorizes array opera-
tions depending on how many cells of an input array contribute to each cell of the result 
array; here is an excellent compressed introduction. While Map Algebra was 2-D and 
has been extended to 3-D lateron, AFATL Image Algebra [97] is multi-dimensional by 
design. Array Algebra [5] has been influenced by AFATL Image Algebra when establish-
ing a formal framework for n-D arrays suitable for a declarative query language.

Querying arrays

Although array query languages heavily overlap there is not yet a common consensus 
on operations and their representation. In passing we note that array operations, being 
2nd order with functions as parameters, introduce functional, similar to sets, lists, and 
stacks. Array Algebra relies on only three core operators: An array constructor, an aggre-
gator, and an array sort operation (which we skip for this introduction). We inspect these 
in turn, based on the ISO SQL/MDA syntax.

 Deriving arrays

The mdarray operator creates an array of a given extent and assigns values to each 
cell through some expression which may contain occurrences of the cell’s coordinate. 
Sounds complicated? Let us start simple: assume we want to obtain a subset of an array 
A. This subset is indicated through array coordinates, i.e., we extract a sub-array. For a 
d-dimensional array this subset can be defined through a d-dimensional interval given 
by the lower corner coordinate (lo1, ..., lod) and upper corner coordinate (hi1,...,hid), 
respectively. To create the subset array we write. 

This extraction, which retains the dimensionality of the cube, is called trimming. Com-
monly this is abbreviated as 

.
We can also reduce the dimension of the result by applying slicing in one or more 

coordinates. Instead of the loi:hii interval we provide only one coordinate, the slice 
position si. Notably, if we slice d times we obtain a single value (or, if you prefer, a 0-D 
array), written as: 

D =
{

lo1, . . . , hi1
}

× . . .×
{

lod , . . . , hid
}

with loi ≤ hii for 1 ≤ i ≤ d
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 …or in its shorthand: 

which resembles the common array cell access in programming languages. Figure 4 
shows some examples of trimming and slicing on a 3-D array.

Now let as assume we want to change the individual cell values rather than doing 
extraction, for example deriving the logarithm of some input array of given domain 
extent D with axes x and y: 

An example for a binary operator is addition of two images: 
In fact, any unary or binary operation defined on the input arrays’ cell types 

“induces” a corresponding array operation. For binary operations - also referred to 
as array joins—we require that both operand arrays share the same spatial extent so 
that the pairwise matching of array cells is defined. Syntactically, we abbreviate such 
mdarray operations so that the above example can be written as:

Fig. 4 Various types of subsetting from an array: trimming (left, which keeps the original dimension) and 
slicing (which reduces the number of dimensions, right) [41]
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With this simple rule we have obtained already all the well-known arithmetic, 
Boolean, exponential, and trigonometric operations.

Extending binary to n-ary functions we find two practically useful operations, the 
case and concat operators. Following the syntax of SQL we can write an array case (or 
“if ” operator) as in the following example which performs a traffic light classification 
of array values, based on thresholds t1 and t2:

Another useful operation is array concatenation. We define, for two arrays a 
with domain A and b with domain B where domains A and B are “adjacent”, loosely 
speaking,

Obviously, the union of the input domains must be a valid array domain again. It 
is straightforward to extend concatenation to an n-ary function provided the input 
array domains altogether form a valid array partition. In practice such a concatena-
tion is used, for example, when selecting all December time slices from a climate time 
series.

Some systems provide an apply() function which receives an array expression a as 
first parameter and a cell-level function f, bearing the same mechanics as induced 
functions: apply the function to each cell of the input array. While this semantic 
shortcut eases specification work it has several drawbacks. On conceptual level, the 
semantics of f is outside the array framework, so essentially a black box. On imple-
mentation level this means the array engine has no knowledge about the behavior of 
the operator and, hence, cannot optimize it except for exploiting the trivial “embar-
rassingly parallel” property. Moreover, this is constrained to unary induced func-
tions; while a second, binary, apply function can be supplied this does not cover the 
non-local operations such as histograms, convolution kernels, etc., so the larger part 
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of Linear Algebra. This means a significant limitation in expressiveness and, conse-
quently, the optimization potential.

Aggregating arrays

All the above operations have served to derive a new array from one or more given arrays. 
Next, we look at the condenser which - in analogy to SQL aggregation - allows deriving 
summary values. The general condenser iterates over an array covering the domain indi-
cated and aggregates the values found; actually, each value can be given by a location-aware 
expression. The following example adds all cell values of a in domain D with axes x and y 
(which obviously must be equal to or contained in the domain of array a):

This can be abbreviated as

Not all operations can act as condensers as they must be form a monoid in order for the 
aggregation to work that is: the operation must be commutative and associative (this opens 
up parallelization opportunities) and it must have a neutral element. Common candidates 
fulfilling this criterion are mdsum, mdavg, mdmin, mdmax, mdexists, and mdforall.

Operator combinations

The operators illustrated can all be combined freely to form expressions of arbitrary 
complexity. We demonstrate this through two examples.

Example 1

The matrix product of a and b, yielding a result matrix of size m⋅p.



Page 12 of 61Baumann et al. J Big Data            (2021) 8:28 

Example 2 A histogram over an 8-bit greyscale image.

This way, general operations from image/signal processing, statistics, and Linear Alge-
bra up to, say, the Discrete Fourier Transform can be expressed.

Array Integration

Some systems operate on arrays standalone, others integrate them into a host data 
model, typically: relations. Following ISO SQL we embed arrays into the relational 
model as a new column type which is shared by the majority of systems such as rasda-
man, PostgreSQL, Oracle, and Teradata. This offers several practical advantages, such 
as a clear separation of concerns in query optimization and evaluation which eases 
mixed optimization [67]. For example, we can define a table of Landsat satellite images 
as follows:

 which can be queried like this example shows: 

A notable effect is that now data and metadata reside in the same information space 
and can be accessed and combined in one and the same query. Hence, in future the age-
old distinction between data and metadata can be overcome.

Array database architectures

Storage

Access patterns on arrays are strongly linked to the Euclidean neighborhood of array 
cells (Fig. 5), therefore it must be a main goal of any storage engine to preserve proximity 
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on persistent storage through some suitable spatial clustering. It is common, therefore, 
to partition n-D arrays into n-D sub-arrays called tiles [18] or chunks [100] which then 
form the unit of access to persistent storage. 

Obviously, the concrete partitioning chosen greatly affects disk traffic and, hence, 
overall query performance. By adjusting the partitioning—statically in advance or 
dynamically at query time—to the workloads, the number of partitions fetched from 
persistent storage can be minimized, ideally: to a single disk access (Fig. 6). The challenge 
is to find a partitioning which supports a given workload. For example, when building 
x/y/t remote sensing data cubes imagery comes in x/y slices with a thickness of 1 along 
t. Time series analysis, on the contrary calls for cutouts with long time extent and (pos-
sibly) limited spatial x/y extent. Figure 6 illustrates some tiling patterns, from left to right 
in increasing irregularity resulting in increased adaptivity to query access patterns [43]. 

While this principle is generally accepted partitioning techniques vary to some extent. 
PostGIS Raster allows only 2D x/y tiles and suggests tile sizes of 100 × 100 pixels [92]. 
Teradata arrays are limited to less than 64 kB [112]. SciDB offers a two-level partition-
ing where smaller partitions can be gathered in container partitions. Further, SciDB 
allows overlapping partitions so that queries requiring adjacent pixels (like in convolu-
tion operations) do not require reading the neighboring partitions [104]. In rasdaman, a 
storage layout sublanguage allows to define partitioning along several strategies [8]. For 
example, in “directional tiling” ratios of partition edge extents are indicated, rather than 
absolute sizes; this allows to balance mixed workloads containing, e.g., spatial timeslice 

Fig. 5 Cartesian array cell neighborhood

Fig. 6 Categories of array tiling patterns, after [43]
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extraction and temporal timeseries analysis. In the “area of interest tiling” strategy, hot 
spots are indicated and the system automatically determines an optimal partitioning.

To quickly determine the partitions required—a typical range query—some spatial 
index, such as the R-Tree [50], proves advantageous. As opposed to spatial (i.e., vector) 
databases the situation with arrays is relatively simple: the target objects, which have 
a box structure (as opposed to general polygons), partition a space of known extent. 
Hence, most spatial indexes can be expected to perform decently.

Often, compression of tiles is advantageous [38]. Still, in face of very large array data-
bases tertiary storage may be required, such as tape robots [96, 100].

Processing

When it comes to query evaluation it turns out that, in general, array operations are 
heavily CPU bound; this is contrary to relational query processing which typically is I/O 
bound. Some array operations are trivially parallelizable, such as cell-wise processing 
and combination (which Tomlin [117] calls “local” operations) and simple aggregations. 
These can easily be distributed both on local processing nodes like multicore CPUs and 
general-purpose GPUs and remote nodes, like servers in a cloud network. Others have 
to be carefully analyzed, transformed and sometimes even rewritten in different sets of 
operations to gain such parallelizable characteristics, e.g. joins on differently partitioned 
arrays, histogram generators and, in general, array constructors with non-serial access 
patterns.

The following is a non-exhaustive list of optimizations proven effective in Array 
DBMSs:

Parallelization The fact that array operations involve applying the same operation on 
a large number of values, and also the observation that tiles map naturally to CPU cores 
sometimes leads to the hasty conclusion that array operations per se are “embarrass-
ingly parallel”. While this holds for simple operations, such as unary induced operations 
like log(a), this is by far not true in general. Already binary operations like a + b pose 
challenges—for example, both operand arrays can reside on different nodes, even data 
centers, and they may have an incompatible tiling which calls for advanced methods like 
Array Join [15]. Additional complexity, but also opportunities, comes with Linear Alge-
bra operations ranging from matrix multiplication over QR decomposition up to Fourier 
Transform and Principal Component Analyses, to randomly pick a few examples.

Parallelization across several cores in one compute node (effectively, a shared-all archi-
tecture) allows exploiting vertical scalability; distributed processing utilizes the same 
principle of sharing workloads, but across several compute nodes (shared-nothing archi-
tecture)—in case of a cloud, typically homogeneous nodes sitting close by, in the case 
of federations among data centers heterogeneous nodes with individual governance and 
higher-latency network connections. Criteria for splitting queries across multiple sys-
tems may include data location, intermediate results transfer costs, current resource 
availability, and several more.

Generally, parallelization in Array Databases is not constrained to the rigid “Map() fol-
lowed by Reduce()” pattern of Hadoop-style systems [2, 37], but can look at each query 
individually and combine a wide spectrum of techniques. This opens up more opportuni-
ties, but is often nontrivial to implement. In Array Databases—as in database technology 
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in general—two main techniques are known for finding out how to best orchestrate an 
incoming query based on the speedup methods available in the system:

Query rewriting This technique, which is long known in relational database query pro-
cessing, also under the name heuristic optimization, looks at an incoming query to see 
whether it can be rephrased into an equivalent one (i.e., returning the same result), how-
ever, with less processing effort. To this end, the system knows a set of rewrite rules like 
“left hand side expression returns same result as right hand side, but we know right-
hand side is faster”. Where do these rules come from? Actually, this is a nice example for 
the usefulness of a formal semantics of a language; Relational and Array Algebra natu-
rally lead to algebraic equivalences which can be directly written into code. In the case of 
rasdaman, there are about 150 such rules currently.

The following example (Fig. 7) illustrates the principle, with a rule saying “adding two 
images pixelwise, and then computing the average value, is equivalent to first comput-
ing the averages individually, and then add the result”. In the first case, array tiles have 
to be streamed three times in the server whereas in the second case there are only two 
tile streams—the final addition is over two scalars, hence negligible in cost. Bottom line, 
replacing an occurrence of the left-hand side pattern by the right-hand side pattern saves 
1/3 of the computing effort. 

Cost-based optimization attempts to find an efficient execution plan out of the—usu-
ally large—search space of possible plans for a given query. In contrast to query rewrit-
ing, this involves knowledge (i.e.: estimation) of the costs of processing. Parameters 
influencing costs include the number of tiles to be read from disk, location of tiles in 
case of a distributed system, the number and complexity of operations, and several more.

An extension of the principle of parallelizing query evaluation over different compute 
nodes is distributed processing. Additional challenges arise in that these nodes normally 
are independent from each other and connected through less bandwidth than in local 
situation. Additionally, computing and storage can be—and usually is—heterogeneous 
the nodes. One example of a location-transparent federation is EarthServer [114].

Still, despite this rich set of options parallelization brings along this is by no means the 
only opportunity for speeding up query processing. By way of example we briefly present 
one hardware and one software technique.

Mixed hardware Compiling queries directly into machine code for CPU, GPU, FPGA, 
etc. can greatly speed up processing time, even more so by dedicating tasks to the most 
suitable processing unit. However, mixed hardware evaluation poses non-trivial prob-
lems which still are under active research.

Fig. 7 Sample equivalence rule for array query rewriting: “max(a + b) ≡ max(a) + max(b)”
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Approximative caching Caching the results of final and intermediate processing 
steps helps significantly in case where the same or similar queries come in frequently. 
For example, during disasters there will be lots of queries on the disaster region, 
issued by mitigation forces and the general public. With arrays we encounter the par-
ticular challenge that these queries will likely not hit the exact same region, but will 
differ more or less on the area to be accessed. Hence, it is of advantage if the query 
engine can reuse partially matching areas in array results [64].

Note that reformulating and compiling queries is not necessarily a time consuming 
task. Experience with rasdaman shows that such optimization steps altogether can be 
accomplished within few milliseconds.

Client interfacing

While “datacubes” represent a convenient logical view on massive multi-dimensional 
data this does not mean clients need to see data in such a shape. Very often, clients 
will do some extraction and aggregation, thereby reducing and changing dimensional-
ity away from the original. More importantly even, users should be able to remain as 
much as possible within their comfort zone of well known tools - for example, sim-
ple map navigation should still be able through clients like OpenLayers and Leaflet, 
embedding into Web GIS should support tools like QGIS and ESRI ArcGIS, virtual 
globes like NASA WebWorldWind and Cesium should be supported, whereas high-
end analytics calls for access to datacubes through R and python.

Related technology

Array databases by definition are characterized by offering a declarative query lan-
guage on n-D arrays. Such technology can be implemented in various ways - as will 
be demonstrated by the systems overview in the next section, each coming with its 
individual characteristics. However, we will also look beyond the pure Array Database 
category and give a glance at other array technology, including.

• Array engines offering only procedural interfaces (rather than a query language), 
often implemented in some scripting language (e.g., python), rather than running 
directly compiled machine code (e.g., C++). Typically, these are constrained in 
functionality as users can only invoke the functions provided, but cannot compose 
them to larger tasks—hence, they lack the flexibility of databases.

• Command-line tools which form possible components of array services, but do 
not constitute a complete service tool per se. Typically, these are useful for ser-
vices inside a data center where data experts at the same time are experienced 
full-stack developers.

• Libraries that provide array functionality, but do not constitute a server in itself 
and do not have a query concept, but rather a procedural API.

This way, we aim at providing a context for the young category of Array Databases.
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Array standards
Several standards relevant for large-scale array querying are already in place. Such 
standards may be domain independent (such as ISO Array SQL [56]) or domain spe-
cific (such as the OGC WCPS geo raster query language [22, 78]). For each standard 
listed its adoption status is provided.

Domain neutral standards

SQL arrays

Full title: IS 9075 SQL Part 15: Multi-Dimensional Arrays (MDA).
Issuing body: ISO/IEC SC 32/WG 3.
Description: Data and Processing Standard. SQL extension with domain-neutral def-
inition and queries on massive multi-dimensional arrays (“datacubes”).
Status: International Standard, published 2019.
Further information: [56, 67, 68].

Geo datacube standards

The main standardization body, in close collaboration with ISO, is the Open Geospa-
tial Consortium (OGC). W3C also has done some work. While OGC and ISO operate 
in lock-step synchronization and mutually adopt their standards the W3C specifica-
tion is different and incompatible. It should also be noted that no operational imple-
mentation of the W3C specification is known whereas the ISO/OGC standards are 
routinely used worldwide in large-scale deployments [114].

Geo datacube abstract concepts

Full title: Abstract Topic 6, ISO 19123-1.
Issuing body: OGC, ISO TC211.
Description: Abstract, generic data model for spatio-temporal coverages, that is: 
spatio-temporal regular and irregular grids, point clouds, and general meshes. This 
model is not intended for establishing the abstract concepts, not for implementation 
which is addressed by the twin specification OGC CIS/ISO 19123-2.
Status: Seasoned ISO 19123/OGC AT6 currently under rework by ISO to become 
19123-1 and subsequently OGC Abstract Topic 6.
Further information: [55].

Geo datacube data model implementation

Full title: Coverage Implementation Schema (CIS), ISO 19123-2.
Issuing body: OGC, ISO TC211.
Description: Concrete, implementable, data model for spatio-temporal regular and 
irregular grids, point clouds, and general meshes. The model is independent from ser-
vices (see below) and can be used in various OGC service types. Services using this 
coverage model can be conformance tested down to pixel level using the OGC com-
pliance tests.
Status: Adopted by OGC as CIS 1.1; adopted by ISO as 19123-2 using OGC CIS 1.0 
with plans to lift it to CIS 1.1 starting 2021.
Further information: [4, 9–11, 41, 77].



Page 18 of 61Baumann et al. J Big Data            (2021) 8:28 

Geo datacube access service

Full title: Web Coverage Service (WCS).
Issuing body: OGC.
Description: WCS is a modular suite of Web service standards for accessing spatio-
temporal coverages as per OGC CIS. The mandatory core specified access, subsetting, 
and encoding while a set of optional extensions specify additional, advanced functional-
ity a server can provide. A detailed conformance test suite allows for free validation of 
implementations claiming compliance [79].
Status: Adopted OGC standard since 2012; adopted by EU INSPIRE since 2016; mid-
term plans for adoption by ISO.
Further information: [7, 77].

Geo datacube analytics language

Full title: Web Coverage Processing Service (WCPS).
Issuing body: OGC.
Description: Geo datacube query language for access, analytics, and fusion over mas-
sive spatio-temporal datacubes over regular or irregular grids. WCPS is the Processing 
extension of the WCS suite.
Status: OGC standard since 2009; optional component in the EU INSPIRE Coverage 
Download Services.
Further information: [17, 41, 54, 78].

Geo datacube rDF vocabulary

Full title: RDF Data Cube Vocabulary.
Issuing body: W3C.
Description: An RDF vocabulary of datacubes for use in Semantic Web contexts with a 
focus on statistical data. The framework adopts aspects of the SDMX standard for statis-
tical data exchange. Mainly metadata are modeled, single cells are not addressable, and 
there is no query nor processing model associated.
Status: W3C Best Practice since 2014.
Further information: [113].

Array technology
Array databases naturally can do the “heavy lifting” in multi-dimensional access and 
processing, but arrays in practice never come alone; rather, they are ornamented with 
application-specific metadata that are critical for understanding of the array data and 
for querying them appropriately. For example, in geo datacubes querying is done typi-
cally on geographical coordinates, such as latitude and longitude; the system needs to be 
able to translate queries in geo coordinates into the native Cartesian index coordinates 
of arrays. In all applications using timeseries, users will want to utilize date formats—
such as ISO 8601 supporting syntax like “2018-02-20”—rather than index counting since 
epoch. For cell types, it is not sufficient to just know about integer versus floating-point 
numbers, but it is important to know about units of measure, null values (note that 
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sensor data do not just deliver one null value, such as traditional database support, but 
multiple null values with individual semantics).

Coupling array queries with metadata query capabilities, therefore, is of high practi-
cal importance; ISO SQL/MDA, with its integration of arrays into the rich existing 
framework of the SQL language, shows one possible way. If that appears too complex 
to implement or insufficient knowledge exists about such standards, typically silo solu-
tions with datacube support are established where the term “silo” illustrates insular data 
subsystems that are incapable of communicating and exchanging reciprocally, thereby 
substantially hindering insight gains [42]. Specifically in the Earth science domain an 
explosion of domain-specific “datacube” solutions can be observed recently (see, e.g., the 
EGU 2018 datacube session [103]), usually implemented in python using existing array 
libraries. We, therefore, also look at domain-specific “datacube” tools as well.

This review is organized as follows. First, Array Databases are inspected which offer 
generic query and architectural support for n-D arrays. Next, known object-relational 
emulations of arrays are listed. MapReduce-type systems follow as a substantially dif-
ferent category of data systems, which however often is mentioned in the context of Big 
Data. After that, systems are listed which do not fall into any of the above categories. 
Finally, we list libraries (as opposed to the aforementioned complete engines) and n-D 
array data formats.

Technology overview

Systematics

This section inspects Array Database and related technology. As recently a significant 
boom in array systems can be observed that an increasing number of technologies is 
being announced, at highly varying stages of maturity. Thanks to the blooming research 
and development it can be expected that further systems emerge soon which have 
not found their way into this report. The landscape of systems encountered has been 
grouped into the following categories (see also Sect. "Related technology"):

• Array Database systems characterized by a query language, multi-user operation, 
storage management, and access control mechanisms. These can be subdivided into 
full-stack Array Databases implemented from scratch (e.g., rasdaman, SciDB) and 
add-ons to existing database systems implemented as extra layers to existing DBMSs 
(e.g., EXTASCID), as object-relational extensions (ex: PostGIS Raster, Teradata 
Arrays, Oracle GeoRaster), or through direct DBMS kernel coding (e.g., SciQL).

• Array tools encompassing command-line oriented and libraries that provide array 
functionality, but do not constitute a server; the central distinguishing criteria are 
that (i) they do not offer a query concept, but rather a procedural API (where each 
call can accomplish just one piece of functionality, as opposed to arbitrarily com-
plex user queries in databases), and (ii) they do not accept queries via Internet, but 
rather require being logged in on the server machine for executing shell commands 
(ex: Ophidia) or writing own embedding code in some scripting language like python 
(ex: Wendelin.core, xarray, TensorFlow) or a compiled language like C++ (ex: 
boost::geometry, xtensor). Such approaches appear useful inside a data center where 
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data experts at the same time are experienced full-stack developers, as opposed to 
data scientists who generally prefer high-level languages like R.

 As such, these tools and libraries form possible components of array services, but do 
not constitute a complete service tool per se.

• MapReduce [37] type array engines allowing multi-dimensional array process-
ing based on top of Hadoop [73] or Spark [74]. The underlying MapReduce para-
digm relies on expressing algorithms on a map operation (such as a reordering and 
restructuring of input according to the criteria given) followed by a reduce opera-
tion which aggregates the restructured data. Internally, the MapReduce implemen-
tation will provide means to parallelize in the sense that the same map and reduce 
algorithms are executed in parallel on different cloud nodes and on different data. 
Algorithms which cannot be expressed this way need to resort to iterations of this 
map/reduce step. The map and reduce functions need to be implemented by some 
developer; Hadoop relies on Java, Spark uses Java and Scala. Neither the tools nor the 
languages used provide built-in support for arrays, except when limited to RAM of a 
single node. Therefore, MapReduce tools per se are out of scope of this investigation. 
However, array support has been added by various tools, and these we will inspect 
indeed.

We adopt the description of each system provided by its maintainers and augment it 
with own findings from inspecting the respective websites, publications, and manuals.

We first give an individual characterization as a brief overview on the systems 
addressed; a detailed feature-by-feature comparison can be found in Annexes 1, 2, and 3.

Generic array DBMSs

In this category we find database systems with the characteristic service features—a 
query language, multi-user operation, dedicated storage management, etc.

 Rasdaman (“raster data manager”) [94, 95] has pioneered Array Databases and 
“actionable datacubes” [5, 6, 14, 15, 17, 18, 56, 69]. It supports declarative querying of 
massive multi-dimensional arrays in federations of autonomous instances, including dis-
tributed array joins. Server-side processing relies on effective optimization, paralleliza-
tion, and use of heterogeneous hardware for retrieval, extraction, aggregation, and fusion 
on distributed arrays. The architecture resembles a parallelizing peer federation without 
a single point of failure. Arrays can be stored in the optimized rasdaman array store or 
in standard databases; further, rasdaman can operate directly on any pre-existing archive 
structure. Single rasdaman databases exceed 10 Petabytes [72], and queries have been 
split successfully across more than 1,000 cloud nodes [39]. The rasdaman technology is 
blueprint for several Big Data standards, such as ISO SQL/MDA [67] and OGC WCPS 
[17]. A public demonstration service is available on the Web [23].

Source code is available from [94] for the open-source rasdaman community edition 
(LGPL for client libraries, GPL for server—so can be embedded in commercial applica-
tions); the proprietary rasdaman enterprise edition is available from the vendor [94].
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 SciDB [86, 109] is an Array DBMS following the tradition of rasdaman. SciDB employs 
its own query interface offering two languages, AQL (Array Query Language) and AFL 
(Array Functional Language). Its architecture is based on a modified Postgres kernel host-
ing UDFs (User-Defined Functions) implementing array functionality, and also effecting 
parallelization.

SciDB has adopted a dual license model [87]. The source code of the community version 
is available from [88], although seemingly not maintained since several years; the commu-
nity version is Affero: not allowed for commercial purposes.

 SciQL [61, 70] was a case study extending the column-store DBMS MonetDB with array-
specific operators [58, 126]. As such, n-D arrays were sequentialized internally to column-
store tables (i.e., there is no dedicated storage and processing engine).

No source code could be found.
EXTASCID [32, 33, 99] is a complete and extensible research prototype for scientific 

data processing. It supports natively both arrays as well as relational data. Complex pro-
cessing is handled by a meta-operator that can execute any user code. EXTASCID is built 
around the massively parallel GLADE architecture for data aggregation. While it inherits 
the extensibility provided by the original GLA interface implemented in GLADE, EXTAS-
CID enhances this interface considerably with functions specific to scientific processing. 
(description taken from website below).

No source code could be found.

 Array DBMSs—object‑relational extensions

Object-relational capabilities in relational DBMSs allow users (usually: administrators) to 
define new data types as well as new operators. Such data types can be used for column 
definitions, and the corresponding operators can be used in queries. While this approach 
has been adopted by several systems (see below) it encounters two main shortcomings:

• An array is not a data type, but a data type constructor (sometimes called “template”). An 
instructive example is a stack: likewise, it is not a data type but a template which needs 
to be instantiated with some element data type to form a concrete data type itself—for 
example, by instantiating Stack <T> with String, often denoted as Stack <String>—one 
particular data type is obtained; Stack <Integer> would be another one. An array tem-
plate is parametrized with an n-dimensional extent as well as some cell (“pixel”, “voxel”) 
data type; following the previously introduced syntax this might be written as

Hence, object-relational systems cannot provide the array abstraction as such, but only 
instantiated data types like:
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or

• Further, as the SQL syntax per se cannot be extended such array support needs to intro-
duce some separate array expression language. Generic array types like the rasdaman 
n-D array constructor become difficult at best. Further, this approach typically implies 
particular implementation restrictions, such as limiting to particular dimensions.

Due to the genericity of such object-relational mechanisms there is no dedicated inter-
nal support for storage management (in particular: for efficient spatial clustering, but 
also for array sizes), indexing, and query optimization.

Still, some systems have implemented array support in an object-relational manner as 
it is substantially less effort than implementing the full stack of an Array DBMS.

PostGIS raster  “Raster” is a PostGIS type for storing and analyzing geo raster data 
[92, 93]. Like PostGIS in general, it is implemented using the extension capabilities of 
the PostgreSQL object-relational DBMS. Internally, raster processing relies heavily on 
GDAL. Currently, PostGIS Raster supports x/y 2D and, for x/y/spectral, 3D rasters. It 
allows raster expressions, however, not integrated with the PostgreSQL query language 
but passed to a raster object as strings written in a separate Map Algebra language. Large 
objects have to be partitioned by the user and distributed over tuples in a table’s raster 
column; queries have to be written in a way that they achieve a proper recombination 
of larger rasters from the partitions stored in one tuple each. A recommended partition 
size is 100 × 100 pixels.

Source code is available under GPL v2 on the developer wiki [91].
Oracle GeoRaster [85] is a feature of Oracle Spatial allowing to store, index, query, ana-

lyze, and deliver raster image and gridded data and its associated metadata. GeoRaster 
provides Oracle spatial data types and an object-relational schema. These data types and 
schema objects can be used to store multidimensional grid layers and digital images that 
can be referenced to positions on the Earth’s surface or in a local coordinate system. 
If the data is georeferenced, the location on Earth for a cell can be determined in an 
image; or given a location on Earth, the cell in an image associated with that location can 
be found. There is no particular raster query language underneath, nor a specific array-
centric architecture.

Source code is not available as Oracle is closed source, proprietary.
Teradata arrays Teradata recently has added arrays as a datatype [111], also following 

an object-relational approach. There are some fundamental operations such as subset-
ting; however, overall the operators do not resemble the expressive power of genuine 
Array DBMSs. Further, arrays are mapped to 64 kB blobs so that the overall size of a 
single array (considering the array metadata stored in each blob) seems to be around 
40 kB. Further restrictions include: Arrays must have between two and five dimensions; 
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only one element of the array can be updated at a time; it is unclear whether array joins 
are supported.

Source code is not available as Teradata is closed source, proprietary.

Array tools

OPeNDAP (“Open-source Project for a Network Data Access Protocol”) is a data trans-
port architecture and protocol for earth scientists [81]. OPeNDAP includes standards for 
encapsulating structured data, annotating the data with attributes and adding semantics 
that describe the data. An OPeNDAP client sends requests to an OPeNDAP server, and 
receives various types of documents or binary data as a response.

An array is one-dimensional; multidimensional Arrays are defined as arrays of arrays. 
An array’s member variable may be of any DAP data type. Array indexes must start at 
zero. A constraint expression provides a way for DAP client programs to request certain 
variables, or parts of certain variables, from a data source. A constraint expression may 
also use functions executed by the server.

Source code is available from [82] (license scheme not indicated).
Xarray (formerly xray) [123] is a Python package that aims to bring the labeled data 

power of pandas to the physical sciences, by providing N-dimensional variants of the 
core pandas data structures. Goal is to provide a pandas-like and pandas-compatible 
toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which 
pandas excels. The approach adopts the Common Data Model for self- describing scien-
tific data in widespread use in the Earth sciences. Dataset is an in-memory representa-
tion of a netCDF file.

Source code is available from [123] under an Apache license.
TensorFlow [1, 3, 110] is a tool developed by Google for machine learning. While it 

contains a wide range of functionality, TensorFlow is mainly designed for deep neural 
network models where it aims at easing creation of machine learning models for desk-
top, mobile, web, and cloud.

Source code is available from [110] under an Apache license.
Wendelin.core [120] allows to work with arrays bigger than RAM and local disk. Bigar-

rays are persisted to storage, and can be changed in transactional manner. Hence, bigar-
rays are similar to numpy.memmap for numpy.ndarray and operating system files, but 
support transactions and files bigger than disk. The whole bigarray cannot generally be 
used as a drop-in replacement for numpy arrays, but bigarray slices are real ndarrays 
(multi-dimensional arrays) and can be used everywhere ndarray can be used, including 
in C/python/Fortran code. Slice size is limited by virtual address-space size, which is 
about max 127 TB on Linux /amd64.

Source code is available from [120] under GPL v3 with specific details, see [121].
Google earth engine [47, 48] builds on the tradition of Grid systems with files, there 

is no datacube paradigm as such. Based on a functional programming language, users 
can submit code which is executed transparently in Google’s own distributed environ-
ment, with a worldwide private network. Parallelization is straightforward. Discussion 
between authors and the developers revealed that Google has added a declarative Map 
Algebra interface in addition which resembles a subset of the rasdaman query language, 
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mainly induced operations and some condensers. In a face-to-face conversation at the 
“Big Data from Space” conference 2016, the EarthEngine Chief Architect explained that 
EarthEngine is relying on Google’s massive hardware rather than on algorithmic elabo-
ration. At the heart is a functional programming language which does not offer model-
based array primitives like rasdaman, nor comparable optimization.

Source code is not available, Earth Engine is closed-source, proprietary.
Open Data Cube (ODC) [75, 76] seeks to increase the value and impact of global Earth 

observation satellite data by providing an open and freely accessible exploitation archi-
tecture. ODC is an application layer on top of xarray and PostgreSQL, programmed in 
python.

Source code is available from [76] under an Apache license.
xtensor [124, 125] is a C + + library meant for numerical analysis with multi-dimen-

sional array expressions. xtensor provides an extensible expression system enabling lazy 
broadcasting, an API following the idioms of the C + + standard library, and tools to 
manipulate array expressions and build upon xtensor. Containers of xtensor are inspired 
by numpy, the Python array programming library. Adaptors for existing data structures 
to be plugged into our expression system can easily be written. In fact, xtensor can be 
used to process numpy data structures inplace using Python’s buffer protocol.

Source code is available from [125] under a permissive homegrown license.
Boost.Geometry (aka Generic Geometry Library, GGL), part of collection of the Boost 

C + + Libraries, defines concepts, primitives and algorithms for solving geometry prob-
lems [26]. Boost.MultiArray provides a generic N-dimensional array concept definition 
and common implementations of that interface.

Source code is available from [27] under a permissive homegrown license.
The Ophidia framework [83][84] provides a full software stack for data analytics and 

management of big scientific datasets exploiting a hierarchically distributed storage 
along with parallel, in-memory computation techniques and a server-side approach. The 
Ophidia data model implements the data cube abstraction to support the processing of 
multi-dimensional (array-based) data. A wide set of operators provides functionalities to 
run data analytics and metadata management: e.g. data sub-setting, reduction, statisti-
cal analysis, mathematical computations, and much more. So far about 50 operators are 
provided in the current release, jointly with about 100 primitives covering a large set of 
array-based functions. The framework provides support for executing workflows with 
various sizes and complexities, and an end-user terminal, i.e.: command-line interface. A 
programmatic Python interface is also available for developers.

Source code is available from [84] under a GPL v3 license.
TileDB [115, 116] is a library managing data that can be represented as dense or sparse 

arrays. It can support any number of dimensions and store in each array element any 
number of attributes of various data types. It offers compression, high IO performance 
on multiple data persistence backends, and easy integration with ecosystems used by 
today’s data scientists.

Source code is available from [115] under a MIT license.
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MapReduce‑type systems

MapReduce offers a general parallel programming paradigm which is based on two user-
implemented functions, Map() and Reduce(). While Map() performs filtering and sort-
ing, Reduce() acts as an aggregator. Both functions are instantiated multiple time for 
massive parallelization; the MapReduce engine manages the process instances as well as 
their communication.

Implementations of the MapReduce paradigm—such as Hadoop, Spark, and Flink—
typically use Java or Scala for the Map() and Reduce() coding. While these languages 
offer array primitives for processing multi-dimensional arrays locally within a Map() 
and Reduce() incarnation here is no particular support for arrays exceeding local 
server main memory; in particular, the MapReduce engines are not aware of the spa-
tial n-dimensional proximity of array partitions. Hence, the common MapReduce 
optimizations cannot exploit the array semantics. Essentially, MapReduce is particu-
larly well suited for unstructured data like sets: “Since it was not originally designed 
to leverage the structure its performance is suboptimal” [2].

That said, attempts have been made to implement partitioned array management 
and processing on top of MapReduce. Below some major approaches are listed:

SciHadoop [31] is an experimental Hadoop plugin allowing scientists to specify 
logical queries over array-based data models. SciHadoop executes queries as map/
reduce programs defined over the logical data model. A SciHadoop prototype has 
been implemented for NetCDF data sets.

Source code available from [31] under a GPLv2 license.
SciSpark [101, 102] is a NASA’s Advance Information Systems Technology (AIST) 

program funded project that seeks to provide a scalable system for interactive model 
evaluation and for the rapid development of climate metrics and analysis to address 
the pain points in the current model evaluation process. SciSpark directly leverages 
the Apache Spark technology and its notion of Resilient Distributed Datasets (RDDs). 
SciSpark is implemented in a Java and Scala Spark environment.

Source code is available from [102] under an Apache v2 license.
GeoTrellis [44, 45] is a geographic data processing engine for high performance 

applications. GeoTrellis provides data types for working with rasters in the Scala lan-
guage, as well as fast reading and writing of these data types to disk.

Source code is available from [45] under an Apache v2 license.
MrGeo (pronounced “Mister Geo”) is an open source geospatial toolkit designed 

to provide raster-based geospatial processing capabilities performed at scale [71]. 
MrGeo enables global geospatial big data image processing and analytics. MrGeo is 
built upon the Apache Spark distributed processing framework.

Source code is available from [71] under an Apache v2 license.

Array systems assessment
Systematics

We look at the systems from the perspectives.
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• Functionality: What functionality does the system offer? Are there any known 
restrictions?

• Architecture: This mainly addresses the architectural paradigms used. As such, 
this is not a quality criterion, but provided as background information.

• Performance: How fast and scalable is the tool in comparison?

This section relies on insight by Merticariu et al. [66] and other work undertaken in 
this context.

Each of the criteria applied is explained first; after that, a feature matrix is presented 
summarizing all facts synoptically. In addition, literature is cited where the informa-
tion has been harvested from. This allows recapitulating the matrix. Notably, several 
systems today are capable of integrating external code. Therefore, it is indispensable 
for each functionality feature to clearly state if it is an integral part implemented in 
the core engine or not.

Some systems mentioned could not be considered due to resource limitations, but 
they appear sufficiently similar to the ones inspected below. Examples include MrGeo 
and GeoTrellis as specialized Hadoop implementations offering array support.

Annex 1 lists the complete feature tables.

Functional comparison

Criteria

This is functionality the user (i.e., query writer) has available in terms of the data and 
service model. In this spirit, we also list export/import interfaces as well as known client 
interfaces although they do not belong to the logical level in a classic sense. Parameters 
investigated are the following:

Data model expressiveness:

• Number of dimensions: what number of dimensions can an array have? Today, 3-D 
x/y/t image timeseries and x/y/z voxel cubes are prominent, but also 4-D x/y/z/t 
gas and fluid simulations, such as atmospheric weather predictions. However, other 
dimensions occur as well: 1-D and 2-D data appear not only standalone (as sensor 
and image data, resp.), but also as extraction results from any-dimensional datacubes 
(such as a pixel’s history or image time slices). Also, higher dimensions occur reg-
ularly. Climate modellers like to think in 5-D cubes (with a second time axis), and 
statistical datacubes can have a dozen dimensions. Any array engine should offer 
support for at least spatio-temporal dimensions. Notably, going beyond about ten 
dimensions faces the curse of dimensionality, such as extreme sparsity [53].

• Extensibility of extent along dimensions: can an existing array be extended along 
each dimension’s lower and upper bound? Imagine a map has been defined for a 
country, and now is to be extended to cover the whole continent. This means: every 
axis must be extensible, and it must be so on both its lower and upper bounds.

• Cell data types: support for numeric data types, for composite cells (e.g., red/green/
blue pixels), etc. While radar imagery consists of single values (complex numbers), 
satellite images may have dozens or even hundreds of “bands”. Climate modelers con-
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sider 50 and more “variables” for each location in the atmosphere, indicating meas-
ures like temperature, humidity, wind speed, trace gases, etc.

• Null values: is there support for null values? For single null values vs. several null 
values? Proper treatment of null values in operations? Null values are well known 
in databases, and scientific data definitely require them, too. However, instrument 
observations typically know of more than one null value (such as “value unknown”, 
“value out of range”, “no value delivered”, etc.), and these meanings typically are pig-
gybacked on some value from the data type (such as −9999 for “unknown depth”). 
Such null values should be considered by array databases, too. Operations must treat 
null values appropriately so that they don’t falsify results.

• Data integration: can queries integrate array handling with data represented in 
another model, such as: Relational tables? XML stores? RDF stores? Other? This 
is important, e.g., for data/metadata integration - arrays never come standalone, 
but are ornamented with metadata critically contributing to their semantics. Such 
metadata typically reside already under ordered data management (much more so 
than the arrays themselves, traditionally) frequently utilizing some well-known data 
model.

• General-purpose or domain specific? Array databases per se are domain independ-
ent and, hence, can be used for all application domains where arrays occur. However, 
some systems have been crafted with a particular domain in mind, such as geo data 
cubes, and consequently may be less applicable to other domains, such as medical 
imagery.

Processing model expressiveness:

• Query language expressiveness (built-in): This section investigates functionality 
which is readily available through the primary query language and directly supported 
by the system (i.e., not through extension mechanisms).

• Formal semantics: is there a mathematical semantics definition underlying data and 
query model? While this may seem an academic exercise a formal semantics is indis-
pensable to verify that the slate of functionality provided is sufficiently complete (for 
a particular requirements set), consistent, and without gaps. Practically speaking, a 
well-defined semantics enables safe machine-to-machine communication, such as 
automatic query generation without human interference.

• Declarative: does the system offer a high-level, declarative query language? Low-level 
procedural languages (such as C, C++, Java, python, etc.) have several distinct dis-
advantages: (i) They force users to write down concrete algorithms rather than just 
describing the intended result; (ii) the server is constrained in the potential of opti-
mising queries; (iii) delarative code can be analyzed by the server, e.g., to estimate 
costs and, based on this, enforce quota; (iv) a server accepting arbitrary procedural 
code has a substantial security hole. SQL still is the role model for declarative lan-
guages.
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• Optimizable: can queries be optimized in the server to achieve performance 
improvements? What techniques are available? Procedural code typically is hard to 
optimize on server side, except for “embarrassingly parallel” operations, i.e., opera-
tions where parallelization is straightforward. Declarative languages usually open up 
vistas for more complex optimizations, such as query rewriting, query splitting, etc. 
(See also discussion later on system architectures.)

• Subsetting (trim, slice) operations: can arrays be subset along all dimensions in one 
request? Extraction of sub-arrays is the most fundamental operation on arrays. Trim-
ming means reducing the extent by indicating new lower and upper bounds (which 
both lie inside the array under inspection) whereas slicing means extracting a slab at 
a particular position on an axis. Hence, trimming keeps the number of dimensions 
in the output while slicing reduces it; for example, a trim in x and y plus a slice in t 
would extract, from a 4-D x/y/z/t datacube, a 3-D x/y/z timeslice. Systems must sup-
port server-side trimming and slicing on any number of dimensions simultaneously 
to avoid transporting excessive amounts of data.

• Common operations: can all (unary and binary) operations which are available on 
the cells type known to the system also be applied element-wise to arrays? Exam-
ple: a + b is defined in numbers, so A + B should be possible on arrays.

• Array construction: can new arrays be created in the databases (as opposed to cre-
ating arrays only from importing files)? For example, a histogram is a 1-D array 
derived from some other array(s).

• Aggregation operations: can aggregates be derived from an array, supporting com-
mon operations like sum, average, min, max? Can an aggregation query deliver 
scalars, or aggregated arrays, or both? Note that aggregation does not always 
deliver just a single number – aggregation may well just involve selected axes, 
hence return a (lower-dimensional) array as a result.

• Array joins: can two or more arrays be combined into a result array? Can they 
have different dimensions, extents, cell types? While such functionality is indis-
pensable (think of overlaying two map images) it is nontrivial to implement (think 
of diverging partitioning array schemes), hence not supported by all systems.

• Tomlin’s Map Algebra support: are local, focal, zonal, global operations [117] 
expressible in queries. Essentially, this allows to have arithmetic expressions as 
array indexes, such as in a[x + 1] - a[x−1]. Image filtering and convolution is 
maybe the most prominent application of such addressing, but there are many 
important operations requiring sophisticated array cell access – even matrix mul-
tiplication is not trivial in this sense.

• External function invocation: can external code (also called UDF, User-Defined 
Functions) be linked into the server at runtime so that this code can be invoked 
from within the query language? Commonly, array query languages are restricted 
in their expressiveness to remain “safe in evaluation”. Operations more complex 
or for which code is already existing can be implemented through UDFs, that is: 
server-side code external to the DBMS which gets linked into the server at invo-
cation time. Obviously, UDFs can greatly enhance DBMS functionality, e.g., for 
adding in domain-specific functionality. Some systems even implement core array 
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functionality via UDFs. To avoid confusion we list built-in and UDF-enabled func-
tionality separately.

Import/export capabilities:

• Data formats: what data formats are supported, and to what degree?
• ETL tools: what mechanisms exist to deal with inconsistent and incomplete 

import data?
• Updates to regions within arrays: How selectively can array cells be updated? 

The (usually massive) arrays need to be built piecewise, and sometimes need to 
be updated in application-dependent areas; for example, a road map raster layer 
may need to be updated exactly along the course of a road that has been changed, 
defined maybe through some polygonal area.

Client language interfaces: This addresses client-side APIs offered; while every tool 
will naturally support its native tool implementation language some support a range of 
languages, making them attractive for different purposes and different communities.

• Domain-independent interfaces: which domain-independent interfaces exist for 
sending queries and presenting results?

• Domain-specific interfaces: which domain-specific clients exist for sending queries 
and presenting results?

Functionality beyond arrays: can queries perform operations involving arrays, but 
transcending the array paradigm? This section is a mere start and should be extended in 
future. However, at the current state of the art it is not yet clear which generic function-
ality is most relevant.

• Polygon/raster clipping: Can a clipping (i.e., join) be performed between raster and 
vector data? Such functionality is important in brain research (ex: analyze brain 
regions defined in some atlas), in geo services (ex: long-term vegetation development 
over a particular country), and many more applications. Sometimes such clipping is 
confined to 2-D x/y, but some engines allow n-D polygons.

Standards support: Which array service standards does the tool support? Currently, 
two standards are particularly relevant for arrays or “datacubes”.

• ISO SQL 9075 Part  15: Multi-Dimensional Arrays (MDA) extends the SQL query 
language with domain-neutral modeling and query support for n-D arrays [56], 
adopting the rasdaman query model [67]. As an additional effect, SQL/MDA estab-
lishes a seamless integration of (array) data and (relational) metadata which is seen as 
a game changer for science and engineering data.

• OGC Web Coverage Processing Service (WCPS) defines a geo datacube analytics 
language [17, 22]. Its core principles are similar to SQL/MDA, with two main differ-
ences. First, WPCS knows about geo semantics, understanding spatial and temporal 
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axes, coordinate reference systems (and transformations between them). It is based 
on the OGC datacube standard which centers around the model of spatio-temporal 
coverage data [11]. Second, it is prepared for integration with XPath/XQuery as most 
metadata today are stored in XML. Experimentally, such an integration has already 
been performed [63]. Within the EarthServer initiative, WCPS has demonstrated its 
capabilities on Petabyte datacube holdings [19].

Tuning and optimization

 Criteria

This level defines how data are managed internally, including storage management, dis-
tribution, parallel processing, etc. We have looked at both automatic mechanisms (sum-
marized under optimization) and administrator (or even user) accessible mechanisms to 
influence system behavior.

Tuning parameters:

• Partitioning is indispensable for handling arrays larger than server RAM, and even 
larger than disk partitions. Some systems perform an automatic partitioning, oth-
ers allow administrators to configure partitioning, maybe even through a dedi-
cated storage layout language [8]—which obviously is advantageous given the high 
impact of partitioning on query performance [43].

• Compression: This includes both lossless and lossy compression techniques. 
Depending on the data properties, lossless compression may have little or gigan-
tic impact. For example, natural images compress to about 80% of their original 
volume whereas thematic map layers (which essentially are quite sparse binary 
masks) can compress to about 5%. Lossy compression may be offered, but is dan-
gerous as it may introduce artifacts—think inaccuracies—at tile boundaries.

• Distribution of either complete arrays or the tiles of an array enables horizontal 
scaling, at the price of dynamic reassembly. In particular, join operations have to 
be crafted carefully to maintain satisfying performance. Therefore, service opera-
tors should be able to influence placement of arrays and their partitions.

• Caching: as always in databases, caching can accomplish a significant speed-up. 
Distinguishing factors are: what can be cached and reused—only complete results, 
or also intermediate results? Does cache content have to be matched exactly, or 
can approximate cache hits be reused?

Optimization techniques:

• Query rewriting: as explained earlier, replacing query expressions by some more 
efficient method can have a significant impact; further, it frees users from thinking 
about the most efficient formulation. Note that this mechanism requires a query 
language with runtime analysis of incoming code.

• Common subexpression elimination means that the query engine is able to spot 
identical parts within query and evaluate them only once, rather than every time 
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the identical subexpression appears. Again, this frees users from thinking about 
the most efficient way of writing their queries.

• Cost-based optimization estimates the cost of answering a query before actu-
ally executing it. There is a wide field of opportunities, with a huge potential of 
improveing response times. For example, when performing a distributed join 
“a + b” where both arrays are sitting on different nodes— possibly even connected 
through a high-latency wide-area networks—then it can make a significant dif-
ference whether array a is transported to array b, or b gets transported to a, or a 
shared approach is pursued. A decision can be made base on the actual tiling of 
both arrays, among other impact factors [15].

• Just-in-time compilation of incoming queries generates CPU code that subse-
quently is executed for answering the query. Obviously, such machine code is sub-
stantially faster than interpreting the query or some script code, like python. It 
can even be substantially faster than precompiled C++ code. This principle can 
be extended to generating target code for multiple cores and for mixed target 
hardware, such as CPU and GPU.

Notably, all the above techniques can be combined advantageously through an intel-
ligent optimizer.

Annex 2 lists the complete feature tables.

Architectural comparison

Criteria

This section aims at shedding some light on the high-level architecture of the systems 
and tools. As such, there is usually not a “better” or “worse” as in a comparative bench-
mark—rather, this section is of informative nature. An exception is the list of potential 
limitations.

Implementation paradigm: what is the overall architecture approach?
Storage organization:

• Does the system support partitioning (tiling, chunking) of arrays?
• Does the system support non-regular tiling schemes? Which ones?
• What mechanisms does the system support for managing data partitioning?
• Can tiles of an array reside on separate computers, while the system maintains a logi-

cally integrated view on the array?
• Can the system process data maintained externally, not controlled by the DBMS?
• Can the system process data stored in tape archives?

Processing & parallelism:

• Which parallelization mechanisms does the system support: local single thread vs. 
multicore-local vs. multinode-cluster/cloud vs. federation?

• Does the system have a single point of failure?
• Support for location-transparent federations?
• Heterogeneous hardware support?
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Limitations: Are there any particular known limitations?
Annex 3 lists the complete feature tables.

Reference used

For the elicitation of the above feature matrices the references listed in this article have 
been used, as well as the additional sources listed in the RDA report underlying this arti-
cle [16].

Performance comparison

Systems tested

The benchmark tests various functionalities, data sizings, and also the effect of paral-
lelization. For this report, four systems have been measured: rasdaman, SciDB, PostGIS 
Raster, and Open Data Cube. These represent three Array engines with different imple-
mentation paradigms (with ODC being a non-database system); hence, the choice can be 
considered representative for the field. Open Data Cube was chosen as a representative 
of array tools based on scripting languages. Not present are MapReduce-type systems, 
due to resource constraints—this is left for future investigation.

Operations benchmarked challenge efficient multi-dimensional data access in pres-
ence of tiling as well as operations executed on data. For the purpose of this test, focus 
was on “local operations” as per Tomlin’s Map Algebra, i.e.: the result pixel of an array 
depends on one correspondingpixel in each input array (often there is just one input 
array, in case of array joins there are two input arrays). Operations which take one 
input array and transform each pixel are often characterized as “embarrassingly paral-
lel” because each pixel can be processed independently, which allows for an easy distri-
bution across cores without the need for respecting Euclidean neighborhood of pixels. 
That is the case for more complex operations, such as Tomlin’s focal, zonal, and global 
operations; examples include convolution and practically all relevant Linear Algebra 
operations, such as matrix multiplication, tensor factorization, PCA, and the like. In ISO 
SQL/MDA, for example, a convolution operation on array a using 3 × 3 kernel k would 

make use of the pattern. 
Once operations are not “embarrassingly parallel” there is a wide open field for imple-

mentation ingenuity to parallelize them efficiently. In a future version of this benchmark 
such operations should be tested in addition. Likewise, array joins become non-trivial 
once the input arrays to be combined convey a different tiling. While solutions have 
been proposed in literature, such as [15], testing this was not subject of this evaluation 
either. Finally, some commercial tools could not be evaluated; a special case is Google 
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Earth Engine which only runs as a black box inside the enhanced Google infrastructure 
so that tool comparison on identical hardware is impossible.

Generally, while comparative benchmarks are among the results most looked at, they 
are at the same time particularly laborious to obtain. The author team has made a best 
effort to do as much comparison as possible—still, it remains a wide open field which 
certainly deserves further attention in future. Actually, it is planned to continue evalua-
tion work beyond finalization of this report.

The benchmark code is available as part of the rasdaman source code [94].

Testing approach

The approach followed is based on and extends current literature on array database 
benchmarking, such as [20, 33, 66, 106] (in chronological order). A main consensus 
seems that several categories of performance factors can be distinguished, the most 
important being: storage access, array-generating operations, and aggregation opera-
tions. Following these categories we have established a series of test situations that can 
be translated directly into queries in case of Array Databases, and which need to be pro-
grammed via command line, python, or C + + code for the other tools. For each category 
several different types of queries have been devised:

• Binary operations combining two arrays, such as a + b. Which binary operator this 
is can be considered of less importance here—we randomly chose addition. Queries 
cover different array dimensions and array operands with both matching and mis-
matching tiles.

• Binary operations applying some scalar to an array, like a + 5; again, we chose addi-
tion as the representative tested.

• Domain-modifying operations which do not change the array values as such, like 
shift, extend, and band combination (e.g., combining three images into a 3-band 
RGB).

• Subsetting operations involving slicing, trimming, and mixed on 2-D and 3-D arrays. 
While subsetting is also a domain-modifying operation we put it in its own category 
due to its importance and versatility.

• Unary operations like sine calculation, type casting, and array aggregation.
• “Blocking” operations which require materializing the array before they can be evalu-

ated.
• The CASE statement and concatenation are somewhat special operations that do not 

fit well in the other categories.

Each query class in turn has several variations differing in the size of the arrays 
involved (40 kB to 4 GB), number of tiles per array (1 to 10,000 tiles), the size of the out-
put array, etc. Table 1 below lists the queries, expressed in the syntax of ISO SQL/MDA. 

The benchmarks

The benchmark was run on the following systems:
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• Open Data Cube 1.5.4.
• PostGIS Raster 2.4.1 (all GDAL drivers enabled) on top of PostgreSQL 9.6.6.
• rasdaman v9.5.
• SciDB 16.9.

All the Bx tests of the previous section have been executed on each system, as far as 
supported. Values missing indicate this—for example, test B5 performs data format 

Table 1 Array benchmark queries

ID Description Query

B1 Sum of the array’s elements MDSUM( c )

B2 For each element in an array the result element is 1 if 
its value is 0, otherwise the result is the logarithm 
of its value

CASE
   WHEN c = 0 THEN 1
   ELSE LOG10( c ) 
 END

B3 Cast all elements to unsigned 8-bit values MDCAST( c AS char )

B4 Concatenate two arrays along the first axis MDCONCAT( c, c, 1 )

B5 Encode an array to TIFF MDENCODE( c, “image/tiff” )

B6 Extend the spatial domain of an array to twice its 
width and height

MDRESHAPE 
( c, [ 0:MDAXIS HI(c,x)*2,  
0:MDAXIS HI(c,y)*2 ]  )

B7 Add two 1-D arrays with mismatching tiles c + d

B8 Add two 2-D arrays with matching tiles c + c

B9 Add two 2-D arrays with mismatching tiles c + d

B10 Add the average value of an array to all of its ele-
ments

c + MDAVG( c )

B11 Add a constant scalar value to all elements of an array c + 4

B12 Add two 3-D arrays with mismatching tiles c + d

B13 Calculate all percentiles MDQUANTILE( c, 100 )

B14 Join several arrays into a single multi-band array MDJOIN(  c,
   MDARRAY MDEXTENT(c)  

ELEMENTS 3, c )

B15 Scale-up (2x) an array MDSCALE(
    c,
    [   MDAXIS LO(c,x) : MDAXIS HI(c,x)*2,
    MDAXIS LO(c,y): MDAXIS HI(c,y)*2
    ]
    )

B16 Shift the spatial domain by a given shift coordinate MDSHIFT( c, [ 500, -1000 ] )

B17 Calculate the sine of every element in an array SIN(c)

B18 Subset the whole spatial domain c[ *:*, *:* ]

B19 Select a single element at a particular coordinate c[ 5, MDAXIS HI(c,y) – 5 ]

B20 Slice the first axis at a particular point c[ 5, MDAXIS LO(c,y) +  
3 : MDAXIS HI(c,y)–3 ]

B21 Trim down both axes c[  MDAXIS LO(c,x) +  
3 : MDAXIS HI(c,x) − 3,

    MDAXIS LO(c,y) +  
3: MDAXIS HI(c,y) – 3

    ]

B22 Slice the first axis of a 3-D array at a particular point c[ MDAXIS HI(c,z),
   MDAXIS LO(c,x) +  

3 : MDAXIS HI(c,x) − 3,
   MDAXIS LO(c,y) +  

3 : MDAXIS HI(c,y) – 3
   ]
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encoding not available in SciDB. Every run was repeated 10x and then averaged. The 
machine on which the benchmark has been evaluated has the following characteristics:

• OS: Ubuntu 14.04.
• CPU: Intel Xeon E5-2609v3 @ 1.90 GHz; 2 × 6-core CPUs, 16 MB L3 cache, 256kB 

L2, 32kB L1.
• RAM: 64 GB DDR4 2133 MHz.
• Disk: SSD, read speed 520 MB/sec.

Assessment

Results are shown in Fig. 8. Surprisingly, runtime results were quite divergent, therefore 
the time scale is logarithmic.

As it turns out the technology landscape around Array Databases is quite varied, rang-
ing from full-stack from-scratch implementations over object-relational DBMS add-
ons to MapReduce add-ons, and all in between. In this line-up of 19 array tools many 
are natively designed as a service while some of them comprise command line tools or 
libraries which are not complete services, but may aid in developing services. Technolo-
gies were evaluated through.

• A feature walk-through addressing functionality (logical model), tuning and optimi-
zation (physical level), and architecture;

• A comparative benchmark between selected systems.

Investigation, for resource reasons, could only cover storage access and “embar-
rassingly parallel” operations; what is left for future research are operations whose 

Fig. 8 Performance comparison of rasdaman, PostGIS Raster, ODC, and SciDB (time axis in seconds, 
logarithmic; missing values represent tests not supported by the target system)
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parallelization is more involved, including general Linear Algebra and joins. Neverthe-
less, some interesting facts can be observed from the measurements shown in Fig. 8.

Overall, a clear ranking is visible with rasdaman being fastest, followed by Open Data 
Cube (up to 74× slower), PostGIS Raster (up to 82× slower), and SciDB (up to 304× 
slower), in sequence. 

Systems offering a query language were easier to benchmark—tests could be formu-
lated, without any extra programming, in a few lines sent to the server. Without query 
languages, extra programming effort was necessary which sometimes turned out quite 
involved. Functionality offered consisted of pre-cooked functions which may or may not 
meet user requirements—in this case: our test queries. Effectively, this extra burden was 
one reason why several systems could not be evaluated. For a system choice this means: 
such tools will offer only focused functionality and still leave significant burden to the 
user. Hence, extrapolating the notion of “analysis-ready data” we demand “analysis-ready 
services” which stand out through their flexibility to ask any (simple or complex) query, 
any time.

Compiled languages like C ++ still seem to offer significant performance advantages 
over scripting languages like python. In a direct comparison, a C/C ++implementation 
was found to be faster by an order of magnitude over python code [65]. The first system, 
rasterio, uses python only as its frontend with C/C++ based GDAL as its workhorse. 
The second one, ArcPy, relies on a pure python implementation underneath, namely 
numpy.

UDFs can be very efficient in main memory when they are hand coded and optimized, 
but general orchestration tasks of the DBMS—like storage access in face of tiling and 
parallelization/distribution as well as allowing arbitrary queries, rather than a predefined 
set of UDF functionality—still remains an issue. Implementers obviously tend to prefer 
add-on architectures where array functionality is built on top of existing systems which 
offer targeted features like parallelism (such as Hadoop and Spark) or persistent storage 
management (like relational DBMSs). However, as these base layers are not array-aware 
such architectures at least today do not achieve a performance and flexibility compara-
ble to full-stack implementations as the comparison shows.

While a hands-on evaluation of MapReduce type systems was not possible within this 
study there is relevant work at XLDB 2018 [29] on a comparison of ArrayUDF (an array 
processing framework built on UDFs in databases, from the same group doing EXTAS-
CID) with Spark [122]. Authors report that “In a series of performance tests on large 
scientific data sets, we have observed that ArrayUDF outperforms Apache Spark by as 
much as 2070X on the same high-performance computing system”. We need to bear in 
mind, though, that a pure UDF without a query language constitutes just a fixed block 
of code performing one task—this is relatively easy to keep under control and parallel-
ize whereas orchestration of some arbitrary query can change the performance picture 
substantially.

Generally, there seems to be a performance hierarchy with full-stack, from-scratch 
C++ systems being fastest, followed by mixed implementations combining UDFs (read: 
handcrafted implementation) with a database-style orchestration engine, followed by 
add-ons to Hadoop/Spark, followed by object-relational add-ons.
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Case study
Publicly accessible array services

In this section we provide a case study of Array DBMS services in practice. After a brief 
panorama of active services publicly offered we zoom in on the EarthServer datacube 
federation.

Overview

Below, a selection of publicly accessible services is listed which use Array Database tech-
nology. To be noted is the variability of the portal frontends and clients used, all uni-
formly mapping to Array Database technology underneath (Fig. 9). 

A public demonstration service titled “Big Earth Datacube Standards”, running ras-
daman, illustrates practical use of the open standards for multi-dimensional Earth data 
extraction, visualization, and analysis [24]. To this end, it offers sample geo-oriented 
array use cases on 1-D through 5-D data sets.

PlanetServer [80, 89], a Planetary Data Service hosted by Jacobs University, is offering 
geology data currently for Mars, Moon, and Vesta. Total data size is 20 + TB, based on 
OGC WCS and WCPS standard based interfaces powered by rasdaman community.

CODE-DE is the German Sentinel hub providing data collected by the ESA Senti-
nel satellite family. The batch-oriented Hadoop-based service of CODE-DE has been 
enhanced with interactive spatio-temporal datacube analytics using rasdaman [40].

Fig. 9  Impressions of various services powered by an Array Database system (source: rasdaman/EarthServer)
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EarthServer

EarthServer [114] is a federation of a growing set of large-scale Earth data providers of 
altogether several dozens of Petabytes. The rasdaman-backed platform offers location-
transparent federation where users perceive the combined data offerings as single, 
homogenized information offering with free mix and match of data regardless of the 
individual datacube’s placement.

We pick some federation members for inspection. Mundi [72] is one of the Euro-
pean Space Agency (ESA) satellite archives for the Sentinel fleet. This includes Sen-
tinel-1 radar data, Sentinel-2 hyperspectral optical data at various processing levels, 
and Sentinel-5p providing a variety of products like aerosol index, aerosol layer 
height, Methane, Carbon Monoxide, Formaldehyde, and several more indicators. 
Each of these represents a 3-D x/y/t datacube—actually, a virtual one because the 
underlying files are provided in different coordinate reference systems, a fact that is 
hidden through a concept of virtual datacubes which act similar to relational views. 
Effectively, hundreds of files get virtually coalesced into one cube making handling 
substantially easier for users. WCPS queries allow server-side retrieval, processing, 
and fusion, independent from the output format chosen and the coordinate system 
data are stored and delivered. Every incoming query gets translated into rasql which 
resembles SQL/MDA modulo minor syntax differences.

The common architecture of all nodes participating in EarthServer is shown in 
Fig. 10. At the heart are the multi-parallel rasdaman server processes, each one indi-
vidually assigned to some client. As rasdaman is domain-agnostic it does not know 
about space/time semantics and coordinates; this is resolved by an additional layer 
on top which offers Web access via the OGC API standards WMS, WCS, and WCPS.

Datacubes can be stored in BLOBs of a conventional DBMS or in rasdaman’s 
own storage manager which is about 2× faster than, e.g., PostgreSQL as backend. 

Fig. 10  EarthServer federation node high-level architecture stack
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Alternatively (and used by Mundi) rasdaman can register external archives and exe-
cute queries dynamically on such data, without preloading. Obviously, in this case 
performance depends on how well the archive is prepared for the spatio-temporal 
queries submitted. 

This can be studied nicely with Mundi. Satellite data files are delivered by ESA in 
a format called SAFE which for each image (“scene”) taken consists of a zip file with 
metadata for coordinates and further information, plus a JPEG2000 or NetCDF file, 
depending on the satellite instrument type. This is exactly the format in which Mundi 
serves these files. From a database perspective, this is suboptimal for several reasons: 
Data are not under the exclusive control of the DBMS; tiling is far from optimal for 
timeseries analysis as every scene represents a tile of thickness 1 along time axis; due 
to the choice of JPEG with requires extra CPU cycles for reconstructing the original 
pixel. All these issues had to be addressed as import (and building up optimal struc-
tures) was not an option considering the storage costs of the Petabytes under consid-
eration; currently, several dozens of Petabytes of datacubes are offered via Mundi.

Value of Earth data grows with variety, and so there are further datacubes represent-
ing Landsat-5, - 7, and -8 as well as 2-D elevation data. All of these can be processed and 
combined, including remote fusion. Such queries are solved through query splitting: in 
a bottom-up walk of the query tree largest subtrees are built around objects all sitting 
on the same remote server so that these subqueries can be completely executed on that 
server. Optimization goals currently are (i) maximizing distributed processing and (ii) 
minimizing data flow between different server nodes. This principle is applied to both 
cluster/cloud and remote distributed setups. For the user this means complete location 
transparency: every query can be evaluated by every federation member, and no knowl-
edge about an object’s location is required by the user. Figure 11 illustrates this principle. 

Hence, in the federation users experience a single, integrated information space 
abstracting away from the data center’s storage and processing organization, and further 
particularities.

Fig. 11 Rasdaman query splitting example
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It has turned out, though, that federation membership required convincing security 
mechanisms, securing not only access overall, but also protecting parts of datacubes; 
for example, the long tail of climate timeseries might be free, but the latest two weeks 
are available for fee only. To this end, rasdaman implements Role-Based Access Control 
with modifications to protect areas in datacubes down to the level of single pixels, based 
on bounding boxes, polygons patterns, masks, or computed criteria.

Conclusions
In this paper we have provided the following main contributions:

• A feature matrix which addresses a wide range of system properties, from abstract 
concepts like query language expressiveness down to practicalities such as data for-
mats and ingestion tool support. This aids future comparative tests as a large matrix 
is available against which further systems can be readily compared. Array system 
designers get a feature list, including relevant standards, along which they can craft 
their own tool.

• A feature comparison of software tools offering array services, starting from the field 
of Array Databases and extending into neighboring fields. The expected benefit is 
to stimulate further research and give a decision basis for practitioners in charge of 
choosing the best suited datacube system.

• A public available array benchmark which is more rigorous and systematic than 
existing array benchmarks, and is designed to not allow tuning a system towards the 
tests performed, therefore enhancing its general value and reliability.

• A comparison of four Array DBMSs, which exceeds the existing test breadth where 
only two systems are compared. This allows for a better comparison of systems when 
faced with the task of choosing one.

With this survey we hope to provide a useful basis for choosing technology when it 
comes to flexible, scalable analytics on massive spatio-temporal sensor, image, simula-
tion, and statistics data. Such arrays constitute a large part of today’s Big Data, forming 
a basic data category next to sets, hierarchies, and general graphs. In view of the known 
challenges in functionality, performance, scalability, and interoperability serving these 
arrays in a user-friendly way is a major challenge today. Additionally, we hope it stimu-
lates research on array service concepts and architectures, thereby advancing this com-
paratively young field of database research.

Array Databases seem promising in that they provide the advantage-proven features of 
a declarative query language for “shipping code to data”, combined with powerful tech-
niques for efficient server-side evaluation, with parallelization being just one out of a 
series of known methods for speed-up and scalability.
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In this study, we have provided on introduction and overview of the state of the art 
in Array Databases as a tool to serve massive spatio-temporal datacubes in an analysis-
ready manner. Relevant datacube standards were listed, together with secondary infor-
mation for further studies and immersion.

The line-up of 19 different tools, analyzed against over 30 criteria, and 4 Array DBMSs 
benchmarked is an unprecedented technology overview for this emerging field. Array 
Databases, command line tools and libraries, as well as MapReduce-based tools have 
been assessed comparatively, with a clear provenance for all facts elicited.

For some tools, a comparative performance analysis has been conducted showing that 
full-stack, clean-slate array C++ implementations convey highest performance; python 
constitutes a basis that comes with a performance penalty upfront, and likewise add-
on implementations that reuse not array aware architectures (such as object-relational 
extensions and MapReduce) to emulate array support—although, admittedly, these are 
faster and easier to implement. Generally, implementation of the full stack of Array 
Databases in some fast, compiling language (like C++) pays off, although it requires a 
significant implementation effort.

In summary, Array Databases herald a new age in datacube services and spatio-tem-
poral analysis. With their genuine array support they are superior to other approaches 
in functionality, performance, and scalability, and supported by powerful datacube 
standards. Query functionality is independent from the data encoding, and data can 
be delivered in the format requested by the user. Our benchmark results are in line 
with the increasing number of Array Database deployments on Earth science data in 
particular, meantime far beyond the Petabyte frontier.

With the advent of the ISO SQL/MDA standard as the universal datacube query 
language a game change can be expected: implementers have clear guidance, which 
will lead to increased interoperability (which today effectively does not exist between 
the systems—only one currently supports relevant standards). Applications become 
easily manageable across all domains, and a natural integration with metadata is pro-
vided through the SQL embedding. Further, standardization will form an additional 
stimulus for both open-source and proprietary tool developers to jump on this trend-
ing technology.

Such data integration will be of paramount importance in future. Standalone array 
stores form just another silo, even with query capabilities. It will be indispensible to inte-
grate array handling into the metadata paradigms applications like to use. As of today, 
work on array integration has been done on.

• Sets: the ISO SQL/MDA standard, which is based on the rasdaman query language, 
integrates multi-dimensional arrays into SQL [67];

• Hierarchies: the xWCPS language extends the OGC WCPS geo array language with 
metadata retrieval [62];



Page 42 of 61Baumann et al. J Big Data            (2021) 8:28 

• (Knowledge) graphs: first research has been done on integration arrays into RDF/
SPARQL databases [2]; a general graph query framework is under development in 
ISO.

Still, despite its breadth, this report uncovers the need for further research. In particu-
lar, a deep comparison of the fundamentally different architectures of Array Databases 
and MapReduce oriented systems should be of high interest.

Obviously, Michael Stonebraker’s observation of “no one size fits all” is very true also 
for array support—as arrays form a separate fundamental data structure next to sets, 
hierarchies, and graphs, they require carefully crafted implementations to deliver the 
usability in terms of flexibility, scalability, performance, and standards conformance 
which is essential for abroad uptake. Genuine Array Database technology, therefore, 
appears most promising for spatio-temporal datacubes, as this study indicates.

Future work should include further systems in the benchmark (in particular the 
MapReduce category), and also extend it with further tests for more complex queries, 
such as Machine Learning. It is the hope that this study has paved the way towards con-
solidation of functionality, but also towards a future common array service benchmark 
which would service providers and users enable to make more informed decisions on 
backend choice and service design. For system developers, the overview hopefully is 
helpful in determining gaps in theory and implementation, thereby contributing to fur-
ther advancing the domain of array services as a whole.
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Annex 2: Array DBMS physical tuning feature matrix

Array DBMS

Full-stack Array DBMS Add-on array support

Rasdaman SciDB SciQL EXTASCID PostGIS Raster Oracle 
GeoRaster

Teradata 
Arrays

Tuning parameters

 Partitioning Any nD 
tiling

Regular 
nD 
chunk-
ing

No Any nD 
chunking

Small arrays 
(100 × 100 
recom-
mended), 
query to 
explicitly 
manage 
assembling 
larger arrays 
from tiles

Yes (during 
raster 
creation)

No

 Compression Several 
lossy and 
lossless 
methods 
(zlib, RLE, 
CCITT 
G4, 
wavelets, 
...)

RLE No No no Yes (JPEG, 
DEFLATE)

No

  Distribution Automatic 
query 
distribu-
tion, 
peer fed-
eration 
(shared 
nothing)

Yes 
(shared-
nothing)

No Yes (shared-
memory, 
shared-
disk 
servers 
as well as 
shared-
nothing 
clusters)

No Yes No

 Caching Yes, can 
reuse 
approxi-
mate 
matches

Yes, per-
sistent 
chunk 
caching, 
tempo-
rary result 
caching 
(exact 
match)

? No No yes No

Optimization

 Query rewrit-
ing

Yes, ~ 150 
rules

Yes Yes No No No No

 Common sub-
expression 
elimination

Yes ? ? No No No No

 Cost-based 
optimiza-
tion

Yes ? ? No No No No

 Just-in-time 
query 
compila-
tion, mixed 
hardware

Yes No No No No No No
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Array tools

OPeNDAP xarray Tensor 
Flow

wendelin.
core

Google 
Earth 
Engine

Open 
Data
Cube

xtensor boost::
geom 
etry

Ophidia TileDB

Tuning parameters

  Partitioning Yes, as per 
NetCDF

No No Maybe 
indirectly, 
via NEO 
ZODB

No No No No Regular 
tiling

 Compression Yes, as per 
NetCDF

No Sparse 
ten-
sor

No No No No Yes zlib) Yes, per 
tile

 Distribution No No yes, 
with 
Cloud 
ML

maybe 
indirectly, 
via NEO 
ZODB

No No No Yes Yes, if 
the 
under-
lying 
VFS 
sup-
ports 
it  like 
HDFS 
does

 Caching No No Yes Yes Yes Yes No ? Yes

Optimization

  Query rewriting No No No No No No No No No

 Common 
subex-
pression 
elimina-
tion

No No No No yes No No No No

 Cost-based 
optimiza-
tion

No No No No No No No No No

  Just-in- 
time   
  query  
comp.,  
mixed  
hard 
ware

No No No No No No No No No No

MapReduce

SciHadoop SciSpark

Tuning parameters

 Partitioning Yes Yes

 Compression No No

 Distribution Yes Yes

 Caching No Yes

Optimization

 Query rewriting No No

 Common subexpression  elimination No Yes, implicit 
through 
caching

 Cost-based optimization No No

 Just-in-time query compilation, mixed hardware No No
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