
Array databases: concepts, standards,
implementations
Peter Baumann , Dimitar Misev, Vlad Merticariu and Bang Pham Huu*

Abstract

Multi-dimensional arrays (also known as raster data or gridded data) play a key role in
many, if not all science and engineering domains where they typically represent spatio-
temporal sensor, image, simulation output, or statistics “datacubes”. As classic database
technology does not support arrays adequately, such data today are maintained
mostly in silo solutions, with architectures that tend to erode and not keep up with the
increasing requirements on performance and service quality. Array Database systems
attempt to close this gap by providing declarative query support for flexible ad-hoc
analytics on large n-D arrays, similar to what SQL offers on set-oriented data, XQuery
on hierarchical data, and SPARQL and CIPHER on graph data. Today, Petascale Array
Database installations exist, employing massive parallelism and distributed processing.
Hence, questions arise about technology and standards available, usability, and overall
maturity. Several papers have compared models and formalisms, and benchmarks have
been undertaken as well, typically comparing two systems against each other. While
each of these represent valuable research to the best of our knowledge there is no
comprehensive survey combining model, query language, architecture, and practical
usability, and performance aspects. The size of this comparison differentiates our study
as well with 19 systems compared, four benchmarked to an extent and depth clearly
exceeding previous papers in the field; for example, subsetting tests were designed
in a way that systems cannot be tuned to specifically these queries. It is hoped that
this gives a representative overview to all who want to immerse into the field as well
as a clear guidance to those who need to choose the best suited datacube tool for
their application. This article presents results of the Research Data Alliance (RDA) Array
Database Assessment Working Group (ADA:WG), a subgroup of the Big Data Interest
Group. It has elicited the state of the art in Array Databases, technically supported by
IEEE GRSS and CODATA Germany, to answer the question: how can data scientists and
engineers benefit from Array Database technology? As it turns out, Array Databases
can offer significant advantages in terms of flexibility, functionality, extensibility, as well
as performance and scalability—in total, the database approach of offering “datacubes”
analysis-ready heralds a new level of service quality. Investigation shows that there is
a lively ecosystem of technology with increasing uptake, and proven array analytics
standards are in place. Consequently, such approaches have to be considered a serious
option for datacube services in science, engineering and beyond. Tools, though, vary
greatly in functionality and performance as it turns out.

Key words: Arrays, Array databases, Datacubes, SQL/MDA, OGC WCPS

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/.

SURVEY PAPER

Baumann et al. J Big Data (2021) 8:28
https://doi.org/10.1186/s40537-020-00399-2

*Correspondence:
b.
phamhuu@jacobs-university.
de
Large-Scale Scientific
Information Systems
Research Group, Jacobs
University, Bremen, Germany

http://orcid.org/0000-0003-3860-4726
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00399-2&domain=pdf

Page 2 of 61Baumann et al. J Big Data (2021) 8:28

Introduction
As The Fourth Paradigm puts it [51], “The speed at which any given scientific dis-
cipline advances will depend on how researchers collaborate with one another, and
with technologists, in areas of eScience such as databases”. This reflects the insight
that a meaningful structuring of data, together with suitable access methods, is
instrumental for any data analysis done in any domain, including business, science,
and engineering.

Since the advent of databases with high-level, declarative access interfaces [34], tabu-
lar data organization has prevailed, supported by the relational data model and query
standard, SQL [57]. Long this was considered adequate for managing employees in
enterprises and metadata about measurements in science, until further use cases—such
as Computer Aided Design and Manufacturing (CAD/CAM) data management [28] and
Computer Graphics [52] with their need for hierarchies—provoked thoughts about how
to support these through data structures and query operators, too. In response, hierar-
chical data models were proposed. In a similar way, new requirements also triggered the
need for general graph support in large-scale databases; main drivers here have been
ontologies requiring comparatively small, heterogeneous graphs [49] and social net-
works with their large, homogeneous graphs [105]. A further relevant data structure is
comprised by multi-dimensional arrays. First conceptualized in OLAP they also appear
practically everywhere in science and engineering. These four data structuring princi-
ples—sets, hierarchies, graphs, and arrays (Fig. 1)—all are fundamentally different and,
hence, call for dedicated database modeling and querying support, following Michael
Stonebraker’s observation of “ no one size fits all” [108].

In database research, arrays have been treated systematically in the context of
OLAP; however, these statistical “datacubes” are very sparse, while the majority of
arrays in science and engineering, such as satellite images and weather forecasts, are
dense. General array support in databases, while started early [14, 18], has become a
general field of study only relatively recently [4, 13, 30, 32, 33, 36, 39, 43, 58, 61, 98,
104, 107, 109, 112, 122, 126], with a view on the multitude of hitherto unsupported
domains.

The significant increase in scientific data that occurred in the past decade—such
as NASA’s archive growth from some hundred Terabytes in 2000 [46] to 32 Peta-
bytes of climate observation data [119], as well as ECMWF’s climate archive of over
220 Petabytes [19]—marked a change in the workflow of researchers and program-
mers. Early approaches consisted mainly of retrieving a number of files from an FTP
server, followed by manual filtering and extracting, and then either running a batch of

Fig. 1 Sets, hierarchies, graphs, and arrays as principal data structures in databases

Page 3 of 61Baumann et al. J Big Data (2021) 8:28

computation processes on the user’s local workstation, or tediously writing and opti-
mizing sophisticated single-use-case software designed to run on expensive super-
computing infrastructures. This is not feasible any more when dealing with Petabytes
of data which need to be stored, filtered and processed beforehand. When data pro-
viders discovered this they started providing custom tools themselves, often leading
to silo solutions which turn out to erode over time and make maintenance and evolu-
tion hard if not impossible. An alternative finding attention only recently are data-
base-centric approaches, as these have shown significant potential; meantime, we find
both small institutions [80] and large datacenters [19] using modern database archi-
tectures for massive spatio-temporal data sets.

Arrays—also called “raster data” or “gridded data” or, more recently, “datacubes”
[21]—constitute an abstraction that appears in virtually all areas of science and engi-
neering and beyond:

• Earth sciences: 1-D sensor data, 2-D satellite imagery, 3-D x/y/t image timeseries
and x/y/z subsurface voxel data, 4-D x/y/z/t atmospheric and ocean data; etc.

• Life sciences: microarray data, image modalities like X-ray, sonography, PET, and
fMRI deliver 2-D up to 4-D data about human and non-human brains and further
organs; gene expression data come as 2-D through 4-D; etc.

• Space sciences: optical and radio telescope data; 4-D x/y/z/t cosmological simu-
lateion output; planetary surface and subsurface data; etc.

• Statistics: “Datacubes” are known since long in the context of Data Warehous-
ing and OLAP [25] where, instead of spatial, abstract axes are defined, usually
together with a time axis. A main difference to the above data is that statistical
datacubes are rather sparse (say, 3–5% of the data space is occupied by values)
whereas Earth, Space, and Life science and engineering data tend to be rather
dense, often completely dense (i.e., most or all cell positions in the grid hold some
non-null value).

Figure 2 gives a visual impression of the variety of different observed data specifi-
cally in Ocean science. Generally, arrays typically represent sensor, image, simulation,
and statistics data of spatio-temporal or “abstract” dimensions.

Faced with these recent developments in theory, architecture, application, and stand-
ardization in of Array Databases it is not easy to get and maintain overview. To the best
of our knowledge there is no comprehensive system overview on the state of the art in
this field. Benchmarks have been conducted earlier, but they typically compare only two
systems [33, 35, 66, 90], as opposed to 19 in this review, and mostly without a scien-
tifically justified benchmark design underneath (e.g., Planthaber [90]), as opposed to the
benchmark design in this review which has been justified by Baumann et al. in [20].

With this technology survey this gap is to be closed. First, the approach is motivated
by inspecting relevant array service standards. Also, it is motivated that availability as
open-source code was not a criterion—open-source software is a business model, not a
capability of the software.

As core contribution, a total of 19 relevant tools is inspected, from the fields of
Array DBMSs, array command line tools and libraries, and array extensions to

Page 4 of 61Baumann et al. J Big Data (2021) 8:28

MapReduce-type systems. These are classified from various perspectives: functionality,
standards support, and architecture.

Additionally, four Array DBMs are subject to a performance benchmark. This bench-
mark, which is publicly available, inspects both array data access and analysis functions
applied to array data. The benchmark is designed in a way that a system cannot be tuned
unilaterally; for example, cutouts walk over the array and cutouts are produced along
various dimensions, always based on the same object, with one given data tiling on disk.
Further, a clear distinction is made between implementation of functionality by the sys-
tem itself, or implementation through User-Defined Functions (UDFs), i.e., code the ser-
vice operator must provide and which obviously would not be testable. In addition to
these comparisons of expressive power of the model, down-to-earth aspects have been
considered, too, including array import and export capabilities, client APIs, and support
for standards. Overall, more than 30 functional criteria are assessed.

Next, tuning capabilities of the systems have been inspected. Database sstems have a
long tradition of providing both administrator-accessible tuning and automatic self-tun-
ing (“optimization”). In the comparatively young field of Array DBMSs this is not always
common yet and, therefore, worth investigating. Eight criteria have been inspected, con-
sidering both storage and processing optimization.

Architectural features investigated were the overall architectural paradigm, storage
organization details, processing, and the parallelization approach adopted.

Necessarily, the criteria had to be adapted to the three categories of Array DBMSs,
command line tools and libraries, and Hadoop-style systems, although emphasis was
put on keeping criteria comparable as much as ever possible. In particular, we concen-
trate on array-supporting systems; for example, we investigate SciHadoop specifically,
but do not look at Hadoop in general as it does not support arrays, and even less so we
inspect underlying technology such as virtualization paradigms (e.g., Virtual Machines
and Docker containers) nor processing models (such as CPU vs. GPU vs. quantum
computing).

This investigation—consisting of agreement on the comparison criteria, collecting
and analyzing 19 systems and benchmarking four systems – has been carried out pro-
duced by over a timeframe of 2 years by the survey authors in the context and with the

Fig. 2 Basic structure of a multi-dimensional array and its cells, with extent spanned by axes x/y/z (left);
sample array data from Earth, Space, and Life Sciences as well as Engineering (right)

Page 5 of 61Baumann et al. J Big Data (2021) 8:28

help of the Research Data Alliance (RDA) Array Database Assessment Working Group
(ADA:WG) from which the original report is available [16]. In summary, the main con-
tributions of this article are the following:

• A general presentation of an array model, generic enough to form a basis for a com-
parison of heterogeneous array systems.

• An overview on Array DBMSs and further systems offering arrays as a service, with a
detailed feature comparison for 19 such systems.

• A systematic benchmark with explicit design rationales, applied to four different
Array DBMSs.

• An overview on standards for array services.

The remainder of this technology review is organized as follows. In the next Section
we discuss the need for database support for massive arrays, introducing the concepts of
array querying. An overview on Array (database) standards is given in Sect. "Array stand-
ards", followed by an overview of technology currently available in Sect. "Array tech-
nology" and a collection of publicly accessible array (database) services in Sect. "Array
systems assessment". In Sect. "Case study" we provide a technical comparison of the var-
ious technologies, including a performance benchmark. Section "Conclusion" concludes
the plot.

Arrays in databases
General considerations

For decades now, SQL has proven its value in any-size data services in companies as
well as public administration. Part of this success is the versatility of the query language
approach, as well as the degree of freedom for vendors to enhance performance through
server-side scalability methods. Unfortunately, scientific and engineering environments
could benefit only to a limited extent. The main reason is a fundamental lack in data
structure support: While flat tables are suitable for accounting and product catalogues,
science needs additional information categories, such as hierarchies, graphs, and arrays.
The consequence of this missing support has been a historical divide between ”data”
which are conceived as large, constrained to download, with no search and ”metadata”
which commonly are considered small, agile, and searchable.

Still, databases have worked out some key components of a powerful, flexible, scalable
data management; these principles have proven successful over decades on sets (rela-
tional DBMSs), hierarchical data (e.g., XML [118] databases), graph data (e.g., RDF and
graph databases), and now array databases are offering their benefits as well:

A high-level query language allows users (typically: application developers such as data
scientists) to describe the result, rather than a particular algorithm leading to this result.
For example, a two-line array query typically would translate into pages of procedural
code. In other words: users do not need to deal with the particularities of programming.
The data center, conversely, has a safe client interface—accepting any kind of C + + or
python code and running it inside the firewall is a favorite nightmare of system adminis-
trators. Notably also NoSQL approaches (initially spelt out as “No SQL”, later “Not Only
SQL”), while initially denying usefulness of high-level query languages, are gradually

Page 6 of 61Baumann et al. J Big Data (2021) 8:28

(re-) introducing them – prominent examples include MongoDB, Hive, Pig Latin, etc.
[60].

Transparent storage management (“data independence”). While this idea sometimes
still is alien to data centers which are used to knowing the location of each byte on disk
this transparency has the great advantage of (i) simplifying user access and (ii) allowing
to reorganize internally without affecting users—for example, to horizontally scale a ser-
vice. And, honestly: in a JPEG file, do we know the location of a particular pixel? We can
operate them well without knowing these details, rather relying on high-level interfaces
abstracting away the details of storage organization.

Concurrency and access control Given that a large number and variety of users are
querying large amounts of data it is indispensable to manage access. Avoiding incon-
sistencies due to parallel modifications of data is addressed by concurrency control with
transaction support. Role-based access control allows adjusting access for user groups
individually. Particularly with arrays, granularity of access control must go below object
level for selectively managing access to arbitrary areas within datacubes, essentially per-
forming access control down to pixel level. Also, due to the high processing load that
array queries may generate it is important to enforce quota.

Array databases [6] provide flexible, scalable services on massive multi-dimensional
arrays, consisting of storage management and processing functionality for multi-dimen-
sional arrays which form a core data structure in science and engineering. They have
been specifically designed to fill the gaps of the relational world when dealing with large
binary datasets of structured information and have gained traction in the last years, in
scientific communities as well as in industrial sectors like agriculture, mineral resource
exploitation etc. 1-D sensor data, 2-D satellite and medical imagery, 3-D image time-
series, 4-D climate models are all at the core of virtually all science and engineering
domains. The currently most influential array database implementations are, in histori-
cal order, rasdaman [14, 18, 38, 96] and SciDB [30, 36]; Fig. 3 gives a brief outline on
the early historical development of this field. Each of the systems allows, to a larger or
smaller extent, querying the data based on the array’s properties and contents using
declarative languages that usually allow for a large degree of flexibility in both query for-
mulation and internal query optimization techniques. Processing of arrays is core func-
tionality in such databases with large sets of operations, ranging from simple sub-setting
up to statistics, signal and image processing, and general Linear Algebra. A first Array
Database workshop has been held in Uppsala already in 2011 [13].

An array query model for databases

Array data

Arrays being ordered homogeneous collections with a multi-dimensional addressing
scheme have long been supported by programming languages, dating back to lan-
guages like APL [59]. This mostly includes primitives for accessing single array ele-
ments combined with general looping constructs. Our perspective, though, is on a
different level: high-level, declarative functionality where the iteration is implicit,
for reasons of user friendliness and server-side optimization opportunities, the
role model always being the SQL language. Also following the tradition of query

Page 7 of 61Baumann et al. J Big Data (2021) 8:28

languages, an algebraic formalization of its semantics should also be available for an
array query language.

Several formal models have been suggested for array databases [12]. Tomlin has
established a so-called Map Algebra [117] which categorizes array operations depend-
ing on how many cells of an input array contribute to each cell of the result array.
Map Algebra originally was 2-D and has been extended to 3-D meanwhile, which still
is too restricted for general arrays, Further, no operational model is indicated. AFATL
Image Algebra [97] has been developed to express image and signal processing as well
as statistics algorithms. It is is multi-dimensional by design and has seen implemen-
tationsin libraries for various languages. Array Algebra [5] has been influenced by
AFATL Image Algebra when establishing a formal framework for n-D arrays suitable
for a declarative query language.

We choose Array Algebra [5] as our basis, for the following reasons. It is fully multi-
dimensional; it is practically proven through implementations running on multi-Peta-
byte operational services [114]; it models all array operations whereas some other
approaches work with black box APPLY() functions effectively hiding important parts of
the semantics. Finally, the algebra is minimal in that only two operators allow expressing,
e.g., all array operations of the SQL/MDA standard of which it is the formal basis.

We briefly present formal conceptualization of array services through Array Alge-
bra. Readers may skip it safely, it is helpful but not strictly necessary to understand the
technology analysis provided later on. Formally, a d-dimensional array is a function.

with a domain consisting of the d-fold Cartesian cross product of closed integer
intervals:

a : D → V

Fig. 3 Early history of array database systems

Page 8 of 61Baumann et al. J Big Data (2021) 8:28

where V is some non-empty value set, called the array’s cell type. Single elements in such
an array we call cells. Arrays popularly are referred to as datacubes.

This understanding is identical to mathematics where vectors (or sequences) represent
1-D arrays, matrices form 2-D arrays, and tensors represent higher-dimensional arrays.

Tomlin has established a so-called Map Algebra [117] which categorizes array opera-
tions depending on how many cells of an input array contribute to each cell of the result
array; here is an excellent compressed introduction. While Map Algebra was 2-D and
has been extended to 3-D lateron, AFATL Image Algebra [97] is multi-dimensional by
design. Array Algebra [5] has been influenced by AFATL Image Algebra when establish-
ing a formal framework for n-D arrays suitable for a declarative query language.

Querying arrays

Although array query languages heavily overlap there is not yet a common consensus
on operations and their representation. In passing we note that array operations, being
2nd order with functions as parameters, introduce functional, similar to sets, lists, and
stacks. Array Algebra relies on only three core operators: An array constructor, an aggre-
gator, and an array sort operation (which we skip for this introduction). We inspect these
in turn, based on the ISO SQL/MDA syntax.

 Deriving arrays

The mdarray operator creates an array of a given extent and assigns values to each
cell through some expression which may contain occurrences of the cell’s coordinate.
Sounds complicated? Let us start simple: assume we want to obtain a subset of an array
A. This subset is indicated through array coordinates, i.e., we extract a sub-array. For a
d-dimensional array this subset can be defined through a d-dimensional interval given
by the lower corner coordinate (lo1, ..., lod) and upper corner coordinate (hi1,...,hid),
respectively. To create the subset array we write.

This extraction, which retains the dimensionality of the cube, is called trimming. Com-
monly this is abbreviated as

.
We can also reduce the dimension of the result by applying slicing in one or more

coordinates. Instead of the loi:hii interval we provide only one coordinate, the slice
position si. Notably, if we slice d times we obtain a single value (or, if you prefer, a 0-D
array), written as:

D =
{

lo1, . . . , hi1
}

× . . .×
{

lod , . . . , hid
}

with loi ≤ hii for 1 ≤ i ≤ d

Page 9 of 61Baumann et al. J Big Data (2021) 8:28

 …or in its shorthand:

which resembles the common array cell access in programming languages. Figure 4
shows some examples of trimming and slicing on a 3-D array.

Now let as assume we want to change the individual cell values rather than doing
extraction, for example deriving the logarithm of some input array of given domain
extent D with axes x and y:

An example for a binary operator is addition of two images:
In fact, any unary or binary operation defined on the input arrays’ cell types

“induces” a corresponding array operation. For binary operations - also referred to
as array joins—we require that both operand arrays share the same spatial extent so
that the pairwise matching of array cells is defined. Syntactically, we abbreviate such
mdarray operations so that the above example can be written as:

Fig. 4 Various types of subsetting from an array: trimming (left, which keeps the original dimension) and
slicing (which reduces the number of dimensions, right) [41]

Page 10 of 61Baumann et al. J Big Data (2021) 8:28

With this simple rule we have obtained already all the well-known arithmetic,
Boolean, exponential, and trigonometric operations.

Extending binary to n-ary functions we find two practically useful operations, the
case and concat operators. Following the syntax of SQL we can write an array case (or
“if ” operator) as in the following example which performs a traffic light classification
of array values, based on thresholds t1 and t2:

Another useful operation is array concatenation. We define, for two arrays a
with domain A and b with domain B where domains A and B are “adjacent”, loosely
speaking,

Obviously, the union of the input domains must be a valid array domain again. It
is straightforward to extend concatenation to an n-ary function provided the input
array domains altogether form a valid array partition. In practice such a concatena-
tion is used, for example, when selecting all December time slices from a climate time
series.

Some systems provide an apply() function which receives an array expression a as
first parameter and a cell-level function f, bearing the same mechanics as induced
functions: apply the function to each cell of the input array. While this semantic
shortcut eases specification work it has several drawbacks. On conceptual level, the
semantics of f is outside the array framework, so essentially a black box. On imple-
mentation level this means the array engine has no knowledge about the behavior of
the operator and, hence, cannot optimize it except for exploiting the trivial “embar-
rassingly parallel” property. Moreover, this is constrained to unary induced func-
tions; while a second, binary, apply function can be supplied this does not cover the
non-local operations such as histograms, convolution kernels, etc., so the larger part

Page 11 of 61Baumann et al. J Big Data (2021) 8:28

of Linear Algebra. This means a significant limitation in expressiveness and, conse-
quently, the optimization potential.

Aggregating arrays

All the above operations have served to derive a new array from one or more given arrays.
Next, we look at the condenser which - in analogy to SQL aggregation - allows deriving
summary values. The general condenser iterates over an array covering the domain indi-
cated and aggregates the values found; actually, each value can be given by a location-aware
expression. The following example adds all cell values of a in domain D with axes x and y
(which obviously must be equal to or contained in the domain of array a):

This can be abbreviated as

Not all operations can act as condensers as they must be form a monoid in order for the
aggregation to work that is: the operation must be commutative and associative (this opens
up parallelization opportunities) and it must have a neutral element. Common candidates
fulfilling this criterion are mdsum, mdavg, mdmin, mdmax, mdexists, and mdforall.

Operator combinations

The operators illustrated can all be combined freely to form expressions of arbitrary
complexity. We demonstrate this through two examples.

Example 1

The matrix product of a and b, yielding a result matrix of size m⋅p.

Page 12 of 61Baumann et al. J Big Data (2021) 8:28

Example 2 A histogram over an 8-bit greyscale image.

This way, general operations from image/signal processing, statistics, and Linear Alge-
bra up to, say, the Discrete Fourier Transform can be expressed.

Array Integration

Some systems operate on arrays standalone, others integrate them into a host data
model, typically: relations. Following ISO SQL we embed arrays into the relational
model as a new column type which is shared by the majority of systems such as rasda-
man, PostgreSQL, Oracle, and Teradata. This offers several practical advantages, such
as a clear separation of concerns in query optimization and evaluation which eases
mixed optimization [67]. For example, we can define a table of Landsat satellite images
as follows:

 which can be queried like this example shows:

A notable effect is that now data and metadata reside in the same information space
and can be accessed and combined in one and the same query. Hence, in future the age-
old distinction between data and metadata can be overcome.

Array database architectures

Storage

Access patterns on arrays are strongly linked to the Euclidean neighborhood of array
cells (Fig. 5), therefore it must be a main goal of any storage engine to preserve proximity

Page 13 of 61Baumann et al. J Big Data (2021) 8:28

on persistent storage through some suitable spatial clustering. It is common, therefore,
to partition n-D arrays into n-D sub-arrays called tiles [18] or chunks [100] which then
form the unit of access to persistent storage.

Obviously, the concrete partitioning chosen greatly affects disk traffic and, hence,
overall query performance. By adjusting the partitioning—statically in advance or
dynamically at query time—to the workloads, the number of partitions fetched from
persistent storage can be minimized, ideally: to a single disk access (Fig. 6). The challenge
is to find a partitioning which supports a given workload. For example, when building
x/y/t remote sensing data cubes imagery comes in x/y slices with a thickness of 1 along
t. Time series analysis, on the contrary calls for cutouts with long time extent and (pos-
sibly) limited spatial x/y extent. Figure 6 illustrates some tiling patterns, from left to right
in increasing irregularity resulting in increased adaptivity to query access patterns [43].

While this principle is generally accepted partitioning techniques vary to some extent.
PostGIS Raster allows only 2D x/y tiles and suggests tile sizes of 100 × 100 pixels [92].
Teradata arrays are limited to less than 64 kB [112]. SciDB offers a two-level partition-
ing where smaller partitions can be gathered in container partitions. Further, SciDB
allows overlapping partitions so that queries requiring adjacent pixels (like in convolu-
tion operations) do not require reading the neighboring partitions [104]. In rasdaman, a
storage layout sublanguage allows to define partitioning along several strategies [8]. For
example, in “directional tiling” ratios of partition edge extents are indicated, rather than
absolute sizes; this allows to balance mixed workloads containing, e.g., spatial timeslice

Fig. 5 Cartesian array cell neighborhood

Fig. 6 Categories of array tiling patterns, after [43]

Page 14 of 61Baumann et al. J Big Data (2021) 8:28

extraction and temporal timeseries analysis. In the “area of interest tiling” strategy, hot
spots are indicated and the system automatically determines an optimal partitioning.

To quickly determine the partitions required—a typical range query—some spatial
index, such as the R-Tree [50], proves advantageous. As opposed to spatial (i.e., vector)
databases the situation with arrays is relatively simple: the target objects, which have
a box structure (as opposed to general polygons), partition a space of known extent.
Hence, most spatial indexes can be expected to perform decently.

Often, compression of tiles is advantageous [38]. Still, in face of very large array data-
bases tertiary storage may be required, such as tape robots [96, 100].

Processing

When it comes to query evaluation it turns out that, in general, array operations are
heavily CPU bound; this is contrary to relational query processing which typically is I/O
bound. Some array operations are trivially parallelizable, such as cell-wise processing
and combination (which Tomlin [117] calls “local” operations) and simple aggregations.
These can easily be distributed both on local processing nodes like multicore CPUs and
general-purpose GPUs and remote nodes, like servers in a cloud network. Others have
to be carefully analyzed, transformed and sometimes even rewritten in different sets of
operations to gain such parallelizable characteristics, e.g. joins on differently partitioned
arrays, histogram generators and, in general, array constructors with non-serial access
patterns.

The following is a non-exhaustive list of optimizations proven effective in Array
DBMSs:

Parallelization The fact that array operations involve applying the same operation on
a large number of values, and also the observation that tiles map naturally to CPU cores
sometimes leads to the hasty conclusion that array operations per se are “embarrass-
ingly parallel”. While this holds for simple operations, such as unary induced operations
like log(a), this is by far not true in general. Already binary operations like a + b pose
challenges—for example, both operand arrays can reside on different nodes, even data
centers, and they may have an incompatible tiling which calls for advanced methods like
Array Join [15]. Additional complexity, but also opportunities, comes with Linear Alge-
bra operations ranging from matrix multiplication over QR decomposition up to Fourier
Transform and Principal Component Analyses, to randomly pick a few examples.

Parallelization across several cores in one compute node (effectively, a shared-all archi-
tecture) allows exploiting vertical scalability; distributed processing utilizes the same
principle of sharing workloads, but across several compute nodes (shared-nothing archi-
tecture)—in case of a cloud, typically homogeneous nodes sitting close by, in the case
of federations among data centers heterogeneous nodes with individual governance and
higher-latency network connections. Criteria for splitting queries across multiple sys-
tems may include data location, intermediate results transfer costs, current resource
availability, and several more.

Generally, parallelization in Array Databases is not constrained to the rigid “Map() fol-
lowed by Reduce()” pattern of Hadoop-style systems [2, 37], but can look at each query
individually and combine a wide spectrum of techniques. This opens up more opportuni-
ties, but is often nontrivial to implement. In Array Databases—as in database technology

Page 15 of 61Baumann et al. J Big Data (2021) 8:28

in general—two main techniques are known for finding out how to best orchestrate an
incoming query based on the speedup methods available in the system:

Query rewriting This technique, which is long known in relational database query pro-
cessing, also under the name heuristic optimization, looks at an incoming query to see
whether it can be rephrased into an equivalent one (i.e., returning the same result), how-
ever, with less processing effort. To this end, the system knows a set of rewrite rules like
“left hand side expression returns same result as right hand side, but we know right-
hand side is faster”. Where do these rules come from? Actually, this is a nice example for
the usefulness of a formal semantics of a language; Relational and Array Algebra natu-
rally lead to algebraic equivalences which can be directly written into code. In the case of
rasdaman, there are about 150 such rules currently.

The following example (Fig. 7) illustrates the principle, with a rule saying “adding two
images pixelwise, and then computing the average value, is equivalent to first comput-
ing the averages individually, and then add the result”. In the first case, array tiles have
to be streamed three times in the server whereas in the second case there are only two
tile streams—the final addition is over two scalars, hence negligible in cost. Bottom line,
replacing an occurrence of the left-hand side pattern by the right-hand side pattern saves
1/3 of the computing effort.

Cost-based optimization attempts to find an efficient execution plan out of the—usu-
ally large—search space of possible plans for a given query. In contrast to query rewrit-
ing, this involves knowledge (i.e.: estimation) of the costs of processing. Parameters
influencing costs include the number of tiles to be read from disk, location of tiles in
case of a distributed system, the number and complexity of operations, and several more.

An extension of the principle of parallelizing query evaluation over different compute
nodes is distributed processing. Additional challenges arise in that these nodes normally
are independent from each other and connected through less bandwidth than in local
situation. Additionally, computing and storage can be—and usually is—heterogeneous
the nodes. One example of a location-transparent federation is EarthServer [114].

Still, despite this rich set of options parallelization brings along this is by no means the
only opportunity for speeding up query processing. By way of example we briefly present
one hardware and one software technique.

Mixed hardware Compiling queries directly into machine code for CPU, GPU, FPGA,
etc. can greatly speed up processing time, even more so by dedicating tasks to the most
suitable processing unit. However, mixed hardware evaluation poses non-trivial prob-
lems which still are under active research.

Fig. 7 Sample equivalence rule for array query rewriting: “max(a + b) ≡ max(a) + max(b)”

Page 16 of 61Baumann et al. J Big Data (2021) 8:28

Approximative caching Caching the results of final and intermediate processing
steps helps significantly in case where the same or similar queries come in frequently.
For example, during disasters there will be lots of queries on the disaster region,
issued by mitigation forces and the general public. With arrays we encounter the par-
ticular challenge that these queries will likely not hit the exact same region, but will
differ more or less on the area to be accessed. Hence, it is of advantage if the query
engine can reuse partially matching areas in array results [64].

Note that reformulating and compiling queries is not necessarily a time consuming
task. Experience with rasdaman shows that such optimization steps altogether can be
accomplished within few milliseconds.

Client interfacing

While “datacubes” represent a convenient logical view on massive multi-dimensional
data this does not mean clients need to see data in such a shape. Very often, clients
will do some extraction and aggregation, thereby reducing and changing dimensional-
ity away from the original. More importantly even, users should be able to remain as
much as possible within their comfort zone of well known tools - for example, sim-
ple map navigation should still be able through clients like OpenLayers and Leaflet,
embedding into Web GIS should support tools like QGIS and ESRI ArcGIS, virtual
globes like NASA WebWorldWind and Cesium should be supported, whereas high-
end analytics calls for access to datacubes through R and python.

Related technology

Array databases by definition are characterized by offering a declarative query lan-
guage on n-D arrays. Such technology can be implemented in various ways - as will
be demonstrated by the systems overview in the next section, each coming with its
individual characteristics. However, we will also look beyond the pure Array Database
category and give a glance at other array technology, including.

• Array engines offering only procedural interfaces (rather than a query language),
often implemented in some scripting language (e.g., python), rather than running
directly compiled machine code (e.g., C++). Typically, these are constrained in
functionality as users can only invoke the functions provided, but cannot compose
them to larger tasks—hence, they lack the flexibility of databases.

• Command-line tools which form possible components of array services, but do
not constitute a complete service tool per se. Typically, these are useful for ser-
vices inside a data center where data experts at the same time are experienced
full-stack developers.

• Libraries that provide array functionality, but do not constitute a server in itself
and do not have a query concept, but rather a procedural API.

This way, we aim at providing a context for the young category of Array Databases.

Page 17 of 61Baumann et al. J Big Data (2021) 8:28

Array standards
Several standards relevant for large-scale array querying are already in place. Such
standards may be domain independent (such as ISO Array SQL [56]) or domain spe-
cific (such as the OGC WCPS geo raster query language [22, 78]). For each standard
listed its adoption status is provided.

Domain neutral standards

SQL arrays

Full title: IS 9075 SQL Part 15: Multi-Dimensional Arrays (MDA).
Issuing body: ISO/IEC SC 32/WG 3.
Description: Data and Processing Standard. SQL extension with domain-neutral def-
inition and queries on massive multi-dimensional arrays (“datacubes”).
Status: International Standard, published 2019.
Further information: [56, 67, 68].

Geo datacube standards

The main standardization body, in close collaboration with ISO, is the Open Geospa-
tial Consortium (OGC). W3C also has done some work. While OGC and ISO operate
in lock-step synchronization and mutually adopt their standards the W3C specifica-
tion is different and incompatible. It should also be noted that no operational imple-
mentation of the W3C specification is known whereas the ISO/OGC standards are
routinely used worldwide in large-scale deployments [114].

Geo datacube abstract concepts

Full title: Abstract Topic 6, ISO 19123-1.
Issuing body: OGC, ISO TC211.
Description: Abstract, generic data model for spatio-temporal coverages, that is:
spatio-temporal regular and irregular grids, point clouds, and general meshes. This
model is not intended for establishing the abstract concepts, not for implementation
which is addressed by the twin specification OGC CIS/ISO 19123-2.
Status: Seasoned ISO 19123/OGC AT6 currently under rework by ISO to become
19123-1 and subsequently OGC Abstract Topic 6.
Further information: [55].

Geo datacube data model implementation

Full title: Coverage Implementation Schema (CIS), ISO 19123-2.
Issuing body: OGC, ISO TC211.
Description: Concrete, implementable, data model for spatio-temporal regular and
irregular grids, point clouds, and general meshes. The model is independent from ser-
vices (see below) and can be used in various OGC service types. Services using this
coverage model can be conformance tested down to pixel level using the OGC com-
pliance tests.
Status: Adopted by OGC as CIS 1.1; adopted by ISO as 19123-2 using OGC CIS 1.0
with plans to lift it to CIS 1.1 starting 2021.
Further information: [4, 9–11, 41, 77].

Page 18 of 61Baumann et al. J Big Data (2021) 8:28

Geo datacube access service

Full title: Web Coverage Service (WCS).
Issuing body: OGC.
Description: WCS is a modular suite of Web service standards for accessing spatio-
temporal coverages as per OGC CIS. The mandatory core specified access, subsetting,
and encoding while a set of optional extensions specify additional, advanced functional-
ity a server can provide. A detailed conformance test suite allows for free validation of
implementations claiming compliance [79].
Status: Adopted OGC standard since 2012; adopted by EU INSPIRE since 2016; mid-
term plans for adoption by ISO.
Further information: [7, 77].

Geo datacube analytics language

Full title: Web Coverage Processing Service (WCPS).
Issuing body: OGC.
Description: Geo datacube query language for access, analytics, and fusion over mas-
sive spatio-temporal datacubes over regular or irregular grids. WCPS is the Processing
extension of the WCS suite.
Status: OGC standard since 2009; optional component in the EU INSPIRE Coverage
Download Services.
Further information: [17, 41, 54, 78].

Geo datacube rDF vocabulary

Full title: RDF Data Cube Vocabulary.
Issuing body: W3C.
Description: An RDF vocabulary of datacubes for use in Semantic Web contexts with a
focus on statistical data. The framework adopts aspects of the SDMX standard for statis-
tical data exchange. Mainly metadata are modeled, single cells are not addressable, and
there is no query nor processing model associated.
Status: W3C Best Practice since 2014.
Further information: [113].

Array technology
Array databases naturally can do the “heavy lifting” in multi-dimensional access and
processing, but arrays in practice never come alone; rather, they are ornamented with
application-specific metadata that are critical for understanding of the array data and
for querying them appropriately. For example, in geo datacubes querying is done typi-
cally on geographical coordinates, such as latitude and longitude; the system needs to be
able to translate queries in geo coordinates into the native Cartesian index coordinates
of arrays. In all applications using timeseries, users will want to utilize date formats—
such as ISO 8601 supporting syntax like “2018-02-20”—rather than index counting since
epoch. For cell types, it is not sufficient to just know about integer versus floating-point
numbers, but it is important to know about units of measure, null values (note that

Page 19 of 61Baumann et al. J Big Data (2021) 8:28

sensor data do not just deliver one null value, such as traditional database support, but
multiple null values with individual semantics).

Coupling array queries with metadata query capabilities, therefore, is of high practi-
cal importance; ISO SQL/MDA, with its integration of arrays into the rich existing
framework of the SQL language, shows one possible way. If that appears too complex
to implement or insufficient knowledge exists about such standards, typically silo solu-
tions with datacube support are established where the term “silo” illustrates insular data
subsystems that are incapable of communicating and exchanging reciprocally, thereby
substantially hindering insight gains [42]. Specifically in the Earth science domain an
explosion of domain-specific “datacube” solutions can be observed recently (see, e.g., the
EGU 2018 datacube session [103]), usually implemented in python using existing array
libraries. We, therefore, also look at domain-specific “datacube” tools as well.

This review is organized as follows. First, Array Databases are inspected which offer
generic query and architectural support for n-D arrays. Next, known object-relational
emulations of arrays are listed. MapReduce-type systems follow as a substantially dif-
ferent category of data systems, which however often is mentioned in the context of Big
Data. After that, systems are listed which do not fall into any of the above categories.
Finally, we list libraries (as opposed to the aforementioned complete engines) and n-D
array data formats.

Technology overview

Systematics

This section inspects Array Database and related technology. As recently a significant
boom in array systems can be observed that an increasing number of technologies is
being announced, at highly varying stages of maturity. Thanks to the blooming research
and development it can be expected that further systems emerge soon which have
not found their way into this report. The landscape of systems encountered has been
grouped into the following categories (see also Sect. "Related technology"):

• Array Database systems characterized by a query language, multi-user operation,
storage management, and access control mechanisms. These can be subdivided into
full-stack Array Databases implemented from scratch (e.g., rasdaman, SciDB) and
add-ons to existing database systems implemented as extra layers to existing DBMSs
(e.g., EXTASCID), as object-relational extensions (ex: PostGIS Raster, Teradata
Arrays, Oracle GeoRaster), or through direct DBMS kernel coding (e.g., SciQL).

• Array tools encompassing command-line oriented and libraries that provide array
functionality, but do not constitute a server; the central distinguishing criteria are
that (i) they do not offer a query concept, but rather a procedural API (where each
call can accomplish just one piece of functionality, as opposed to arbitrarily com-
plex user queries in databases), and (ii) they do not accept queries via Internet, but
rather require being logged in on the server machine for executing shell commands
(ex: Ophidia) or writing own embedding code in some scripting language like python
(ex: Wendelin.core, xarray, TensorFlow) or a compiled language like C++ (ex:
boost::geometry, xtensor). Such approaches appear useful inside a data center where

Page 20 of 61Baumann et al. J Big Data (2021) 8:28

data experts at the same time are experienced full-stack developers, as opposed to
data scientists who generally prefer high-level languages like R.

 As such, these tools and libraries form possible components of array services, but do
not constitute a complete service tool per se.

• MapReduce [37] type array engines allowing multi-dimensional array process-
ing based on top of Hadoop [73] or Spark [74]. The underlying MapReduce para-
digm relies on expressing algorithms on a map operation (such as a reordering and
restructuring of input according to the criteria given) followed by a reduce opera-
tion which aggregates the restructured data. Internally, the MapReduce implemen-
tation will provide means to parallelize in the sense that the same map and reduce
algorithms are executed in parallel on different cloud nodes and on different data.
Algorithms which cannot be expressed this way need to resort to iterations of this
map/reduce step. The map and reduce functions need to be implemented by some
developer; Hadoop relies on Java, Spark uses Java and Scala. Neither the tools nor the
languages used provide built-in support for arrays, except when limited to RAM of a
single node. Therefore, MapReduce tools per se are out of scope of this investigation.
However, array support has been added by various tools, and these we will inspect
indeed.

We adopt the description of each system provided by its maintainers and augment it
with own findings from inspecting the respective websites, publications, and manuals.

We first give an individual characterization as a brief overview on the systems
addressed; a detailed feature-by-feature comparison can be found in Annexes 1, 2, and 3.

Generic array DBMSs

In this category we find database systems with the characteristic service features—a
query language, multi-user operation, dedicated storage management, etc.

 Rasdaman (“raster data manager”) [94, 95] has pioneered Array Databases and
“actionable datacubes” [5, 6, 14, 15, 17, 18, 56, 69]. It supports declarative querying of
massive multi-dimensional arrays in federations of autonomous instances, including dis-
tributed array joins. Server-side processing relies on effective optimization, paralleliza-
tion, and use of heterogeneous hardware for retrieval, extraction, aggregation, and fusion
on distributed arrays. The architecture resembles a parallelizing peer federation without
a single point of failure. Arrays can be stored in the optimized rasdaman array store or
in standard databases; further, rasdaman can operate directly on any pre-existing archive
structure. Single rasdaman databases exceed 10 Petabytes [72], and queries have been
split successfully across more than 1,000 cloud nodes [39]. The rasdaman technology is
blueprint for several Big Data standards, such as ISO SQL/MDA [67] and OGC WCPS
[17]. A public demonstration service is available on the Web [23].

Source code is available from [94] for the open-source rasdaman community edition
(LGPL for client libraries, GPL for server—so can be embedded in commercial applica-
tions); the proprietary rasdaman enterprise edition is available from the vendor [94].

Page 21 of 61Baumann et al. J Big Data (2021) 8:28

 SciDB [86, 109] is an Array DBMS following the tradition of rasdaman. SciDB employs
its own query interface offering two languages, AQL (Array Query Language) and AFL
(Array Functional Language). Its architecture is based on a modified Postgres kernel host-
ing UDFs (User-Defined Functions) implementing array functionality, and also effecting
parallelization.

SciDB has adopted a dual license model [87]. The source code of the community version
is available from [88], although seemingly not maintained since several years; the commu-
nity version is Affero: not allowed for commercial purposes.

 SciQL [61, 70] was a case study extending the column-store DBMS MonetDB with array-
specific operators [58, 126]. As such, n-D arrays were sequentialized internally to column-
store tables (i.e., there is no dedicated storage and processing engine).

No source code could be found.
EXTASCID [32, 33, 99] is a complete and extensible research prototype for scientific

data processing. It supports natively both arrays as well as relational data. Complex pro-
cessing is handled by a meta-operator that can execute any user code. EXTASCID is built
around the massively parallel GLADE architecture for data aggregation. While it inherits
the extensibility provided by the original GLA interface implemented in GLADE, EXTAS-
CID enhances this interface considerably with functions specific to scientific processing.
(description taken from website below).

No source code could be found.

 Array DBMSs—object‑relational extensions

Object-relational capabilities in relational DBMSs allow users (usually: administrators) to
define new data types as well as new operators. Such data types can be used for column
definitions, and the corresponding operators can be used in queries. While this approach
has been adopted by several systems (see below) it encounters two main shortcomings:

• An array is not a data type, but a data type constructor (sometimes called “template”). An
instructive example is a stack: likewise, it is not a data type but a template which needs
to be instantiated with some element data type to form a concrete data type itself—for
example, by instantiating Stack <T> with String, often denoted as Stack <String>—one
particular data type is obtained; Stack <Integer> would be another one. An array tem-
plate is parametrized with an n-dimensional extent as well as some cell (“pixel”, “voxel”)
data type; following the previously introduced syntax this might be written as

Hence, object-relational systems cannot provide the array abstraction as such, but only
instantiated data types like:

Page 22 of 61Baumann et al. J Big Data (2021) 8:28

or

• Further, as the SQL syntax per se cannot be extended such array support needs to intro-
duce some separate array expression language. Generic array types like the rasdaman
n-D array constructor become difficult at best. Further, this approach typically implies
particular implementation restrictions, such as limiting to particular dimensions.

Due to the genericity of such object-relational mechanisms there is no dedicated inter-
nal support for storage management (in particular: for efficient spatial clustering, but
also for array sizes), indexing, and query optimization.

Still, some systems have implemented array support in an object-relational manner as
it is substantially less effort than implementing the full stack of an Array DBMS.

PostGIS raster “Raster” is a PostGIS type for storing and analyzing geo raster data
[92, 93]. Like PostGIS in general, it is implemented using the extension capabilities of
the PostgreSQL object-relational DBMS. Internally, raster processing relies heavily on
GDAL. Currently, PostGIS Raster supports x/y 2D and, for x/y/spectral, 3D rasters. It
allows raster expressions, however, not integrated with the PostgreSQL query language
but passed to a raster object as strings written in a separate Map Algebra language. Large
objects have to be partitioned by the user and distributed over tuples in a table’s raster
column; queries have to be written in a way that they achieve a proper recombination
of larger rasters from the partitions stored in one tuple each. A recommended partition
size is 100 × 100 pixels.

Source code is available under GPL v2 on the developer wiki [91].
Oracle GeoRaster [85] is a feature of Oracle Spatial allowing to store, index, query, ana-

lyze, and deliver raster image and gridded data and its associated metadata. GeoRaster
provides Oracle spatial data types and an object-relational schema. These data types and
schema objects can be used to store multidimensional grid layers and digital images that
can be referenced to positions on the Earth’s surface or in a local coordinate system.
If the data is georeferenced, the location on Earth for a cell can be determined in an
image; or given a location on Earth, the cell in an image associated with that location can
be found. There is no particular raster query language underneath, nor a specific array-
centric architecture.

Source code is not available as Oracle is closed source, proprietary.
Teradata arrays Teradata recently has added arrays as a datatype [111], also following

an object-relational approach. There are some fundamental operations such as subset-
ting; however, overall the operators do not resemble the expressive power of genuine
Array DBMSs. Further, arrays are mapped to 64 kB blobs so that the overall size of a
single array (considering the array metadata stored in each blob) seems to be around
40 kB. Further restrictions include: Arrays must have between two and five dimensions;

Page 23 of 61Baumann et al. J Big Data (2021) 8:28

only one element of the array can be updated at a time; it is unclear whether array joins
are supported.

Source code is not available as Teradata is closed source, proprietary.

Array tools

OPeNDAP (“Open-source Project for a Network Data Access Protocol”) is a data trans-
port architecture and protocol for earth scientists [81]. OPeNDAP includes standards for
encapsulating structured data, annotating the data with attributes and adding semantics
that describe the data. An OPeNDAP client sends requests to an OPeNDAP server, and
receives various types of documents or binary data as a response.

An array is one-dimensional; multidimensional Arrays are defined as arrays of arrays.
An array’s member variable may be of any DAP data type. Array indexes must start at
zero. A constraint expression provides a way for DAP client programs to request certain
variables, or parts of certain variables, from a data source. A constraint expression may
also use functions executed by the server.

Source code is available from [82] (license scheme not indicated).
Xarray (formerly xray) [123] is a Python package that aims to bring the labeled data

power of pandas to the physical sciences, by providing N-dimensional variants of the
core pandas data structures. Goal is to provide a pandas-like and pandas-compatible
toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which
pandas excels. The approach adopts the Common Data Model for self- describing scien-
tific data in widespread use in the Earth sciences. Dataset is an in-memory representa-
tion of a netCDF file.

Source code is available from [123] under an Apache license.
TensorFlow [1, 3, 110] is a tool developed by Google for machine learning. While it

contains a wide range of functionality, TensorFlow is mainly designed for deep neural
network models where it aims at easing creation of machine learning models for desk-
top, mobile, web, and cloud.

Source code is available from [110] under an Apache license.
Wendelin.core [120] allows to work with arrays bigger than RAM and local disk. Bigar-

rays are persisted to storage, and can be changed in transactional manner. Hence, bigar-
rays are similar to numpy.memmap for numpy.ndarray and operating system files, but
support transactions and files bigger than disk. The whole bigarray cannot generally be
used as a drop-in replacement for numpy arrays, but bigarray slices are real ndarrays
(multi-dimensional arrays) and can be used everywhere ndarray can be used, including
in C/python/Fortran code. Slice size is limited by virtual address-space size, which is
about max 127 TB on Linux /amd64.

Source code is available from [120] under GPL v3 with specific details, see [121].
Google earth engine [47, 48] builds on the tradition of Grid systems with files, there

is no datacube paradigm as such. Based on a functional programming language, users
can submit code which is executed transparently in Google’s own distributed environ-
ment, with a worldwide private network. Parallelization is straightforward. Discussion
between authors and the developers revealed that Google has added a declarative Map
Algebra interface in addition which resembles a subset of the rasdaman query language,

Page 24 of 61Baumann et al. J Big Data (2021) 8:28

mainly induced operations and some condensers. In a face-to-face conversation at the
“Big Data from Space” conference 2016, the EarthEngine Chief Architect explained that
EarthEngine is relying on Google’s massive hardware rather than on algorithmic elabo-
ration. At the heart is a functional programming language which does not offer model-
based array primitives like rasdaman, nor comparable optimization.

Source code is not available, Earth Engine is closed-source, proprietary.
Open Data Cube (ODC) [75, 76] seeks to increase the value and impact of global Earth

observation satellite data by providing an open and freely accessible exploitation archi-
tecture. ODC is an application layer on top of xarray and PostgreSQL, programmed in
python.

Source code is available from [76] under an Apache license.
xtensor [124, 125] is a C + + library meant for numerical analysis with multi-dimen-

sional array expressions. xtensor provides an extensible expression system enabling lazy
broadcasting, an API following the idioms of the C + + standard library, and tools to
manipulate array expressions and build upon xtensor. Containers of xtensor are inspired
by numpy, the Python array programming library. Adaptors for existing data structures
to be plugged into our expression system can easily be written. In fact, xtensor can be
used to process numpy data structures inplace using Python’s buffer protocol.

Source code is available from [125] under a permissive homegrown license.
Boost.Geometry (aka Generic Geometry Library, GGL), part of collection of the Boost

C + + Libraries, defines concepts, primitives and algorithms for solving geometry prob-
lems [26]. Boost.MultiArray provides a generic N-dimensional array concept definition
and common implementations of that interface.

Source code is available from [27] under a permissive homegrown license.
The Ophidia framework [83][84] provides a full software stack for data analytics and

management of big scientific datasets exploiting a hierarchically distributed storage
along with parallel, in-memory computation techniques and a server-side approach. The
Ophidia data model implements the data cube abstraction to support the processing of
multi-dimensional (array-based) data. A wide set of operators provides functionalities to
run data analytics and metadata management: e.g. data sub-setting, reduction, statisti-
cal analysis, mathematical computations, and much more. So far about 50 operators are
provided in the current release, jointly with about 100 primitives covering a large set of
array-based functions. The framework provides support for executing workflows with
various sizes and complexities, and an end-user terminal, i.e.: command-line interface. A
programmatic Python interface is also available for developers.

Source code is available from [84] under a GPL v3 license.
TileDB [115, 116] is a library managing data that can be represented as dense or sparse

arrays. It can support any number of dimensions and store in each array element any
number of attributes of various data types. It offers compression, high IO performance
on multiple data persistence backends, and easy integration with ecosystems used by
today’s data scientists.

Source code is available from [115] under a MIT license.

Page 25 of 61Baumann et al. J Big Data (2021) 8:28

MapReduce‑type systems

MapReduce offers a general parallel programming paradigm which is based on two user-
implemented functions, Map() and Reduce(). While Map() performs filtering and sort-
ing, Reduce() acts as an aggregator. Both functions are instantiated multiple time for
massive parallelization; the MapReduce engine manages the process instances as well as
their communication.

Implementations of the MapReduce paradigm—such as Hadoop, Spark, and Flink—
typically use Java or Scala for the Map() and Reduce() coding. While these languages
offer array primitives for processing multi-dimensional arrays locally within a Map()
and Reduce() incarnation here is no particular support for arrays exceeding local
server main memory; in particular, the MapReduce engines are not aware of the spa-
tial n-dimensional proximity of array partitions. Hence, the common MapReduce
optimizations cannot exploit the array semantics. Essentially, MapReduce is particu-
larly well suited for unstructured data like sets: “Since it was not originally designed
to leverage the structure its performance is suboptimal” [2].

That said, attempts have been made to implement partitioned array management
and processing on top of MapReduce. Below some major approaches are listed:

SciHadoop [31] is an experimental Hadoop plugin allowing scientists to specify
logical queries over array-based data models. SciHadoop executes queries as map/
reduce programs defined over the logical data model. A SciHadoop prototype has
been implemented for NetCDF data sets.

Source code available from [31] under a GPLv2 license.
SciSpark [101, 102] is a NASA’s Advance Information Systems Technology (AIST)

program funded project that seeks to provide a scalable system for interactive model
evaluation and for the rapid development of climate metrics and analysis to address
the pain points in the current model evaluation process. SciSpark directly leverages
the Apache Spark technology and its notion of Resilient Distributed Datasets (RDDs).
SciSpark is implemented in a Java and Scala Spark environment.

Source code is available from [102] under an Apache v2 license.
GeoTrellis [44, 45] is a geographic data processing engine for high performance

applications. GeoTrellis provides data types for working with rasters in the Scala lan-
guage, as well as fast reading and writing of these data types to disk.

Source code is available from [45] under an Apache v2 license.
MrGeo (pronounced “Mister Geo”) is an open source geospatial toolkit designed

to provide raster-based geospatial processing capabilities performed at scale [71].
MrGeo enables global geospatial big data image processing and analytics. MrGeo is
built upon the Apache Spark distributed processing framework.

Source code is available from [71] under an Apache v2 license.

Array systems assessment
Systematics

We look at the systems from the perspectives.

Page 26 of 61Baumann et al. J Big Data (2021) 8:28

• Functionality: What functionality does the system offer? Are there any known
restrictions?

• Architecture: This mainly addresses the architectural paradigms used. As such,
this is not a quality criterion, but provided as background information.

• Performance: How fast and scalable is the tool in comparison?

This section relies on insight by Merticariu et al. [66] and other work undertaken in
this context.

Each of the criteria applied is explained first; after that, a feature matrix is presented
summarizing all facts synoptically. In addition, literature is cited where the informa-
tion has been harvested from. This allows recapitulating the matrix. Notably, several
systems today are capable of integrating external code. Therefore, it is indispensable
for each functionality feature to clearly state if it is an integral part implemented in
the core engine or not.

Some systems mentioned could not be considered due to resource limitations, but
they appear sufficiently similar to the ones inspected below. Examples include MrGeo
and GeoTrellis as specialized Hadoop implementations offering array support.

Annex 1 lists the complete feature tables.

Functional comparison

Criteria

This is functionality the user (i.e., query writer) has available in terms of the data and
service model. In this spirit, we also list export/import interfaces as well as known client
interfaces although they do not belong to the logical level in a classic sense. Parameters
investigated are the following:

Data model expressiveness:

• Number of dimensions: what number of dimensions can an array have? Today, 3-D
x/y/t image timeseries and x/y/z voxel cubes are prominent, but also 4-D x/y/z/t
gas and fluid simulations, such as atmospheric weather predictions. However, other
dimensions occur as well: 1-D and 2-D data appear not only standalone (as sensor
and image data, resp.), but also as extraction results from any-dimensional datacubes
(such as a pixel’s history or image time slices). Also, higher dimensions occur reg-
ularly. Climate modellers like to think in 5-D cubes (with a second time axis), and
statistical datacubes can have a dozen dimensions. Any array engine should offer
support for at least spatio-temporal dimensions. Notably, going beyond about ten
dimensions faces the curse of dimensionality, such as extreme sparsity [53].

• Extensibility of extent along dimensions: can an existing array be extended along
each dimension’s lower and upper bound? Imagine a map has been defined for a
country, and now is to be extended to cover the whole continent. This means: every
axis must be extensible, and it must be so on both its lower and upper bounds.

• Cell data types: support for numeric data types, for composite cells (e.g., red/green/
blue pixels), etc. While radar imagery consists of single values (complex numbers),
satellite images may have dozens or even hundreds of “bands”. Climate modelers con-

Page 27 of 61Baumann et al. J Big Data (2021) 8:28

sider 50 and more “variables” for each location in the atmosphere, indicating meas-
ures like temperature, humidity, wind speed, trace gases, etc.

• Null values: is there support for null values? For single null values vs. several null
values? Proper treatment of null values in operations? Null values are well known
in databases, and scientific data definitely require them, too. However, instrument
observations typically know of more than one null value (such as “value unknown”,
“value out of range”, “no value delivered”, etc.), and these meanings typically are pig-
gybacked on some value from the data type (such as −9999 for “unknown depth”).
Such null values should be considered by array databases, too. Operations must treat
null values appropriately so that they don’t falsify results.

• Data integration: can queries integrate array handling with data represented in
another model, such as: Relational tables? XML stores? RDF stores? Other? This
is important, e.g., for data/metadata integration - arrays never come standalone,
but are ornamented with metadata critically contributing to their semantics. Such
metadata typically reside already under ordered data management (much more so
than the arrays themselves, traditionally) frequently utilizing some well-known data
model.

• General-purpose or domain specific? Array databases per se are domain independ-
ent and, hence, can be used for all application domains where arrays occur. However,
some systems have been crafted with a particular domain in mind, such as geo data
cubes, and consequently may be less applicable to other domains, such as medical
imagery.

Processing model expressiveness:

• Query language expressiveness (built-in): This section investigates functionality
which is readily available through the primary query language and directly supported
by the system (i.e., not through extension mechanisms).

• Formal semantics: is there a mathematical semantics definition underlying data and
query model? While this may seem an academic exercise a formal semantics is indis-
pensable to verify that the slate of functionality provided is sufficiently complete (for
a particular requirements set), consistent, and without gaps. Practically speaking, a
well-defined semantics enables safe machine-to-machine communication, such as
automatic query generation without human interference.

• Declarative: does the system offer a high-level, declarative query language? Low-level
procedural languages (such as C, C++, Java, python, etc.) have several distinct dis-
advantages: (i) They force users to write down concrete algorithms rather than just
describing the intended result; (ii) the server is constrained in the potential of opti-
mising queries; (iii) delarative code can be analyzed by the server, e.g., to estimate
costs and, based on this, enforce quota; (iv) a server accepting arbitrary procedural
code has a substantial security hole. SQL still is the role model for declarative lan-
guages.

Page 28 of 61Baumann et al. J Big Data (2021) 8:28

• Optimizable: can queries be optimized in the server to achieve performance
improvements? What techniques are available? Procedural code typically is hard to
optimize on server side, except for “embarrassingly parallel” operations, i.e., opera-
tions where parallelization is straightforward. Declarative languages usually open up
vistas for more complex optimizations, such as query rewriting, query splitting, etc.
(See also discussion later on system architectures.)

• Subsetting (trim, slice) operations: can arrays be subset along all dimensions in one
request? Extraction of sub-arrays is the most fundamental operation on arrays. Trim-
ming means reducing the extent by indicating new lower and upper bounds (which
both lie inside the array under inspection) whereas slicing means extracting a slab at
a particular position on an axis. Hence, trimming keeps the number of dimensions
in the output while slicing reduces it; for example, a trim in x and y plus a slice in t
would extract, from a 4-D x/y/z/t datacube, a 3-D x/y/z timeslice. Systems must sup-
port server-side trimming and slicing on any number of dimensions simultaneously
to avoid transporting excessive amounts of data.

• Common operations: can all (unary and binary) operations which are available on
the cells type known to the system also be applied element-wise to arrays? Exam-
ple: a + b is defined in numbers, so A + B should be possible on arrays.

• Array construction: can new arrays be created in the databases (as opposed to cre-
ating arrays only from importing files)? For example, a histogram is a 1-D array
derived from some other array(s).

• Aggregation operations: can aggregates be derived from an array, supporting com-
mon operations like sum, average, min, max? Can an aggregation query deliver
scalars, or aggregated arrays, or both? Note that aggregation does not always
deliver just a single number – aggregation may well just involve selected axes,
hence return a (lower-dimensional) array as a result.

• Array joins: can two or more arrays be combined into a result array? Can they
have different dimensions, extents, cell types? While such functionality is indis-
pensable (think of overlaying two map images) it is nontrivial to implement (think
of diverging partitioning array schemes), hence not supported by all systems.

• Tomlin’s Map Algebra support: are local, focal, zonal, global operations [117]
expressible in queries. Essentially, this allows to have arithmetic expressions as
array indexes, such as in a[x + 1] - a[x−1]. Image filtering and convolution is
maybe the most prominent application of such addressing, but there are many
important operations requiring sophisticated array cell access – even matrix mul-
tiplication is not trivial in this sense.

• External function invocation: can external code (also called UDF, User-Defined
Functions) be linked into the server at runtime so that this code can be invoked
from within the query language? Commonly, array query languages are restricted
in their expressiveness to remain “safe in evaluation”. Operations more complex
or for which code is already existing can be implemented through UDFs, that is:
server-side code external to the DBMS which gets linked into the server at invo-
cation time. Obviously, UDFs can greatly enhance DBMS functionality, e.g., for
adding in domain-specific functionality. Some systems even implement core array

Page 29 of 61Baumann et al. J Big Data (2021) 8:28

functionality via UDFs. To avoid confusion we list built-in and UDF-enabled func-
tionality separately.

Import/export capabilities:

• Data formats: what data formats are supported, and to what degree?
• ETL tools: what mechanisms exist to deal with inconsistent and incomplete

import data?
• Updates to regions within arrays: How selectively can array cells be updated?

The (usually massive) arrays need to be built piecewise, and sometimes need to
be updated in application-dependent areas; for example, a road map raster layer
may need to be updated exactly along the course of a road that has been changed,
defined maybe through some polygonal area.

Client language interfaces: This addresses client-side APIs offered; while every tool
will naturally support its native tool implementation language some support a range of
languages, making them attractive for different purposes and different communities.

• Domain-independent interfaces: which domain-independent interfaces exist for
sending queries and presenting results?

• Domain-specific interfaces: which domain-specific clients exist for sending queries
and presenting results?

Functionality beyond arrays: can queries perform operations involving arrays, but
transcending the array paradigm? This section is a mere start and should be extended in
future. However, at the current state of the art it is not yet clear which generic function-
ality is most relevant.

• Polygon/raster clipping: Can a clipping (i.e., join) be performed between raster and
vector data? Such functionality is important in brain research (ex: analyze brain
regions defined in some atlas), in geo services (ex: long-term vegetation development
over a particular country), and many more applications. Sometimes such clipping is
confined to 2-D x/y, but some engines allow n-D polygons.

Standards support: Which array service standards does the tool support? Currently,
two standards are particularly relevant for arrays or “datacubes”.

• ISO SQL 9075 Part 15: Multi-Dimensional Arrays (MDA) extends the SQL query
language with domain-neutral modeling and query support for n-D arrays [56],
adopting the rasdaman query model [67]. As an additional effect, SQL/MDA estab-
lishes a seamless integration of (array) data and (relational) metadata which is seen as
a game changer for science and engineering data.

• OGC Web Coverage Processing Service (WCPS) defines a geo datacube analytics
language [17, 22]. Its core principles are similar to SQL/MDA, with two main differ-
ences. First, WPCS knows about geo semantics, understanding spatial and temporal

Page 30 of 61Baumann et al. J Big Data (2021) 8:28

axes, coordinate reference systems (and transformations between them). It is based
on the OGC datacube standard which centers around the model of spatio-temporal
coverage data [11]. Second, it is prepared for integration with XPath/XQuery as most
metadata today are stored in XML. Experimentally, such an integration has already
been performed [63]. Within the EarthServer initiative, WCPS has demonstrated its
capabilities on Petabyte datacube holdings [19].

Tuning and optimization

 Criteria

This level defines how data are managed internally, including storage management, dis-
tribution, parallel processing, etc. We have looked at both automatic mechanisms (sum-
marized under optimization) and administrator (or even user) accessible mechanisms to
influence system behavior.

Tuning parameters:

• Partitioning is indispensable for handling arrays larger than server RAM, and even
larger than disk partitions. Some systems perform an automatic partitioning, oth-
ers allow administrators to configure partitioning, maybe even through a dedi-
cated storage layout language [8]—which obviously is advantageous given the high
impact of partitioning on query performance [43].

• Compression: This includes both lossless and lossy compression techniques.
Depending on the data properties, lossless compression may have little or gigan-
tic impact. For example, natural images compress to about 80% of their original
volume whereas thematic map layers (which essentially are quite sparse binary
masks) can compress to about 5%. Lossy compression may be offered, but is dan-
gerous as it may introduce artifacts—think inaccuracies—at tile boundaries.

• Distribution of either complete arrays or the tiles of an array enables horizontal
scaling, at the price of dynamic reassembly. In particular, join operations have to
be crafted carefully to maintain satisfying performance. Therefore, service opera-
tors should be able to influence placement of arrays and their partitions.

• Caching: as always in databases, caching can accomplish a significant speed-up.
Distinguishing factors are: what can be cached and reused—only complete results,
or also intermediate results? Does cache content have to be matched exactly, or
can approximate cache hits be reused?

Optimization techniques:

• Query rewriting: as explained earlier, replacing query expressions by some more
efficient method can have a significant impact; further, it frees users from thinking
about the most efficient formulation. Note that this mechanism requires a query
language with runtime analysis of incoming code.

• Common subexpression elimination means that the query engine is able to spot
identical parts within query and evaluate them only once, rather than every time

Page 31 of 61Baumann et al. J Big Data (2021) 8:28

the identical subexpression appears. Again, this frees users from thinking about
the most efficient way of writing their queries.

• Cost-based optimization estimates the cost of answering a query before actu-
ally executing it. There is a wide field of opportunities, with a huge potential of
improveing response times. For example, when performing a distributed join
“a + b” where both arrays are sitting on different nodes— possibly even connected
through a high-latency wide-area networks—then it can make a significant dif-
ference whether array a is transported to array b, or b gets transported to a, or a
shared approach is pursued. A decision can be made base on the actual tiling of
both arrays, among other impact factors [15].

• Just-in-time compilation of incoming queries generates CPU code that subse-
quently is executed for answering the query. Obviously, such machine code is sub-
stantially faster than interpreting the query or some script code, like python. It
can even be substantially faster than precompiled C++ code. This principle can
be extended to generating target code for multiple cores and for mixed target
hardware, such as CPU and GPU.

Notably, all the above techniques can be combined advantageously through an intel-
ligent optimizer.

Annex 2 lists the complete feature tables.

Architectural comparison

Criteria

This section aims at shedding some light on the high-level architecture of the systems
and tools. As such, there is usually not a “better” or “worse” as in a comparative bench-
mark—rather, this section is of informative nature. An exception is the list of potential
limitations.

Implementation paradigm: what is the overall architecture approach?
Storage organization:

• Does the system support partitioning (tiling, chunking) of arrays?
• Does the system support non-regular tiling schemes? Which ones?
• What mechanisms does the system support for managing data partitioning?
• Can tiles of an array reside on separate computers, while the system maintains a logi-

cally integrated view on the array?
• Can the system process data maintained externally, not controlled by the DBMS?
• Can the system process data stored in tape archives?

Processing & parallelism:

• Which parallelization mechanisms does the system support: local single thread vs.
multicore-local vs. multinode-cluster/cloud vs. federation?

• Does the system have a single point of failure?
• Support for location-transparent federations?
• Heterogeneous hardware support?

Page 32 of 61Baumann et al. J Big Data (2021) 8:28

Limitations: Are there any particular known limitations?
Annex 3 lists the complete feature tables.

Reference used

For the elicitation of the above feature matrices the references listed in this article have
been used, as well as the additional sources listed in the RDA report underlying this arti-
cle [16].

Performance comparison

Systems tested

The benchmark tests various functionalities, data sizings, and also the effect of paral-
lelization. For this report, four systems have been measured: rasdaman, SciDB, PostGIS
Raster, and Open Data Cube. These represent three Array engines with different imple-
mentation paradigms (with ODC being a non-database system); hence, the choice can be
considered representative for the field. Open Data Cube was chosen as a representative
of array tools based on scripting languages. Not present are MapReduce-type systems,
due to resource constraints—this is left for future investigation.

Operations benchmarked challenge efficient multi-dimensional data access in pres-
ence of tiling as well as operations executed on data. For the purpose of this test, focus
was on “local operations” as per Tomlin’s Map Algebra, i.e.: the result pixel of an array
depends on one correspondingpixel in each input array (often there is just one input
array, in case of array joins there are two input arrays). Operations which take one
input array and transform each pixel are often characterized as “embarrassingly paral-
lel” because each pixel can be processed independently, which allows for an easy distri-
bution across cores without the need for respecting Euclidean neighborhood of pixels.
That is the case for more complex operations, such as Tomlin’s focal, zonal, and global
operations; examples include convolution and practically all relevant Linear Algebra
operations, such as matrix multiplication, tensor factorization, PCA, and the like. In ISO
SQL/MDA, for example, a convolution operation on array a using 3 × 3 kernel k would

make use of the pattern.
Once operations are not “embarrassingly parallel” there is a wide open field for imple-

mentation ingenuity to parallelize them efficiently. In a future version of this benchmark
such operations should be tested in addition. Likewise, array joins become non-trivial
once the input arrays to be combined convey a different tiling. While solutions have
been proposed in literature, such as [15], testing this was not subject of this evaluation
either. Finally, some commercial tools could not be evaluated; a special case is Google

Page 33 of 61Baumann et al. J Big Data (2021) 8:28

Earth Engine which only runs as a black box inside the enhanced Google infrastructure
so that tool comparison on identical hardware is impossible.

Generally, while comparative benchmarks are among the results most looked at, they
are at the same time particularly laborious to obtain. The author team has made a best
effort to do as much comparison as possible—still, it remains a wide open field which
certainly deserves further attention in future. Actually, it is planned to continue evalua-
tion work beyond finalization of this report.

The benchmark code is available as part of the rasdaman source code [94].

Testing approach

The approach followed is based on and extends current literature on array database
benchmarking, such as [20, 33, 66, 106] (in chronological order). A main consensus
seems that several categories of performance factors can be distinguished, the most
important being: storage access, array-generating operations, and aggregation opera-
tions. Following these categories we have established a series of test situations that can
be translated directly into queries in case of Array Databases, and which need to be pro-
grammed via command line, python, or C + + code for the other tools. For each category
several different types of queries have been devised:

• Binary operations combining two arrays, such as a + b. Which binary operator this
is can be considered of less importance here—we randomly chose addition. Queries
cover different array dimensions and array operands with both matching and mis-
matching tiles.

• Binary operations applying some scalar to an array, like a + 5; again, we chose addi-
tion as the representative tested.

• Domain-modifying operations which do not change the array values as such, like
shift, extend, and band combination (e.g., combining three images into a 3-band
RGB).

• Subsetting operations involving slicing, trimming, and mixed on 2-D and 3-D arrays.
While subsetting is also a domain-modifying operation we put it in its own category
due to its importance and versatility.

• Unary operations like sine calculation, type casting, and array aggregation.
• “Blocking” operations which require materializing the array before they can be evalu-

ated.
• The CASE statement and concatenation are somewhat special operations that do not

fit well in the other categories.

Each query class in turn has several variations differing in the size of the arrays
involved (40 kB to 4 GB), number of tiles per array (1 to 10,000 tiles), the size of the out-
put array, etc. Table 1 below lists the queries, expressed in the syntax of ISO SQL/MDA.

The benchmarks

The benchmark was run on the following systems:

Page 34 of 61Baumann et al. J Big Data (2021) 8:28

• Open Data Cube 1.5.4.
• PostGIS Raster 2.4.1 (all GDAL drivers enabled) on top of PostgreSQL 9.6.6.
• rasdaman v9.5.
• SciDB 16.9.

All the Bx tests of the previous section have been executed on each system, as far as
supported. Values missing indicate this—for example, test B5 performs data format

Table 1 Array benchmark queries

ID Description Query

B1 Sum of the array’s elements MDSUM(c)

B2 For each element in an array the result element is 1 if
its value is 0, otherwise the result is the logarithm
of its value

CASE
 WHEN c = 0 THEN 1
 ELSE LOG10(c)
 END

B3 Cast all elements to unsigned 8-bit values MDCAST(c AS char)

B4 Concatenate two arrays along the first axis MDCONCAT(c, c, 1)

B5 Encode an array to TIFF MDENCODE(c, “image/tiff”)

B6 Extend the spatial domain of an array to twice its
width and height

MDRESHAPE
(c, [0:MDAXIS HI(c,x)*2,
0:MDAXIS HI(c,y)*2])

B7 Add two 1-D arrays with mismatching tiles c + d

B8 Add two 2-D arrays with matching tiles c + c

B9 Add two 2-D arrays with mismatching tiles c + d

B10 Add the average value of an array to all of its ele-
ments

c + MDAVG(c)

B11 Add a constant scalar value to all elements of an array c + 4

B12 Add two 3-D arrays with mismatching tiles c + d

B13 Calculate all percentiles MDQUANTILE(c, 100)

B14 Join several arrays into a single multi-band array MDJOIN(c,
 MDARRAY MDEXTENT(c)

ELEMENTS 3, c)

B15 Scale-up (2x) an array MDSCALE(
 c,
 [MDAXIS LO(c,x) : MDAXIS HI(c,x)*2,
 MDAXIS LO(c,y): MDAXIS HI(c,y)*2
]
)

B16 Shift the spatial domain by a given shift coordinate MDSHIFT(c, [500, -1000])

B17 Calculate the sine of every element in an array SIN(c)

B18 Subset the whole spatial domain c[*:*, *:*]

B19 Select a single element at a particular coordinate c[5, MDAXIS HI(c,y) – 5]

B20 Slice the first axis at a particular point c[5, MDAXIS LO(c,y) +
3 : MDAXIS HI(c,y)–3]

B21 Trim down both axes c[MDAXIS LO(c,x) +
3 : MDAXIS HI(c,x) − 3,

 MDAXIS LO(c,y) +
3: MDAXIS HI(c,y) – 3

]

B22 Slice the first axis of a 3-D array at a particular point c[MDAXIS HI(c,z),
 MDAXIS LO(c,x) +

3 : MDAXIS HI(c,x) − 3,
 MDAXIS LO(c,y) +

3 : MDAXIS HI(c,y) – 3
]

Page 35 of 61Baumann et al. J Big Data (2021) 8:28

encoding not available in SciDB. Every run was repeated 10x and then averaged. The
machine on which the benchmark has been evaluated has the following characteristics:

• OS: Ubuntu 14.04.
• CPU: Intel Xeon E5-2609v3 @ 1.90 GHz; 2 × 6-core CPUs, 16 MB L3 cache, 256kB

L2, 32kB L1.
• RAM: 64 GB DDR4 2133 MHz.
• Disk: SSD, read speed 520 MB/sec.

Assessment

Results are shown in Fig. 8. Surprisingly, runtime results were quite divergent, therefore
the time scale is logarithmic.

As it turns out the technology landscape around Array Databases is quite varied, rang-
ing from full-stack from-scratch implementations over object-relational DBMS add-
ons to MapReduce add-ons, and all in between. In this line-up of 19 array tools many
are natively designed as a service while some of them comprise command line tools or
libraries which are not complete services, but may aid in developing services. Technolo-
gies were evaluated through.

• A feature walk-through addressing functionality (logical model), tuning and optimi-
zation (physical level), and architecture;

• A comparative benchmark between selected systems.

Investigation, for resource reasons, could only cover storage access and “embar-
rassingly parallel” operations; what is left for future research are operations whose

Fig. 8 Performance comparison of rasdaman, PostGIS Raster, ODC, and SciDB (time axis in seconds,
logarithmic; missing values represent tests not supported by the target system)

Page 36 of 61Baumann et al. J Big Data (2021) 8:28

parallelization is more involved, including general Linear Algebra and joins. Neverthe-
less, some interesting facts can be observed from the measurements shown in Fig. 8.

Overall, a clear ranking is visible with rasdaman being fastest, followed by Open Data
Cube (up to 74× slower), PostGIS Raster (up to 82× slower), and SciDB (up to 304×
slower), in sequence.

Systems offering a query language were easier to benchmark—tests could be formu-
lated, without any extra programming, in a few lines sent to the server. Without query
languages, extra programming effort was necessary which sometimes turned out quite
involved. Functionality offered consisted of pre-cooked functions which may or may not
meet user requirements—in this case: our test queries. Effectively, this extra burden was
one reason why several systems could not be evaluated. For a system choice this means:
such tools will offer only focused functionality and still leave significant burden to the
user. Hence, extrapolating the notion of “analysis-ready data” we demand “analysis-ready
services” which stand out through their flexibility to ask any (simple or complex) query,
any time.

Compiled languages like C ++ still seem to offer significant performance advantages
over scripting languages like python. In a direct comparison, a C/C ++implementation
was found to be faster by an order of magnitude over python code [65]. The first system,
rasterio, uses python only as its frontend with C/C++ based GDAL as its workhorse.
The second one, ArcPy, relies on a pure python implementation underneath, namely
numpy.

UDFs can be very efficient in main memory when they are hand coded and optimized,
but general orchestration tasks of the DBMS—like storage access in face of tiling and
parallelization/distribution as well as allowing arbitrary queries, rather than a predefined
set of UDF functionality—still remains an issue. Implementers obviously tend to prefer
add-on architectures where array functionality is built on top of existing systems which
offer targeted features like parallelism (such as Hadoop and Spark) or persistent storage
management (like relational DBMSs). However, as these base layers are not array-aware
such architectures at least today do not achieve a performance and flexibility compara-
ble to full-stack implementations as the comparison shows.

While a hands-on evaluation of MapReduce type systems was not possible within this
study there is relevant work at XLDB 2018 [29] on a comparison of ArrayUDF (an array
processing framework built on UDFs in databases, from the same group doing EXTAS-
CID) with Spark [122]. Authors report that “In a series of performance tests on large
scientific data sets, we have observed that ArrayUDF outperforms Apache Spark by as
much as 2070X on the same high-performance computing system”. We need to bear in
mind, though, that a pure UDF without a query language constitutes just a fixed block
of code performing one task—this is relatively easy to keep under control and parallel-
ize whereas orchestration of some arbitrary query can change the performance picture
substantially.

Generally, there seems to be a performance hierarchy with full-stack, from-scratch
C++ systems being fastest, followed by mixed implementations combining UDFs (read:
handcrafted implementation) with a database-style orchestration engine, followed by
add-ons to Hadoop/Spark, followed by object-relational add-ons.

Page 37 of 61Baumann et al. J Big Data (2021) 8:28

Case study
Publicly accessible array services

In this section we provide a case study of Array DBMS services in practice. After a brief
panorama of active services publicly offered we zoom in on the EarthServer datacube
federation.

Overview

Below, a selection of publicly accessible services is listed which use Array Database tech-
nology. To be noted is the variability of the portal frontends and clients used, all uni-
formly mapping to Array Database technology underneath (Fig. 9).

A public demonstration service titled “Big Earth Datacube Standards”, running ras-
daman, illustrates practical use of the open standards for multi-dimensional Earth data
extraction, visualization, and analysis [24]. To this end, it offers sample geo-oriented
array use cases on 1-D through 5-D data sets.

PlanetServer [80, 89], a Planetary Data Service hosted by Jacobs University, is offering
geology data currently for Mars, Moon, and Vesta. Total data size is 20 + TB, based on
OGC WCS and WCPS standard based interfaces powered by rasdaman community.

CODE-DE is the German Sentinel hub providing data collected by the ESA Senti-
nel satellite family. The batch-oriented Hadoop-based service of CODE-DE has been
enhanced with interactive spatio-temporal datacube analytics using rasdaman [40].

Fig. 9 Impressions of various services powered by an Array Database system (source: rasdaman/EarthServer)

Page 38 of 61Baumann et al. J Big Data (2021) 8:28

EarthServer

EarthServer [114] is a federation of a growing set of large-scale Earth data providers of
altogether several dozens of Petabytes. The rasdaman-backed platform offers location-
transparent federation where users perceive the combined data offerings as single,
homogenized information offering with free mix and match of data regardless of the
individual datacube’s placement.

We pick some federation members for inspection. Mundi [72] is one of the Euro-
pean Space Agency (ESA) satellite archives for the Sentinel fleet. This includes Sen-
tinel-1 radar data, Sentinel-2 hyperspectral optical data at various processing levels,
and Sentinel-5p providing a variety of products like aerosol index, aerosol layer
height, Methane, Carbon Monoxide, Formaldehyde, and several more indicators.
Each of these represents a 3-D x/y/t datacube—actually, a virtual one because the
underlying files are provided in different coordinate reference systems, a fact that is
hidden through a concept of virtual datacubes which act similar to relational views.
Effectively, hundreds of files get virtually coalesced into one cube making handling
substantially easier for users. WCPS queries allow server-side retrieval, processing,
and fusion, independent from the output format chosen and the coordinate system
data are stored and delivered. Every incoming query gets translated into rasql which
resembles SQL/MDA modulo minor syntax differences.

The common architecture of all nodes participating in EarthServer is shown in
Fig. 10. At the heart are the multi-parallel rasdaman server processes, each one indi-
vidually assigned to some client. As rasdaman is domain-agnostic it does not know
about space/time semantics and coordinates; this is resolved by an additional layer
on top which offers Web access via the OGC API standards WMS, WCS, and WCPS.

Datacubes can be stored in BLOBs of a conventional DBMS or in rasdaman’s
own storage manager which is about 2× faster than, e.g., PostgreSQL as backend.

Fig. 10 EarthServer federation node high-level architecture stack

Page 39 of 61Baumann et al. J Big Data (2021) 8:28

Alternatively (and used by Mundi) rasdaman can register external archives and exe-
cute queries dynamically on such data, without preloading. Obviously, in this case
performance depends on how well the archive is prepared for the spatio-temporal
queries submitted.

This can be studied nicely with Mundi. Satellite data files are delivered by ESA in
a format called SAFE which for each image (“scene”) taken consists of a zip file with
metadata for coordinates and further information, plus a JPEG2000 or NetCDF file,
depending on the satellite instrument type. This is exactly the format in which Mundi
serves these files. From a database perspective, this is suboptimal for several reasons:
Data are not under the exclusive control of the DBMS; tiling is far from optimal for
timeseries analysis as every scene represents a tile of thickness 1 along time axis; due
to the choice of JPEG with requires extra CPU cycles for reconstructing the original
pixel. All these issues had to be addressed as import (and building up optimal struc-
tures) was not an option considering the storage costs of the Petabytes under consid-
eration; currently, several dozens of Petabytes of datacubes are offered via Mundi.

Value of Earth data grows with variety, and so there are further datacubes represent-
ing Landsat-5, - 7, and -8 as well as 2-D elevation data. All of these can be processed and
combined, including remote fusion. Such queries are solved through query splitting: in
a bottom-up walk of the query tree largest subtrees are built around objects all sitting
on the same remote server so that these subqueries can be completely executed on that
server. Optimization goals currently are (i) maximizing distributed processing and (ii)
minimizing data flow between different server nodes. This principle is applied to both
cluster/cloud and remote distributed setups. For the user this means complete location
transparency: every query can be evaluated by every federation member, and no knowl-
edge about an object’s location is required by the user. Figure 11 illustrates this principle.

Hence, in the federation users experience a single, integrated information space
abstracting away from the data center’s storage and processing organization, and further
particularities.

Fig. 11 Rasdaman query splitting example

Page 40 of 61Baumann et al. J Big Data (2021) 8:28

It has turned out, though, that federation membership required convincing security
mechanisms, securing not only access overall, but also protecting parts of datacubes;
for example, the long tail of climate timeseries might be free, but the latest two weeks
are available for fee only. To this end, rasdaman implements Role-Based Access Control
with modifications to protect areas in datacubes down to the level of single pixels, based
on bounding boxes, polygons patterns, masks, or computed criteria.

Conclusions
In this paper we have provided the following main contributions:

• A feature matrix which addresses a wide range of system properties, from abstract
concepts like query language expressiveness down to practicalities such as data for-
mats and ingestion tool support. This aids future comparative tests as a large matrix
is available against which further systems can be readily compared. Array system
designers get a feature list, including relevant standards, along which they can craft
their own tool.

• A feature comparison of software tools offering array services, starting from the field
of Array Databases and extending into neighboring fields. The expected benefit is
to stimulate further research and give a decision basis for practitioners in charge of
choosing the best suited datacube system.

• A public available array benchmark which is more rigorous and systematic than
existing array benchmarks, and is designed to not allow tuning a system towards the
tests performed, therefore enhancing its general value and reliability.

• A comparison of four Array DBMSs, which exceeds the existing test breadth where
only two systems are compared. This allows for a better comparison of systems when
faced with the task of choosing one.

With this survey we hope to provide a useful basis for choosing technology when it
comes to flexible, scalable analytics on massive spatio-temporal sensor, image, simula-
tion, and statistics data. Such arrays constitute a large part of today’s Big Data, forming
a basic data category next to sets, hierarchies, and general graphs. In view of the known
challenges in functionality, performance, scalability, and interoperability serving these
arrays in a user-friendly way is a major challenge today. Additionally, we hope it stimu-
lates research on array service concepts and architectures, thereby advancing this com-
paratively young field of database research.

Array Databases seem promising in that they provide the advantage-proven features of
a declarative query language for “shipping code to data”, combined with powerful tech-
niques for efficient server-side evaluation, with parallelization being just one out of a
series of known methods for speed-up and scalability.

Page 41 of 61Baumann et al. J Big Data (2021) 8:28

In this study, we have provided on introduction and overview of the state of the art
in Array Databases as a tool to serve massive spatio-temporal datacubes in an analysis-
ready manner. Relevant datacube standards were listed, together with secondary infor-
mation for further studies and immersion.

The line-up of 19 different tools, analyzed against over 30 criteria, and 4 Array DBMSs
benchmarked is an unprecedented technology overview for this emerging field. Array
Databases, command line tools and libraries, as well as MapReduce-based tools have
been assessed comparatively, with a clear provenance for all facts elicited.

For some tools, a comparative performance analysis has been conducted showing that
full-stack, clean-slate array C++ implementations convey highest performance; python
constitutes a basis that comes with a performance penalty upfront, and likewise add-
on implementations that reuse not array aware architectures (such as object-relational
extensions and MapReduce) to emulate array support—although, admittedly, these are
faster and easier to implement. Generally, implementation of the full stack of Array
Databases in some fast, compiling language (like C++) pays off, although it requires a
significant implementation effort.

In summary, Array Databases herald a new age in datacube services and spatio-tem-
poral analysis. With their genuine array support they are superior to other approaches
in functionality, performance, and scalability, and supported by powerful datacube
standards. Query functionality is independent from the data encoding, and data can
be delivered in the format requested by the user. Our benchmark results are in line
with the increasing number of Array Database deployments on Earth science data in
particular, meantime far beyond the Petabyte frontier.

With the advent of the ISO SQL/MDA standard as the universal datacube query
language a game change can be expected: implementers have clear guidance, which
will lead to increased interoperability (which today effectively does not exist between
the systems—only one currently supports relevant standards). Applications become
easily manageable across all domains, and a natural integration with metadata is pro-
vided through the SQL embedding. Further, standardization will form an additional
stimulus for both open-source and proprietary tool developers to jump on this trend-
ing technology.

Such data integration will be of paramount importance in future. Standalone array
stores form just another silo, even with query capabilities. It will be indispensible to inte-
grate array handling into the metadata paradigms applications like to use. As of today,
work on array integration has been done on.

• Sets: the ISO SQL/MDA standard, which is based on the rasdaman query language,
integrates multi-dimensional arrays into SQL [67];

• Hierarchies: the xWCPS language extends the OGC WCPS geo array language with
metadata retrieval [62];

Page 42 of 61Baumann et al. J Big Data (2021) 8:28

• (Knowledge) graphs: first research has been done on integration arrays into RDF/
SPARQL databases [2]; a general graph query framework is under development in
ISO.

Still, despite its breadth, this report uncovers the need for further research. In particu-
lar, a deep comparison of the fundamentally different architectures of Array Databases
and MapReduce oriented systems should be of high interest.

Obviously, Michael Stonebraker’s observation of “no one size fits all” is very true also
for array support—as arrays form a separate fundamental data structure next to sets,
hierarchies, and graphs, they require carefully crafted implementations to deliver the
usability in terms of flexibility, scalability, performance, and standards conformance
which is essential for abroad uptake. Genuine Array Database technology, therefore,
appears most promising for spatio-temporal datacubes, as this study indicates.

Future work should include further systems in the benchmark (in particular the
MapReduce category), and also extend it with further tests for more complex queries,
such as Machine Learning. It is the hope that this study has paved the way towards con-
solidation of functionality, but also towards a future common array service benchmark
which would service providers and users enable to make more informed decisions on
backend choice and service design. For system developers, the overview hopefully is
helpful in determining gaps in theory and implementation, thereby contributing to fur-
ther advancing the domain of array services as a whole.
Acknowledgements
The authors gratefully acknowledge the contributions made by Kwo-Sen-Kuo, NASA, as well as the helpful comments
made by the reviewers.

Authors’ contributions
PB has compiled information about the systems and has designed the benchmarks together with DM and VM. DM
and VM have implemented the benchmarks. DM, VM, and BHP have conducted the benchmarks. All authors read and
approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This research has been conducted as part of EU H2020
EarthServer-2 and German BigDataCube.

 Availability of data and materials
The benchmark code is available as part of the rasdaman source code [94]. The source/executable code of the systems
benchmarked is available at the URLs given in the text; its contents is not under the control of the article authors.

Competing interests
The team has conducted this research based on their experience with implementing an Array DBMS, rasdaman. The
authors are also employed at research spin-off rasdaman GmbH.

Page 43 of 61Baumann et al. J Big Data (2021) 8:28

A
nn

ex
 1

: A
rr

ay
 D

BM
S

co
nc

ep
tu

al
 fe

at
ur

e
m

at
ri

x

A
rr

ay
 D

BM
S

Fu
ll-

st
ac

k
A

rr
ay

 D
BM

S
A

dd
-o

n
ar

ra
y

su
pp

or
t

ra
sd

am
an

Sc
iD

B
Sc

iQ
L

EX
TA

SC
ID

Po
st

G
IS

 R
as

te
r

O
ra

cl
e

G
eo

Ra
st

er
Te

ra
da

ta
 A

rr
ay

s

D
at

a
m

od
el

 D
im

en
si

on
s

n-
D

n-
D

n-
D

n-
D

2D
2D

1.
.5

-D

 A
rr

ay
 e

xt
en

si
bi

lit
y

A
ll

ax
es

, l
ow

er
 a

nd

up
pe

r b
ou

nd
A

ll
ax

es
, l

ow
er

 a
nd

up

pe
r b

ou
nd

A
ll

ax
es

, l
ow

er
 a

nd

up
pe

r b
ou

nd
?

X
&

Y
ax

es
, l

ow
er

 a
nd

 u
pp

er

bo
un

d
Ye

s
N

o

 C
el

l d
at

a
ty

pe
s

In
t,

flo
at

, c
om

pl
ex

,
st

ru
ct

s
nu

m
er

ic
 ty

pe
s,

da
te

tim
e

A
ny

 S
Q

L
da

ta
 ty

pe
?

(p
re

su
m

ab
ly

C

 +
 +

 p
rim

iti
ve

ty

pe
s)

In
t,

flo
at

, b
an

d-
w

is
e

st
ru

ct
s

In
t &

 fl
oa

t (
va

rio
us

le

ng
th

s)
, s

tr
uc

ts
Co

m
m

on
 S

Q
L

da
ta

ty

pe
s

(e
xc

ep
t v

ar
ia

bl
e

le
ng

th
)

 N
ul

l v
al

ue
s

Ye
s,

nu
ll

ve
lu

e
se

ts

an
d

in
te

rv
al

s,
ca

n
be

as

si
gn

ed
 d

yn
am

ic
al

ly

Ye
s

(s
in

gl
e

nu
ll)

Ye
s,

SQ
L-

st
yl

e
(s

in
gl

e
nu

ll)
?

Ye
s

(s
in

gl
e

va
lu

e)
Ye

s,
SQ

L-
st

yl
e

(s
in

gl
e

va
lu

e)
Ye

s,
SQ

L-
st

yl
e

(s
in

gl
e

va
lu

e)
; d

efi
ne

d
at

 ta
bl

e
cr

ea
tio

n
tim

e

D
at

a
in

te
gr

at
io

n

 R
el

at
io

na
l t

ab
le

s
Ye

s,
vi

a
SQ

L/
M

D
A

 s
td

N
o

Ye
s

Ye
s

Ye
s,

vi
a

po
st

gr
es

ql
Ye

s
Ye

s

 X
M

L
st

or
es

Ye
s,

vi
a

W
C

PS
 s

td
N

o
N

o
(M

on
et

D
B/

XQ
ue

ry
 is

 n
ot

m

ai
nt

ai
ne

d
si

nc
e

20
11

)

N
o

Ye
s,

vi
a

po
st

gr
es

ql
Ye

s
Ye

s

 R
D

F
st

or
es

Ye
s,

sh
ow

n
w

ith

A
M

O
S

II
N

o
Ye

s
N

o
O

nl
y

vi
a

po
st

gr
es

ql
 p

lu
gi

ns
Ye

s
Ye

s

O
th

er
O

SM
, O

G
R

 D
om

ai
n

sp
ec

ifi
c?

G
en

er
ic

G
en

er
ic

G
en

er
ic

G
en

er
ic

G
eo

 ra
st

er
G

eo
 ra

st
er

ge
ne

ric

 H
or

iz
. s

pa
tia

l a
xe

s
Ye

s
N

o
N

o
N

o
Ye

s
Ye

s
N

o

 H
ei

gh
t/

de
pt

h
ax

is
Ye

s
N

o
N

o
N

o
N

o
N

o
N

o

 T
im

e
ax

is
Ye

s
np

N
o

N
o

N
o

N
o

N
o

Page 44 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 D

BM
S

Fu
ll-

st
ac

k
A

rr
ay

 D
BM

S
A

dd
-o

n
ar

ra
y

su
pp

or
t

ra
sd

am
an

Sc
iD

B
Sc

iQ
L

EX
TA

SC
ID

Po
st

G
IS

 R
as

te
r

O
ra

cl
e

G
eo

Ra
st

er
Te

ra
da

ta
 A

rr
ay

s

Pr
oc

es
si

ng
 m

od
el

 Q
ue

ry
 la

ng
ua

ge
ex

pr
es

si
ve

ne
ss

(b

ui
lt-

in
)

de
cl

ar
at

iv
e

ar
ra

y
Q

L
de

cl
ar

at
iv

e
ar

ra
y

Q
L

de
cl

ar
at

iv
e

ar
ra

y
Q

L
N

o,
 f

un
ct

io
n

ca
lls

A
rr

ay
 fu

nc
tio

ns
 w

ith
 s

pe
ci

fic

m
ic

ro
sy

nt
ax

, n
ot

tig
ht

ly

in
te

gr
at

ed
 w

ith
 S

Q
L

PL
/S

Q
L
+

 o
bj

ec
t-

re
la

tio
na

l
fu

nc
tio

ns
 w

ith
 s

ub
-

la
ng

ua
ge

A
rr

ay
 fu

nc
tio

ns
 w

ith

sp
ec

ifi
c

m
ic

ro
sy

nt
ax

,
no

t t
ig

ht
ly

 in
te

gr
at

ed

w
ith

 S
Q

L

 F
or

m
al

 s
em

an
tic

s
A

rr
ay

 A
lg

eb
ra

N
o

N
o

N
o

N
o

N
o

N
o

 T
ig

ht
ly

 in
te

gr
at

ed

w
ith

 S
Q

L
or

 s
om

e
ot

he
r Q

L

Ye
s,

vi
a

SQ
L/

M
D

A
 s

td
N

o
Ye

s
N

o
ar

ra
y

‘M
ap

 A
lg

eb
ra

’ s
yn

ta
x

se
pa

ra
te

 fr
om

 S
Q

L
N

o
N

o

 O
pt

im
iz

ab
le

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

(a
rr

ay
 fu

nc
tio

na
lit

y
no

t
in

te
gr

at
ed

 w
ith

 Q
L)

N
o

 S
ub

se
tt

in
g

(t
rim

,
sl

ic
e)

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Tr
im

Ye
s

 C
om

m
on

 c
el

l
op

er
at

io
ns

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

 A
rb

itr
ar

y
ne

w
 a

rr
ay

de

riv
at

io
n

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

on
ly

 u
p

to
 2

55
9

ce
lls

;
in

iti
al

iz
at

io
n

w
ith

 li
te

r-
al

s
or

 th
ro

ug
h

U
D

F

 A
gg

re
ga

tio
n

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

 A
rr

ay
 jo

in
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

To
m

lin
’s

M
ap

A
lg

eb
ra

ye
s

ye
s

on
 p

rin
ci

pl
e,

 v
ia

W

H
ER

E
cl

au
se

pr

ed
ic

at
es

 o
n

in
de

xe
s

N
o

In
 M

ap
A

lg
eb

ra
()

fu
nc

tio
n

(o
nl

y
lo

ca
l,

fo
ca

l)
O

nl
y

lo
ca

l
on

ly
 lo

ca
l

 E
xt

er
na

l f
un

ct
io

n
in

vo
ca

tio
n

(U
D

F)
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

Im
po

rt
/e

xp
or

t

Page 45 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 D

BM
S

Fu
ll-

st
ac

k
A

rr
ay

 D
BM

S
A

dd
-o

n
ar

ra
y

su
pp

or
t

ra
sd

am
an

Sc
iD

B
Sc

iQ
L

EX
TA

SC
ID

Po
st

G
IS

 R
as

te
r

O
ra

cl
e

G
eo

Ra
st

er
Te

ra
da

ta
 A

rr
ay

s

 D
at

a
fo

rm
at

s
La

rg
e

nu
m

be
r o

f
fo

rm
at

s:
C

SV
, J

SO
N

,
(G

eo
)T

IF
F,

PN
G

,
N

et
C

D
F,

JP
EG

20
00

,
G

RI
B2

, e
tc

.

C
SV

/t
ex

t,
bi

na
ry

se

rv
er

 fo
rm

at
FI

TS
, M

SE
ED

, B
A

M

an
d

(G
eo

)T
IF

F
?

la
rg

e
nu

m
be

r o
f f

or
m

at
s,

in
cl

ud
in

g
G

eo
TI

FF
TI

FF
, G

IF
, B

M
P,

PN
G

?

 D
at

a
cl

ea
ns

in
g

Ye
s,

ET
L

to
ol

N
o

N
o

?
N

o
N

o
N

o

 A
rr

ay
 c

el
ls

 u
pd

at
e

A
ny

 c
el

l o
r r

eg
io

n
A

ny
 c

el
l o

r r
eg

io
n

A
ny

 c
el

l o
r r

eg
io

n
?

do
w

n
to

 s
in

gl
e

ce
ll

le
ve

l
do

w
n

to
 s

in
gl

e
ce

ll
le

ve
l

do
w

n
to

 s
in

gl
e

ce
ll

le
ve

l

C
lie

nt
 la

ng
ua

ge
 in

te
rf

ac
es

 D
om

ai
n-

in
de

pe
nd

-
en

t
C
+
+

, J
av

a,
 p

yt
ho

n,
 R

,
Ja

va
Sc

rip
t

C
+
+

, p
yt

ho
n,

 R
,

ju
lia

Ja
va

, p
er

l,
R,

 R
ub

y,

PH
P,

py
th

on
, R

?
C

, P
H

P,
py

th
on

, J
av

a
Ja

va
 &

 a
ll

ot
he

r l
an

gu
ag

es

su
pp

or
te

d
by

 O
ra

cl
e

C
, C

O
BO

L,
 P

L/
1

 D
om

ai
n-

sp
ec

ifi
c

m
an

y
ge

o
cl

ie
nt

s
vi

a
O

G
C

 s
ta

nd
ar

ds
:

O
pe

nL
ay

er
s,

Q
G

IS
,

N
A

SA
 W

or
ld

W
in

d,
 ..

.

?
?

?
M

ap
Se

rv
er

, G
eo

Se
rv

er
, D

ee
-

gr
ee

, Q
G

IS
, .

..
?

N
o

Be
yo

nd
 a

rr
ay

s

 P
ol

yg
on

/r
as

te
r

cl
ip

pi
ng

Ye
s

N
o

N
o

N
o

Ye
s

(2
D

)
N

o
N

o

 S
ta

nd
ar

ds
 s

up
po

rt

 IS
O

 S
Q

L
M

D
A

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

 O
G

C
/IS

O
 g

eo
 d

at
a-

cu
be

s
(c

ov
er

ag
es

)

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

 R
em

ar
ks

“W
he

n
cr

ea
tin

g
ov

er
vi

ew
s

of

a
sp

ec
ifi

c
fa

ct
or

 fr
om

 a
 s

et

of
 ra

st
er

s
th

at
 a

re
 a

lig
ne

d,

it
is

 p
os

si
bl

e
fo

r t
he

 o
ve

r-
vi

ew
s

to
 n

ot
 a

lig
n.

”

So
m

e
fu

nc
tio

na
lit

y
on

ly

on
 1

D
 a

rr
ay

s;
ar

ra
y

si
ze

 li
m

ite
d

to

le
ss

 th
an

 6
4

kB
, a

rr
ay

ge

ne
ra

tio
n

to
 2

55
9

ce
lls

; a
rr

ay
 o

pe
ra

to
rs

in

 fu
nc

tio
n

sy
nt

ax
, n

o
in

fix
 (l

ik
e

“a
 +

 b
”);

Page 46 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 to

ol
s

O
Pe

N
D

A
P

H
yr

ax
xa

rr
ay

Te
ns

or
Fl

ow
W

en
de

lin

.c
or

e
G

oo
gl

e
Ea

rt
h

En
gi

ne
O

pe
nD

at
a

Cu
be

xt
en

so
r

Bo
os

t::
 g

eo
m

et
ry

O
ph

id
ia

Ti
le

D
B

D
at

a
m

od
el

 D
im

en
si

on
s

n-
D

N
-D

N
-D

n-
D

2-
D

2-
D

, 3
-D

N
-D

N
-D

N
-D

n-
D

 A
rr

ay
 e

xt
en

si
-

bi
lit

y
N

o
Ye

s
A

ll
ax

es
, i

n-
m

em
or

y
Ye

s
?

Ye
s

A
ll

ax
es

, i
n-

m
em

or
y

A
ll

ax
es

, i
n-

m
em

or
y

Ye
s

Ye
s

 C
el

l d
at

a
ty

pe
s

N
um

er
ic

 ty
pe

s
D

oc
s

un
cl

ea
r,

as
su

m
in

g
sa

m
e

as

nu
m

py

In
t,

flo
at

, s
tr

in
g,

 b
oo

l,
st

ru
ct

s
Py

th
on

nu

m
er

ic

da
ta

 ty
pe

s

Ll
ik

el
y

va
rio

us

nu
m

er
ic

ty

pe
s

N
et

C
D

F
ce

ll
da

ta
 ty

pe
s

C
+
+

 d
at

a
ty

pe
s

C
+
+

 d
at

a
ty

pe
s

C
 p

rim
iti

ve
s?

N
um

er
ic

ty

pe
s,

fix
ed

ar

ra
y,

va

ria
bl

e
ar

ra
y,

st

rin
g

N
ul

l v
al

ue
s

N
o

Ye
s

Ye
s

(p
la

ce
ho

ld
er

s)
N

o
N

o
N

o
N

o
N

o
?

Ye
s

D
at

a
in

te
gr

at
io

n

 R
el

at
io

na
l

ta
bl

es
Ye

s
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

 X
M

L
st

or
es

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

no
N

o

 R
D

F
st

or
es

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Ke
y-

va
lu

e
st

or
e

O
th

er

 D
om

ai
n

sp
e-

ci
fic

?
G

en
er

ic
G

en
er

ic
M

ac
hi

ne
 le

ar
ni

ng
G

en
er

ic
G

eo
 ra

st
er

G
eo

 ra
st

er
A

st
ro

no
m

y
G

en
er

ic
G

en
er

ic
no

 H
or

iz
on

ta
l

 S
pa

tia
l a

xe
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

N
o

N
o

 H
ei

gh
t/

de
pt

h
ax

is
?

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

 T
im

e
ax

is
Ye

s
Ye

s
N

o
N

o
N

o
Ye

s
N

o
N

o
N

o

Page 47 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 to

ol
s

O
Pe

N
D

A
P

H
yr

ax
xa

rr
ay

Te
ns

or
Fl

ow
W

en
de

lin

.c
or

e
G

oo
gl

e
Ea

rt
h

En
gi

ne
O

pe
nD

at
a

Cu
be

xt
en

so
r

Bo
os

t::
 g

eo
m

et
ry

O
ph

id
ia

Ti
le

D
B

Pr
oc

es
si

ng
 m

od
el

N
o

 Q
ue

ry

la
ng

ua
ge

ex

pr
es

-
si

ve
ne

ss

(b
ui

lt-
in

)

N
o,

 p
yt

ho
n

lib
ra

ry
N

o,
 p

yt
ho

n
lib

ra
ry

N
o,

 fu
nc

tio
na

l
ca

lls
,

py
th

on
 a

nd

Ja
va

Sc
rip

t

N
o,

 c
lie

nt
-s

id
e

py
th

on
 c

al
ls

N
o,

 C
 +

 +
 lib

ra
ry

N
o,

 C
 +

 +
 lib

ra
ry

N
o,

 c
lie

nt
-

si
de

 c
om

-
m

an
d

lin
e

or
 p

yt
ho

n

N
o

 F
or

m
al

 s
em

an
-

tic
s

N
o

N
o,

 p
yt

ho
n

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

 T
ig

ht
ly

 in
te

-
gr

at
ed

 w
ith

SQ

L
or

 s
om

e
ot

he
r Q

L

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

 O
pt

im
iz

ab
le

N
o

N
o

N
o

N
o

To
 s

om
e

ex
te

nt
 (s

ee

ph
ys

ic
al

m

od
el

)

N
o

N
o

Ye
s

Ye
s

Ye
s

 S
ub

se
tt

in
g

(t
rim

, s
lic

e)
Ye

s
N

o
Ye

s
Ye

s
Ye

s
(fu

nc
tio

n
ca

ll)
Ye

s,
th

ro
ug

h
cl

ie
nt

-s
id

e
py

th
on

Ye
s

In
-m

em
or

y
Ye

s
N

o

 C
om

m
on

 c
el

l
op

er
at

io
ns

N
o

Ye
s

Ye
s

Ye
s

Ye
s

(fu
nc

tio
n

ca
ll)

ye
s,

th
ro

ug
h

cl
ie

nt
-s

id
e

py
th

on

ye
s

In
-m

em
or

y
ye

s
no

 A
rb

itr
ar

y
ne

w

ar
ra

y
de

riv
a-

tio
n

N
o

Ye
s

Ye
s

Ye
s

Ye
s

(fu
nc

tio
n

ca
ll)

Ye
s,

th
ro

ug
h

cl
ie

nt
-s

id
e

py
th

on

Ye
s

In
-m

em
or

y
N

o
N

o

 A
gg

re
ga

tio
n

Ye
s,

w
ith

 N
cM

L
Ye

s
Ye

s
Ye

s
Ye

s
(fu

nc
tio

n
ca

ll)
ye

s,
th

ro
ug

h
cl

ie
nt

-s
id

e
py

th
on

ye
s

In
-m

em
or

y
Ye

s
N

o

Page 48 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 to

ol
s

O
Pe

N
D

A
P

H
yr

ax
xa

rr
ay

Te
ns

or
Fl

ow
W

en
de

lin

.c
or

e
G

oo
gl

e
Ea

rt
h

En
gi

ne
O

pe
nD

at
a

Cu
be

xt
en

so
r

Bo
os

t::
 g

eo
m

et
ry

O
ph

id
ia

Ti
le

D
B

 A
rr

ay
 jo

in
s

N
o

Ye
s

Ye
s

N
o

Ye
s

(fu
nc

tio
n

ca
ll)

N
o

ye
s

ye
s,

m
ai

n
m

em
or

y
ye

s,
IN

TE
R-

C
U

BE

op
er

at
io

n;

re
qu

ire
s

id
en

tic
al

 ti
l-

in
g

of
 b

ot
h

ar
ra

ys

no

 T
om

lin
’s

M
ap

A

lg
eb

ra
N

o
Ye

s
Ye

s,
th

ro
ug

h
py

th
on

us

er
 c

od
e

N
o

O
nl

y
lo

ca
l

Ye
s,

th
ro

ug
h

cl
ie

nt
-s

id
e

py
th

on

N
o

N
o

N
o

N
o

 E
xt

er
na

l f
un

c-
tio

n
 in

vo
ca

-
tio

n
(U

D
F)

N
o

Ye
s

Ye
s,

vi
a

py
th

on
 u

se
r

co
de

Ye
s,

vi
a

py
th

on
 u

se
r

co
de

N
ot

 in
vo

ca
-

tio
n

fro
m

w

ith
in

 E
E

fu
nc

tio
ns

,
bu

t t
hr

ou
gh

ow

n
w

ra
p-

pi
ng

 c
od

e
in

 h
os

t
la

ng
ua

ge

N
o

Ye
s,

vi
a

C
 +

 +
 u

se
r

co
de

Ye
s,

vi
a

C
 +

 +
 c

od
e

Ye
s,

vi
a

sh
el

l
or

 p
yt

ho
n

N
o

Im
po

rt
/e

xp
or

t

 D
at

a
fo

rm
at

s
Im

po
rt

: c
sv

,
da

pr
ea

de
r,

ds
p,

ff,

 fi
ts

, g
da

l,
h5

,
hd

f4
/5

, …
Ex

po
rt

: a
sc

ii,

ne
tC

D
F,

Bi
na

ry

(D
A

P)
, x

m
l

La
rg

e
nu

m
be

r
of

 fo
rm

at
s,

an
yt

hi
ng

th

at

py
th

on
 c

an

un
de

rs
ta

nd

th
ro

ug
h

a
lib

ra
ry

Ex
po

rt
: b

in
ar

y
ch

ec
kp

oi
nt

 fi
le

s
(s

ta
te

) +
 S

av
ed

-
M

od
el

; i
m

po
rt

 fr
om

sa

m
e

N
o

G
eo

TI
FF

ne
tC

D
F

N
o

im
po

rt
 re

qu
ire

s
ex

te
rn

al
 c

od
e

FI
TS

, N
et

C
D

F,
JS

O
N

N
o

 D
at

a
cl

ea
ns

in
g

Ye
s

N
o

N
o

N
o

U
pl

oa
d

of

m
as

-
si

ve
 d

at
a

th
ro

ug
h

G
oo

gl
e

Ye
s

N
o

N
o

?
Ye

s

Page 49 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 to

ol
s

O
Pe

N
D

A
P

H
yr

ax
xa

rr
ay

Te
ns

or
Fl

ow
W

en
de

lin

.c
or

e
G

oo
gl

e
Ea

rt
h

En
gi

ne
O

pe
nD

at
a

Cu
be

xt
en

so
r

Bo
os

t::
 g

eo
m

et
ry

O
ph

id
ia

Ti
le

D
B

 A
rr

ay
 c

el
ls

up

da
te

N
o

A
ny

 c
el

l o
r

re
gi

on
A

ny
 c

el
l o

r r
eg

io
n

A
ny

 c
el

l o
r

re
gi

on
D

ow
n

to

si
ng

le
 c

el
l

le
ve

l

N
o

up
da

te

fu
nc

tio
na

lit
y

A
ny

 c
el

l o
r r

eg
io

n
D

ow
n

to
 s

in
gl

e
ce

ll
N

o
up

da
te

fu

nc
tio

n-
al

ity

Ye
s

C
lie

nt
 la

ng
ua

ge
 in

te
rf

ac
es

 D
om

ai
n-

in
de

-
pe

nd
en

t
C
+
+

, J
av

a,
Py

th
on

Py
th

on
, C

, J
av

a,
 g

o
Py

th
on

, C
,

Fo
rt

ra
n

Ja
va

Sc
rip

t,
py

th
on

Py
th

on
C
+
+

C
+
+

py
th

on
C
+
+

 D
om

ai
n-

sp
ec

ifi
c

O
G

C
 W

C
S

st
an

da
rd

N
o

N
o

no
?

?
N

o
N

o
?

N
o

Be
yo

nd
 a

rr
ay

s

 P
ol

yg
on

/r
as

te
r

cl
ip

pi
ng

N
o

?
N

o
N

o
ye

s,
2D

N
o

N
o

Ye
s

N
o

N
o

St
an

da
rd

s
su

pp
or

t

 I
SO

 S
Q

L
M

D
A

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

 O
G

C
/IS

O
 g

eo

da
ta

cu
be

s
(c

ov
er

ag
es

)

W
C

S
2.

0
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

Page 50 of 61Baumann et al. J Big Data (2021) 8:28

M
ap

Re
du

ce

Sc
iH

ad
oo

p
Sc

iS
pa

rk

D
at

a
m

od
el

 D
im

en
si

on
s

N
-D

N
-D

 A
rr

ay
 e

xt
en

si
bi

lit
y

A
ll

ax
es

A
ll

ax
es

 C
el

l d
at

a
ty

pe
s

In
t

Bo
ol

, i
nt

, fl
oa

t,
co

m
pl

ex
, s

tr
uc

ts

 N
ul

l v
al

ue
s

Ye
s

Ye
s

D
at

a
in

te
gr

at
io

n

 R
el

at
io

na
l t

ab
le

s
N

o
N

o

 X
M

L
st

or
es

N
o

N
o

 R
D

F
st

or
es

N
o

N
o

 O
th

er
–

–

 D
om

ai
n

sp
ec

ifi
c?

G
en

er
ic

G
en

er
ic

 H
or

iz
on

ta
l s

pa
tia

l a
xe

s
Ye

s
Ye

s

 H
ei

gh
t/

de
pt

h
ax

is
Ye

s
Ye

s

 T
im

e
ax

is
Ye

s
Ye

s

Pr
oc

es
si

ng
 m

od
el

 Q
ue

ry
 la

ng
ua

ge
 e

xp
re

ss
iv

en
es

s
(b

ui
lt-

in
)

Ye
s,

fu
nc

tio
na

l
N

o,
 tr

an
sf

or
m

at
io

ns
 a

nd
 a

ct
io

ns

 F
or

m
al

 s
em

an
tic

s
Ye

s
N

o

 T
ig

ht
ly

 in
te

gr
at

ed
 w

ith
 S

Q
L

or
 s

om
e

ot
he

r Q
L

N
o

N
o

 O
pt

im
iz

ab
le

Ye
s

Ye
s

 S
ub

se
tt

in
g

(t
rim

, s
lic

e)
Ye

s
Ye

s

 C
om

m
on

 c
el

l o
pe

ra
tio

ns
?

Ye
s

 A
rb

itr
ar

y
ne

w
 a

rr
ay

 d
er

iv
at

io
n

?
Ye

s

 A
gg

re
ga

tio
n

Ye
s

Ye
s

 A
rr

ay
 jo

in
s

N
o

N
o

 T
om

lin
’s

M
ap

 A
lg

eb
ra

N
o

N
o

Page 51 of 61Baumann et al. J Big Data (2021) 8:28

M
ap

Re
du

ce

Sc
iH

ad
oo

p
Sc

iS
pa

rk

 E
xt

er
na

l f
un

ct
io

n
in

vo
ca

tio
n

(U
D

F)
N

o
Ye

s,
vi

a
Ja

va
 c

od
e

Im
po

rt
/e

xp
or

t

 D
at

a
fo

rm
at

s
N

et
C

D
F,

H
D

F
N

et
C

D
F,

H
D

F,
C

SV

 D
at

a
cl

ea
ns

in
g

N
o

N
o

 A
rr

ay
 c

el
ls

 u
pd

at
e

?
?

C
lie

nt
 la

ng
ua

ge
 in

te
rf

ac
es

 D
om

ai
n-

in
de

pe
nd

en
t

Ja
va

Ja
va

, p
yt

ho
n

 D
om

ai
n-

sp
ec

ifi
c

N
o

N
o

Be
yo

nd
 a

rr
ay

s

 P
ol

yg
on

/r
as

te
r c

lip
pi

ng
N

o
N

ot
 b

ui
lt

in

St
an

da
rd

s
su

pp
or

t

 IS
O

 S
Q

L
M

D
A

N
o

N
o

 O
G

C
/IS

O
 g

eo
 d

at
ac

ub
es

 (c
ov

er
ag

es
)

N
o

N
o

Page 52 of 61Baumann et al. J Big Data (2021) 8:28

Annex 2: Array DBMS physical tuning feature matrix

Array DBMS

Full-stack Array DBMS Add-on array support

Rasdaman SciDB SciQL EXTASCID PostGIS Raster Oracle
GeoRaster

Teradata
Arrays

Tuning parameters

 Partitioning Any nD
tiling

Regular
nD
chunk-
ing

No Any nD
chunking

Small arrays
(100 × 100
recom-
mended),
query to
explicitly
manage
assembling
larger arrays
from tiles

Yes (during
raster
creation)

No

 Compression Several
lossy and
lossless
methods
(zlib, RLE,
CCITT
G4,
wavelets,
...)

RLE No No no Yes (JPEG,
DEFLATE)

No

 Distribution Automatic
query
distribu-
tion,
peer fed-
eration
(shared
nothing)

Yes
(shared-
nothing)

No Yes (shared-
memory,
shared-
disk
servers
as well as
shared-
nothing
clusters)

No Yes No

 Caching Yes, can
reuse
approxi-
mate
matches

Yes, per-
sistent
chunk
caching,
tempo-
rary result
caching
(exact
match)

? No No yes No

Optimization

 Query rewrit-
ing

Yes, ~ 150
rules

Yes Yes No No No No

 Common sub-
expression
elimination

Yes ? ? No No No No

 Cost-based
optimiza-
tion

Yes ? ? No No No No

 Just-in-time
query
compila-
tion, mixed
hardware

Yes No No No No No No

Page 53 of 61Baumann et al. J Big Data (2021) 8:28

Array tools

OPeNDAP xarray Tensor
Flow

wendelin.
core

Google
Earth
Engine

Open
Data
Cube

xtensor boost::
geom
etry

Ophidia TileDB

Tuning parameters

 Partitioning Yes, as per
NetCDF

No No Maybe
indirectly,
via NEO
ZODB

No No No No Regular
tiling

 Compression Yes, as per
NetCDF

No Sparse
ten-
sor

No No No No Yes zlib) Yes, per
tile

 Distribution No No yes,
with
Cloud
ML

maybe
indirectly,
via NEO
ZODB

No No No Yes Yes, if
the
under-
lying
VFS
sup-
ports
it like
HDFS
does

 Caching No No Yes Yes Yes Yes No ? Yes

Optimization

 Query rewriting No No No No No No No No No

 Common
subex-
pression
elimina-
tion

No No No No yes No No No No

 Cost-based
optimiza-
tion

No No No No No No No No No

 Just-in-
time
 query
comp.,
mixed
hard
ware

No No No No No No No No No No

MapReduce

SciHadoop SciSpark

Tuning parameters

 Partitioning Yes Yes

 Compression No No

 Distribution Yes Yes

 Caching No Yes

Optimization

 Query rewriting No No

 Common subexpression elimination No Yes, implicit
through
caching

 Cost-based optimization No No

 Just-in-time query compilation, mixed hardware No No

Page 54 of 61Baumann et al. J Big Data (2021) 8:28

A
nn

ex
 3

: A
rr

ay
 D

BM
S

ar
ch

it
ec

tu
ra

l f
ea

tu
re

s
m

at
ri

x

A
rr

ay
 D

BM
S

Fu
ll-

st
ac

k
A

rr
ay

 D
BM

S
A

dd
-o

n
A

rr
ay

 s
up

po
rt

Ra
sd

am
an

Sc
iD

B
Sc

iQ
L

EX
TA

SC
ID

Po
st

G
IS

 R
as

te
r

O
ra

cl
e

G
eo

Ra
st

er
Te

ra
da

ta
 A

rr
ay

s

A
rc

hi
te

ct
ur

e
pa

ra
di

gm
Fu

ll-
st

ac
k

A
rr

ay
 D

BM
S

im
pl

em
en

ta
tio

n
Fu

ll-
st

ac
k

A
rr

ay
 D

BM
S

im
pl

em
en

ta
tio

n
SQ

L
+

 p
ro

pr
ie

ta
ry

ex

te
ns

io
n

Ex
te

ns
io

n
to

 G
LA

D
E

SQ
L
+

 o
bj

ec
t-

re
la

tio
na

l
ty

pe
s

O
ra

cl
e

pr
op

rie
ta

ry
SQ

L
+

 U
D

Fs

St
or

ag
e

or
ga

ni
za

tio
n

 P
ar

tit
io

ni
ng

A
ny

 n
D

 ti
lin

g
nD

, r
eg

ul
ar

N
o

A
ny

 n
D

 ti
lin

g
D

on
e

by
 u

se
r (

an
d

re
as

-
se

m
bl

ed
 th

ro
ug

h
qu

er
y)

2D
, r

eg
ul

ar
N

o

 N
on

-r
eg

ul
ar

 ti
lin

g
A

ny
 n

D
 ti

lin
g

N
o

N
o

Ye
s

ye
s

(w
ith

 m
an

ua
l r

ea
ss

em
-

bl
y

in
 q

ue
ry

)
N

o
N

o

 M
an

ag
in

g
 d

at
a

pa
rt

iti
on

in
g

Vi
a

qu
er

y
la

ng
ua

ge
Vi

a
qu

er
y

la
ng

ua
ge

N
o

M
an

ua
lly

Vi
a

in
ge

st
io

n
sc

rip
t

Ye
s

N
o

 T
ile

s
on

 s
ep

ar
at

e
 c

om
-

pu
te

rs
Ye

s
N

o
Ye

s
N

o
Ye

s
N

o

 P
ro

ce
ss

in
g

on
 p

re
e-

ex
is

tin
g

ar
ch

iv
es

(w

ith
 th

ei
r i

nd
iv

id
ua

l
or

ga
ni

za
tio

n)

Ye
s,

an
y

ar
ch

iv
e

st
ru

ct
ur

e
N

o
N

o
(d

at
a

va
ul

ts
 c

om
e

cl
os

es
t,

bu
t i

m
po

rt

on
 q

ue
ry

)

N
o

Ye
s

(o
ut

-o
f-b

an
d)

N
o

 T
ap

e
ar

ch
iv

e
ac

ce
ss

Ye
s

N
o

N
o

N
o

N
o

?
N

o

Pr
oc

es
si

ng
 a

nd
 p

ar
al

le
lis

m

 P
ar

al
le

liz
at

io
n

m
ec

ha
-

ni
sm

s
In

te
r-

 a
nd

 in
tr

a-
qu

er
y

pa
ra

lle
liz

at
io

n
In

te
r-

 a
nd

 in
tr

a-
qu

er
y

pa
ra

lle
liz

at
io

n
In

te
r-

 a
nd

 in
tr

a-
qu

er
y

pa
ra

lle
liz

at
io

n
Vi

a
G

LA
D

E
en

gi
ne

N
on

e
kn

ow
n

Ye
s

(T
om

lin
 lo

ca
l

op
er

at
io

ns
)

N
o

 S
in

gl
e

po
in

t o
f f

ai
lu

re
?

N
o

Ye
s

(o
rc

he
st

ra
to

r)
Ye

s
?

Ye
s

N
o

?

 F
ed

er
at

io
ns

Ye
s

N
o

N
o

N
o

N
o

N
o

N
o

 H
et

er
og

en
eo

us
 h

ar
d-

w
ar

e
su

pp
or

t
N

o
N

o

Re
m

ar
ks

Re
co

m
m

en
de

d
til

e
si

ze

10
0
×

 1
00

A
rr

ay
 s

iz
e

lim
ite

d
to

le

ss
 th

an
 6

4
kB

Page 55 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 to

ol
s

O
Pe

N
D

A
P

xa
rr

ay
Te

ns
or

Fl
ow

w
en

de
lin

.
co

re
G

oo
gl

e
Ea

rt
h

En
gi

ne
O

pe
nD

at
aC

ub
e

xt
en

so
r

bo
os

t::

ge
om

et
ry

O
ph

id
ia

Ti
le

D
B

 A
rc

hi
te

ct
ur

e
pa

ra
di

gm
W

eb
 fr

on
-

te
nd

, b
as

ed

on
 D

A
P

pr
ot

oc
ol

,
w

ith
 fo

r-
m

at
-s

pe
ci

fic

pr
oc

es
so

rs

in
 th

e
ba

ck
-

gr
ou

nd

Py
th

on

lib
ra

ry
Py

th
on

 w
ith

XL

A
 (A

cc
el

er
-

at
ed

 L
in

ea
r

A
lg

eb
ra

)

Py
th

on
 li

br
ar

y
fo

r a
rr

ay
s

la
rg

er
 th

an

RA
M

G
oo

gl
e

pr
op

ri-
et

ar
y

Py
th

on
 +

 xa
rr

ay
Ex

te
ns

io
n

to
 M

at
h-

em
at

ic
a

C
 +

 +
 lib

ra
ry

 fo
r

m
ai

n-
m

em
or

y
ar

ra
y

ha
nd

lin
g

M
yS

Q
L +

 U
D

Fs
 +

 M
PI

C
+

 +
 lib

ra
ry

, s
to

r-
ag

e
m

an
ag

er

fo
r d

en
se

 &

sp
ar

se
 m

ul
ti-

di
m

en
sio

na
l

ar
ra

ys

St
or

ag
e

or
ga

ni
za

tio
n

 P
ar

tit
io

ni
ng

Ye
s,

as
 p

er

N
et

C
D

F
N

o
(m

ai
n

m
em

or
y

ce
nt

ric
)

N
o

Ye
s,

vi
a

N
EO

ZO

D
B,

bu

t a
rr

ay

ag
no

st
ic

Ye
s (

ty
pi

ca
lly

,
25

6 ×
 25

6
pi

xe
ls

to
 m

at
ch

 in
pu

t
pr

ep
ro

ce
ss

in
g)

Ye
s

N
o

N
o

N
o

Ye
s,

re
gu

la
r

til
in

g

 N
on

-r
eg

ul
ar

til

in
g

Ye
s,

as
 p

er

N
et

C
D

F
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

 M
an

ag
in

g
da

ta
 p

ar
ti-

tio
ni

ng

N
o

N
o

N
o

N
o

In
te

rn
al

ly
 fi

xe
d,

no

t u
nd

er

us
er

 c
on

tr
ol

Vi
a

in
ge

st
io

n
sc

rip
t

N
o

N
o

N
o

Ye
s

Ti

le
s

on

se
pa

ra
te

co

m
pu

te
rs

N
o

N
o

N
o

Ye
s,

vi
a

N
EO

ZO

D
B

Ye
s

N
o

N
o

N
o

N
o

Ye
s,

vi
a

VF
S

(v
irt

ua
l fi

le

sy
st

em
) w

ith

di
st

rib
ut

io
n

si
m

ila
r t

o
H

D
FS

 P
ro

ce
ss

in
g

on

pr
ee

xi
st

in
g

ar
ch

iv
es

(w

ith
 th

ei
r

in
di

vi
du

al

or
ga

ni
za

-
tio

n)

N
o

N
o

N
o

N
o

N
o

(d
at

a
m

us
t s

it
in

 G
oo

gl
e)

N
o

N
o

N
o

N
o

N
o

Page 56 of 61Baumann et al. J Big Data (2021) 8:28

A
rr

ay
 to

ol
s

O
Pe

N
D

A
P

xa
rr

ay
Te

ns
or

Fl
ow

w
en

de
lin

.
co

re
G

oo
gl

e
Ea

rt
h

En
gi

ne
O

pe
nD

at
aC

ub
e

xt
en

so
r

bo
os

t::

ge
om

et
ry

O
ph

id
ia

Ti
le

D
B

 T
ap

e
ar

ch
iv

es
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

Pr
oc

es
si

ng
 a

nd
 p

ar
al

le
lis

m

 P
ar

al
le

liz
at

io
n

m
ec

ha
ni

sm
s

N
o

Ye
s

Ye
s,

va
rio

us

pa
ra

lle
liz

at
io

n
m

et
ho

ds
,

C
PU

/G
PU

N
o

Ye
s

(G
oo

gl
e

in
fra

st
ru

c-
tu

re
)

N
o

N
o

Ye
s

(“e
m

ba
rr

as
si

ng
ly

pa

ra
lle

l”
op

er
at

io
ns

, o
ne

by

 o
ne

)

Ye
s

 S
in

gl
e

po
in

t
of

fa

ilu
re

?
n.

a.
Ye

s
Ye

s
N

o
?

n.
a.

Ye
s

n.
a.

Ye
s

N
o

 F
ed

er
at

io
ns

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

 H
et

er
og

en
eo

us

ha
rd

w
ar

e
su

pp
or

t

N
o

N
o

Ye
s

N
o

N
o

N
o

N
o

 R
em

ar
ks

M
ai

n
m

em
or

y
M

ai
n

m
em

or
y

M
ai

n
m

em
or

y
of

 d
es

k-
to

p

Page 57 of 61Baumann et al. J Big Data (2021) 8:28

M
ap

Re
du

ce

Sc
iH

ad
oo

p
Sc

iS
pa

rk

A
rc

hi
te

ct
ur

e
pa

ra
di

gm
M

ap
Re

du
ce

M
ap

Re
du

ce

St
or

ag
e

or
ga

ni
za

tio
n

 P
ar

tit
io

ni
ng

Ye
s,

re
gu

la
r t

ili
ng

 c
ho

se
n

by
 u

se
r,

an
d

ba
se

d
on

 th
e

pa
rt

iti
on

in
g

of
 th

e
in

pu
t d

at
a

Ye
s,

re
gu

la
r t

ili
ng

 c
ho

se
n

by
 u

se
r,

an
d

ba
se

d
on

 th
e

pa
rt

iti
on

in
g

of

th
e

in
pu

t d
at

a

 N
on

-r
eg

ul
ar

 ti
lin

g
N

o
N

o

 M
an

ag
in

g
da

ta
 p

ar
tit

io
ni

ng
Ye

s
Ye

s

 T
ile

s
on

 s
ep

ar
at

e
co

m
pu

te
rs

Ye
s

Ye
s

 P
ro

ce
ss

in
g

on
 p

re
ee

xi
st

in
g

ar
ch

iv
es

 (w
ith

 th
ei

r i
nd

iv
id

ua
l

or
ga

ni
za

tio
n)

Ye
s

Ye
s

 T
ap

e
ar

ch
iv

e
ac

ce
ss

N
o

N
o

 P
ro

ce
ss

in
g

an
d

pa
ra

lle
lis

m

 P
ar

al
le

liz
at

io
n

m
ec

ha
ni

sm
s

Ye
s,

M
ap

Re
du

ce
Ye

s,
M

ap
Re

du
ce

 S
in

gl
e

po
in

t o
f f

ai
lu

re
?

Ye
s,

N
am

eN
od

e
Ye

s,
Sp

ar
k

m
as

te
r

 F
ed

er
at

io
ns

N
o

N
o

 H
et

er
og

en
eo

us
 h

ar
dw

ar
e

su
pp

or
t

N
o

Ye
s,

G
PU

 (1
)

Page 58 of 61Baumann et al. J Big Data (2021) 8:28

Received: 26 July 2020 Accepted: 12 December 2020

References
 1. Abadi M, et al. Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). 2016. p. 265–283.
 2. Abadi D. On Big Data, analytics and hadoop. ODBMS Industry Watch. 2012. http://www.odbms .org/blog/2012/12/

on-big-data-analy tics-and-hadoo p-inter view-with-danie l-abadi /. Accessed 23 Aug 2020.
 3. Abadi M. TensorFlow: Learning functions at scale. Proc. ACM SIGPLAN Intl. Conference on Functional Program-

ming. St Petersburg, USA, 2016.
 4. Andrejev A, Baumann P, Misev D, Risch T. Spatio-temporal gridded data processing on the semantic web. Proc. Intl.

Conf. on Data Science and Data Intensive Systems (DSDIS). Sydney, Australia, 2015.
 5. Baumann P. A database array algebra for spatio-temporal data and beyond. Proc. Intl. Workshop on Next Genera-

tion Information Technologies and Systems (NGITS). Zikhron Yaakov, Israel. Springer LNCS 1649. 1999.
 6. Baumann P. Array Databases. In: Özsu T, Liu L, editors. Encyclopedia of Database Systems. Springer, 2017.
 7. Baumann P. Beyond Rasters: Introducing The New OGC Web Coverage Service 2.0. Proc. ACM SIGSPATIAL GIS. San

Jose, USA, 2010.
 8. Baumann P, Feyzabadi S, Jucovschi C. Putting pixels in place: a storage layout language for scientific data. Proc.

IEEE ICDM Workshop on spatial and spatiotemporal data mining (SSTDM). Sydney. 2010;194:201.
 9. Baumann P, Hirschorn E, Maso J, Dumitru A, Merticariu V. Taming Twisted Cubes. Proc. ACM SIGMOD Workshop on

Managing and Mining Enriched Geo-Spatial Data (GeoRich). San Francisco. 2016.
 10. Baumann P, Hirschorn E, Maso J. OGC Coverage Implementation Schema 1.1. OGC document 09-146r8. http://

docs.openg eospa tial.org/is/09-146r8 /09-146r8 .html. Accessed 23 Aug 2020.
 11. Baumann P, Hirschorn E, Maso J, Merticariu V, Misev D. All in One: Encoding Spatio-Temporal Big Data in XML,

JSON, and RDF without Information Loss. Proc. IEEE Intl. Workshop on Big Spatial Data (BSD). Boston, 2017.
 12. Baumann P, Holsten S. A Comparative Analysis of Array Models for Databases. Proc. Database Theory and Applica-

tion (DTA). Jeju Island, Korea. 2011, Communications in Computer and Information Science 258, Springer 2011.
 13. Baumann P, Howe B, Orsborn K, Stefanova S: Proc. EDBT/ICDT Workshop on Array Databases. Uppsala, Sweden,

2011. https ://www.rasda man.com/Array Datab ases-Works hop/. Accessed 23 Aug 2020.
 14. Baumann P. Language Support for Raster Image Manipulation in Databases. Proc. Int. Workshop on Graphics

Modeling, Visualization in Science & Technology. Darmstadt, Germany, 1992.
 15. Baumann P, Merticariu V. On the efficient evaluation of array joins. Proc. IEEE Big Data Workshop Big Data in the

geo sciences. Santa Clara; 2015.
 16. Baumann P, Misev D, Merticariu V, Pham Huu B, Bell B, Kuo KS. Array Databases: Concepts, Standards, Implemen-

tations. RDA Array Database Assessment Working Group. 2018, https ://rd-allia nce.org/syste m/files /Array -Datab
ases_final -repor t.pdf. Accessed on 23 Aug 2020.

 17. Baumann P. OGC Web Coverage Processing Service (WCPS) Language interface standard, version 1.0. OGC docu-
ment 08-068r2. https ://www.ogc.org/stand ards/wcps. Accessed 23 Aug 2020.

 18. Baumann P. On the management of multidimensional discrete data. VLDB J. 1994;4(3):401: – 444.
 19. Baumann P, Rossi AP, Bell B, Clements O, Evans B, Hoenig H, Hogan P, Kakaletris G, Koltsida P, Mantovani S, Marco

Figuera R, Merticariu V, Misev D, Pham Huu B, Siemen S, Wagemann J: Fostering cross-disciplinary earth science
through datacube analytics. In: Mathieu PP, Aubrecht C, editors. Earth observation open science and innovation -
changing the world one pixel at a time. International Space Science Institute (ISSI), 2017; 91:119.

 20. Baumann P, Stamerjohanns H. Towards a systematic benchmark for array database systems. Proc. Workshop on Big
Data Benchmarking (WBDB). Pune. 2021. Springer LNCS 8163.

 21. Baumann P. The Datacube Manifesto. http://earth serve r.eu/tech/datac ube-manif esto. Accessed 23 Aug 2020.
 22. Baumann P. The OGC Web Coverage Processing Service (WCPS) Standard. Geoinformatica. 2010;14(4):447:479.
 23. Big Earth. Datacube Standards – Understanding the OGC/ISO Coverage Data and Service Model. http://stand ards.

rasda man.com. Accessed 23 Aug 2020.
 24. Big Earth Datacube Standards. https://standards.rasdaman.com. Accessed 23 Aug 2020.
 25. Blaschka M, Sapia C, Höfling G, Dinter B. Finding your way through multidimensional data models. Proc. DEXA

Workshop Data Warehouse Design and OLAP Technology (DWDOT). Vienna. 1998;198:203.
 26. Boost. boost. http://www.boost .org. Accessed 23 Aug 2020.
 27. Boost. boost. https ://githu b.com/boost org/boost . Accessed 23 Aug 2020.
 28. Brodie M, Blaustein B, Dayal U, Manola F, Rosenthal A. CAD/CAM database management. IEEE Database Eng Bull.

1984;7(2):20.
 29. Bekla J, et al. XLDB 2018. https ://conf.slac.stanf ord.edu/xldb2 018/agend a. Accessed 28 Sep 2020.
 30. Brown PG. Overview of SciDB: large scale array storage, processing and analysis. Proc. ACM SIGMOD. Indianapolis.

2010; 963:968.
 31. Buck J. SciHadoop. https ://githu b.com/four2 five/SciHa doop. Accessed 23 Aug 2020.
 32. Cheng Y, Rusu F. Astronomical data processing in EXTASCID. Proc. Intl. Conf. on Scientific and Statistical Database

Management (SSDBM). Baltimore. 2013; 1:4.
 33. Cheng Y, Rusu F. Formal representation of the SS-DB benchmark and experimental evaluation in EXTASCID. Distrib-

uted Parallel Databases. 2015;277:317.
 34. Codd EF. A relational model of data for large shared data banks. Comm ACM. 1970;13(6):377:387.

http://www.odbms.org/blog/2012/12/on-big-data-analytics-and-hadoop-interview-with-daniel-abadi/
http://www.odbms.org/blog/2012/12/on-big-data-analytics-and-hadoop-interview-with-daniel-abadi/
http://docs.opengeospatial.org/is/09-146r8/09-146r8.html
http://docs.opengeospatial.org/is/09-146r8/09-146r8.html
https://www.rasdaman.com/ArrayDatabases-Workshop/
https://rd-alliance.org/system/files/Array-Databases_final-report.pdf
https://rd-alliance.org/system/files/Array-Databases_final-report.pdf
https://www.ogc.org/standards/wcps
http://earthserver.eu/tech/datacube-manifesto
http://standards.rasdaman.com
http://standards.rasdaman.com
http://www.boost.org
https://github.com/boostorg/boost
https://conf.slac.stanford.edu/xldb2018/agenda
https://github.com/four2five/SciHadoop

Page 59 of 61Baumann et al. J Big Data (2021) 8:28

 35. CODE-DE Datacubes. https ://proce ssing .code-de.org/rasda man. Accessed 23 Aug 2020.
 36. Cudre-Maroux P, et al. SS-DB: a standard science DBMS benchmark. 2010. (submitted for publication).
 37. Cudre-Mauroux P, et al. A demonstration of SciDB: a science-oriented DBMS. VLDB. 2009;2(2):1537.
 38. Dean J, Ghemawat S. MapReduce. Simplified data processing on large clusters. Proc. 6th Symposium on Operat-

ing System Design and Implementation (OSDI), San Francisco. 2004. USENIX Association 2004. p. 137–150.
 39. Dehmel A. A Compression engine for multidimensional array database systems. PhD Thesis, TU München. 2002.
 40. Dumitru A, Merticariu V, Baumann P. Exploring cloud opportunities from an array database perspective. Proc ACM

SIGMOD Workshop on Data Analytics in the Cloud (DanaC). Snowbird. 2014.
 41. EarthServer Coverage Webinars. https ://earth serve r.xyz/wcs. Accessed 23 Aug 2020.
 42. Ensor P. Organizational renewal —tearing down the functional silos. AME Target: Summer; 1988. p. 4–16.
 43. Furtado P, Baumann P. Storage of multidimensional arrays based on arbitrary tiling. Proc. Intl. Conference on Data

Engineering (ICDE). Sydney. 1999.
 44. GeoTrellis. GeoTrellis. http://geotr ellis .io. Accessed 23 Aug 2020.
 45. GeoTrellis: GeoTrellis. https ://githu b.com/geotr ellis . Accessed 23 Aug 2020.
 46. Gibson W. Data, data everywhere – the economist special report: managing information. 2010. http://www.econo

mist.com/node/15557 443. Accessed 23 Aug 2020.
 47. Google. E, Engine. https ://earth engin e.googl e.com. Accessed 23 Aug 2020.
 48. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google earth engine: planetary-scale geospatial

analysis for everyone. Remote Sens Environ. 2017;202:27.
 49. Gutierrez C, Hurtado C, Mendelzon A. Formal aspects of querying RDF databases. Intl. Workshop on Semantic Web

and Databases. Co-located with VLDB 2003, Humboldt-Universität, Berlin. 2003, p. 293–307.
 50. Guttman A. R-Trees: a dynamic index structure for spatial searching. Proc. ACM SIGMOD. 1984;47:57.
 51. Hey T, Tansley S, Tolle K. The fourth paradigm. Microsoft research, October 2009, http://resea rch.micro soft.com/

en-us/colla borat ion/fourt hpara digm/. Accessed 23 Aug 2020.
 52. Howard T. A Shareable centralised database of KRT3 - a hierarchical graphics system based on PHIGS. Proc. Euro-

graphics 1987, Eurographics Association, 1987.
 53. Indyk P. Nearest neighbours in high-dimensional spaces. In: Goodman JE, O’Rourke J, editors. Handbook of dis-

crete and computational geometry. London: Chapman and Hall; 2004. p. 877–892.
 54. INSPIRE coverage download services. http://inspi re.ec.europ a.eu/id/docum ent/tg/downl oad-wcs. Accessed 23

Aug 2020.
 55. ISO. 19123-1:2019 Coverage Fundamentals (Working Draft). http://exter nal.openg eospa tial.org/twiki _publi c/

Cover agesD WG/WebHo me#Relat ed_Stand ards. Accessed 23 Aug 2020.
 56. ISO. Information technology—Database languages—SQL—Part 15: Multi-Dimensional Arrays (SQL/MDA). ISO IS

9075-15:2017. https ://www.iso.org/stand ard/67382 .html. Accessed 23 Aug 2020.
 57. ISO. Information technology—Database languages—SQL—Part 1: Framework (SQL/Framework). ISO IS

9075-1:2016.
 58. Ivanova M, Kersten ML, Manegold S. Data vaults: a symbiosis between Database technology and scientific file

repositories. Proc. Intl. Conference on Scientific and Statistical Database Management (SSDBM). Athens. 2012;
485:494.

 59. Iverson KE. A Programming Language. Wiley: New York. 1962.
 60. Kaur K, Rani R, Modeling and querying data in NoSQL databases. Proc. IEEE Intl. Conf. on Big Data, Silicon Valley.

2013. p. 1–7.
 61. Koubarakis M, Datcu M, Kontoes C, Di Giammatteo U, Manegold S, Klien E. TELEIOS: a database-powered virtual

earth observatory. VLDB 5, 2012; 2010:2013.
 62. Liakos P, Koltsida P, Kakaletris G, Baumann P. xWCPS: Bridging the gap between array and semi-structured data.

Proc. Intl. Conference on Knowledge Engineering and Knowledge Management. Springer. 2015.
 63. Liakos P, Koltsida P, Baumann P, Ioannidis Y, Delis A. A distributed infrastructure for earth-science big data retrieval.

Intl J Cooperative Inform Syst. 2015;24(2): 1550002.
 64. Liaukevich V, Misev D, Baumann P, Merticariu V. Location and processing aware datacube caching. Proc. Intl. Con-

ference on Scientific and Statistical Database Management (SSDBM). New York. 2017. Article 34.
 65. Marek-Spartz M. Comparing map algebra implementations for Python: Rasterio and ArcPy. Volume 18, Papers in

Resource Analysis. Saint Mary’s University of Minnesota Central Services Press. http://www.gis.smumn .edu/GradP
rojec ts/Marek -Spart zM.pdf. Accessed 23 Aug 2020.

 66. Merticariu G, Misev D, Baumann P. Measuring storage access performance in array databases. Proc. Workshop on
Big Data Benchmarking (WBDB). New Delhi. 2015.

 67. Misev D, Baumann P. Enhancing Science Support in SQL. Proc. IEEE Big Data Workshop on Data and Computa-
tional Science Technologies for Earth Science Research. Santa Clara. 2015.

 68. Misev D, Baumann P. Homogenizing data and metadata retrieval in scientific applications. Proc. ACM CIKM DOLAP.
Melbourne. 2015; 25:34.

 69. Misev BP. The Open-Source rasdaman Array DBMS. Proc. VLDB Workshop Big Data Open Source Systems (BOSS).
New Delhi, India. 2016.

 70. MonetDB: SciQL. https ://proje cts.cwi.nl/scile ns/conte nt/platf orm.html. Accessed 23 Aug 2020.
 71. MrGeo. MrGeo. https ://githu b.com/ngage oint/mrgeo .. Accessed 23 Aug 2020.
 72. Mundi Datacubes. https ://mundi .rasda man.com. Accessed 23 Aug 2020.
 73. N.n. Hadoop. http://hadoo p.apach e.org/. Accessed 23 Aug 2020.
 74. N.n. Spark. http://spark .apach e.org/. Accessed 23 Aug 2020.
 75. ODC. Open Data Cube. https ://www.opend atacu be.org. Accessed 23 Aug 2020.

https://processing.code-de.org/rasdaman
https://earthserver.xyz/wcs
http://geotrellis.io
https://github.com/geotrellis
http://www.economist.com/node/15557443
http://www.economist.com/node/15557443
https://earthengine.google.com
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://inspire.ec.europa.eu/id/document/tg/download-wcs
http://external.opengeospatial.org/twiki_public/CoveragesDWG/WebHome#Related_Standards
http://external.opengeospatial.org/twiki_public/CoveragesDWG/WebHome#Related_Standards
https://www.iso.org/standard/67382.html
http://www.gis.smumn.edu/GradProjects/Marek-SpartzM.pdf
http://www.gis.smumn.edu/GradProjects/Marek-SpartzM.pdf
https://projects.cwi.nl/scilens/content/platform.html
https://github.com/ngageoint/mrgeo
https://mundi.rasdaman.com
http://hadoop.apache.org/
http://spark.apache.org/
https://www.opendatacube.org

Page 60 of 61Baumann et al. J Big Data (2021) 8:28

 76. ODC. Open Data Cube. https ://githu b.com/opend atacu be. Accessed 23 Aug 2020.
 77. OGC Web Coverage Service. www.ogc.org/stand ards/wcs. Accessed 23 Aug 2020.
 78. OGC Web Coverage Processing Service. www.ogc.org/stand ards/wcps. Accessed 23 Aug 2020.
 79. OGC Compliance Testing. https ://www.ogc.org/compl iance . Accessed 23 Aug 2020.
 80. Oosthoek J, Rossi AP, Baumann P, Misev D, Campalani P. PlanetServer: towards online analysis of planetary data.

Planetary Data. 2012.
 81. OPenDAP. http://www.opend ap.org. Accessed 23 Aug 2020.
 82. OPeNDAP. Software. https ://www.opend ap.org/softw are. Accessed 23 Aug 2020.
 83. Ophidia: Ophidia. http://ophid ia.cmcc.it. Accessed 23 Aug 2020.
 84. Ophidia: Ophidia. https ://githu b.com/Ophid iaBig Data. Accessed 23 Aug 2020.
 85. Oracle: GeoRaster. http://docs.oracl e.com/cd/B1930 6_01/appde v.102/b1425 4/geor_intro .htm. Accessed 23 Aug

2020.
 86. Paradigm4: SciDB. https ://www.parad igm4.com. Accessed 23 Aug 2020.
 87. Paradigm4. SciDB Licensing. https ://www.parad igm4.com/about /licen sing/. Accessed 23 Aug 2020.
 88. Paradigm4. SciDB Source Code. https ://drive .googl e.com/drive /folde rs/0BzNa ZtoQs my2aGNoaV9Kdk5YZEE.

Accessed 23 Aug 2020.
 89. PlanetServer. http://plane tserv er.eu. Accessed 23 Aug 2020.
 90. Planthaber G, Stonebraker M, Frew J. EarthDB: scalable analysis of MODIS data using SciDB. Proc. ACM SIGSPATIAL

Intl. Workshop on Analytics for Big Geospatial Data. 2012. p. 11–19.
 91. PostGIS. PostGIS Developers Wiki. https ://trac.osgeo .org/postg is/wiki/DevWi kiMai n. Accessed 23 Aug 2020.
 92. PostGIS. PostGIS Raster manual. http://postg is.net/docs/manua l-dev/using _raste r_datam an.html. Accessed 23

Aug 2020.
 93. PostGIS. Raster PostGIS. https ://postg is.net/docs/using _raste r_datam an.htm. Accessed 23 Aug 2020.
 94. Rasdaman. https ://www.rasda man.org. Accessed 23 Aug 2020.
 95. Rasdaman. rasdaman. https ://rasda man.com. Accessed 23 Aug 2020.
 96. Reiner B, Hahn K: Hierarchical Storage Support and Management for Large-Scale Multidimensional Array Database

Management Systems. Proc. DEXA. Aix en Provence, France, 2002.
 97. Ritter G, Wilson J, Davidson J. Image Algebra: An Overview. Computer Vision, Graphics, and Image Processing.

49(1)1990;297:331.
 98. Rusu F, Cheng Y. A survey on array storage, query languages, and systems. arXiv preprint arXiv:1302.0103, 2013.
 99. Rusu F. EXTASCID. http://facul ty.ucmer ced.edu/frusu /Proje cts/GLADE /extas cid.html. Accessed 123 Aug 2020.
 100. Sarawagi S, Stonebraker M: Efficient organization of large multidimensional arrays. Proc. Intl. Conf. on Data Engi-

neering (ICDE). Houston. 1994. p. 328–336.
 101. SciSpark. https ://scisp ark.jpl.nasa.gov. Accessed 23 Aug 2020.
 102. SciSpark: SciSpark. https ://githu b.com/SciSp ark. Accessed 23 Aug 2020.
 103. Session ESSI2.2: Data cubes of Big Earth Data - a new paradigm for accessing and processing Earth Science Data.

https ://meeti ngorg anize r.coper nicus .org/EGU20 18/poste rs/28035 . Accessed 23 Aug 2020.
 104. Soroush E, Balazinska M, Wang D. ArrayStore: a storage manager for complex parallel array processing. Proc. ACM

SIGMOD. Athens. 2011. p. 253–264.
 105. Soussi R, Aufaure MA, Zghal HB. Towards social network extraction using a graph database. In: Laux F, Strömbäck

L, editors Intl. Conf. on Advances in Databases, Knowledge, and Data Applications (DBKDA), Menuires. 2010,
p. 28–34.

 106. Stancu-Mara S, Baumann PA, Comparative Benchmark of Large Objects in Relational Databases. Proc. IDEAS 2008,
Coimbra, Portugal, November 2008.

 107. Stonebraker M, Brown P, Zhang D, BeclaJ. SciDB: a database management system for applications with complex
analytics. Comput Sci Eng. 2013;15(3):62.

 108. Stonebraker M, Ugur C. “One Size Fits All”: an idea whose time has come and gone. Proc. Intl. Conf. on Data Engi-
neering (ICDE). Washington. 2005. p. 2–11.

 109. Tan Z, Yue P, A comparative analysis to the array database technology and its use in flexible VCI derivation. Fifth
Intl. Conference on Agro-Geoinformatics, July 2016, p. 1–5.

 110. TensorFlow. TensorFlow Installation. https ://www.tenso rflow .org/insta ll. Accessed 23 Aug 2020.
 111. Teradata. Multidimensional array options. https ://docs.terad ata.com/reade r/eWpPp cMoLG QcZEo yt5Aj Eg/0BjYN

H4d7gS8CrkifJWErg. Accessed 23 Aug 2020.
 112. Teradata. User–defined data type, ARRAY data type, and VARRAY data type limits. https ://www.info.terad ata.com/

HTMLP ubs/DB_TTU_14_00/index .html#page/SQL_Refer ence/B035_1141_111A/appc.109.11.html. Accessed 23
Aug 2020.

 113. The RDF Data cube vocabulary. https ://www.w3.org/TR/vocab -data-cube/. Accessed 23 Aug 2020.
 114. The EarthServer. Datacube federation. earthserver.xyz. Accessed 23 Aug 2020.
 115. TileDB: TileDB. https ://githu b.com/TileD B-Inc. Accessed 23 Aug 2020.
 116. TileDB. TileDB. https ://tiled b.io. Accessed 23 Aug 2020.
 117. Tomlin D. A Map Algebra. Harvard Graduate School of Design, 1990.
 118. W3C. Extensible Markup Language (XML) 1.0. https ://www.w3.org/TR/REC-xml/. Accessed 23 Aug 2020.
 119. Webster P. Supercomputing the climate: NASA’s Big Data Mission. CSC World Computer Sciences Corporation,

2012.
 120. Wendelin.core. Wendelin.core. https ://lab.nexed i.com/nexed i/wende lin.core. Accessed 23 Aug 2020.
 121. Wendelin.core. Licensing. https ://www.nexed i.com/licen sing. Accessed 23 Aug 2020.
 122. Wu J. ArrayUDF Explores structural locality for faster scientific analyses. Proc. XLDB, Stanford. 2018.
 123. Xarray. xarray. http://xarra y.pydat a.org. Accessed 23 Aug 2020.

https://github.com/opendatacube
http://www.ogc.org/standards/wcs
http://www.ogc.org/standards/wcps
https://www.ogc.org/compliance
http://www.opendap.org
https://www.opendap.org/software
http://ophidia.cmcc.it
https://github.com/OphidiaBigData
http://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm
https://www.paradigm4.com
https://www.paradigm4.com/about/licensing/
https://drive.google.com/drive/folders/0BzNaZtoQsmy2
http://planetserver.eu
https://trac.osgeo.org/postgis/wiki/DevWikiMain
http://postgis.net/docs/manual-dev/using_raster_dataman.html
https://postgis.net/docs/using_raster_dataman.htm
https://www.rasdaman.org
https://rasdaman.com
http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html
https://scispark.jpl.nasa.gov
https://github.com/SciSpark
https://meetingorganizer.copernicus.org/EGU2018/posters/28035
https://www.tensorflow.org/install
https://docs.teradata.com/reader/eWpPpcMoLGQcZEoyt5AjEg/0BjYNH4d
https://docs.teradata.com/reader/eWpPpcMoLGQcZEoyt5AjEg/0BjYNH4d
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1141_111A/appc.109.11.html
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1141_111A/appc.109.11.html
https://www.w3.org/TR/vocab-data-cube/
https://github.com/TileDB-Inc
https://tiledb.io
https://www.w3.org/TR/REC-xml/
https://lab.nexedi.com/nexedi/wendelin.core
https://www.nexedi.com/licensing
http://xarray.pydata.org

Page 61 of 61Baumann et al. J Big Data (2021) 8:28

 124. Xtensor. xtensor. http://quant stack .net/xtens or. Accessed 23 Aug 2020.
 125. Xtensor. xtensor. https ://githu b.com/Quant Stack /xtens or. Accessed 23 Aug 2020.
 126. Zhang Y, Kersten ML, Ivanova M, Nes N. SciQL, bridging the gap between science and relational DBMS. Proc.

IDEAS. 2011, p. 124–133.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://quantstack.net/xtensor
https://github.com/QuantStack/xtensor

	Array databases: concepts, standards, implementations
	Abstract
	Introduction
	Arrays in databases
	General considerations
	An array query model for databases
	Array data
	Querying arrays
	 Deriving arrays
	Aggregating arrays
	Operator combinations

	Array Integration
	Array database architectures
	Storage
	Processing

	Client interfacing
	Related technology

	Array standards
	Domain neutral standards
	SQL arrays

	Geo datacube standards
	Geo datacube abstract concepts
	Geo datacube data model implementation
	Geo datacube access service
	Geo datacube analytics language
	Geo datacube rDF vocabulary

	Array technology
	Technology overview
	Systematics
	Generic array DBMSs
	 Array DBMSs—object-relational extensions
	Array tools
	MapReduce-type systems

	Array systems assessment
	Systematics
	Functional comparison
	Criteria
	Data model expressiveness:
	Processing model expressiveness:
	Importexport capabilities:

	Tuning and optimization
	 Criteria

	Architectural comparison
	Criteria

	Reference used
	Performance comparison
	Systems tested
	Testing approach
	The benchmarks
	Assessment

	Case study
	Publicly accessible array services
	Overview
	EarthServer

	Conclusions
	Acknowledgements
	References

