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Background
Under-five mortality is defined as the likelihood of a child born alive to die between birth 
and fifth birthday. Mortality of under the age of five has been the most targets of public 
health policies and may be the common indicator of mortality levels [1]. Child mortality 
is a comprehensive indication of the environmental, socioeconomic, sociocultural, and 
health care of the community and countries [2]. It also reflects the development status of 
the country and the quality of life. Child mortality is used for monitoring and evaluating 
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population, health programs, and policies [3]. Most child mortality is related to the soci-
oeconomic issue since preventable by vaccine [4]. The highest burden of child mortality 
is observed in low and middle-income countries, especially in Sub-Saharan Africa and 
Southeast Asia [5, 6]. Its burden is highest still in Sub-Saharan Africa which was 1 in 8 
children dies before age five [7]. Child mortality in Ethiopia is declined from 166, 67, and 
55.2 deaths per 1000 live births in 2000, 2016, and 2018, respectively. However, it is the 
highest relative to other developing countries [8]. Under-five mortality is 88 in 1000 live 
birth in rural areas which was largest than urban 66 dies in Ethiopia [9]. To identify the 
risk factor of under-five mortality, different countries conducted various studies [10, 11]. 
Many small-scale surveys were done on a specific set of variables. These studies investi-
gated the risk factors of under-five mortality through binary logistic and survival analysis 
[12]. Though, binary logistic regression undercounts the total number of mortality since 
multiple mortalities are collapsed into a single unit to fulfill the requirements of binary 
logistic regression, provides sufficient information for studying the pattern of multiple 
child deaths. In this study, the count regression model is the preferred model of analysis.

The Poisson regression model is the most common model used for the analysis of the 
count data. One of the assumptions of Poisson regression is the mean and variance must 
be equal, but most of the data have a larger variance or overdispersion. The negative 
binomial regression model is more flexible than the Poisson model and is frequently 
used to study count data with over-dispersion [13]. However, the Poisson regression 
model and the Negative Binomial model were found to be insignificant in explaining and 
handle overdispersion due to the high amount of zeros problems [14]. Therefore, Hurdle 
and zero-inflated count models are the two foremost methods used to deal with count 
data having excessive zero counts [15]. Zero-inflated models and hurdle models provide 
a way of modeling the excessive proportion of zero values and allow for overdispersion. 
Especially when there is a large number of zeros, these techniques are a better fit than 
Poisson or negative binomial regression models [16, 17].

Zero-inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) models are 
often used when count response models having far more zeros than expected by the dis-
tributional assumptions of the Poisson and negative binomial models result in incorrect 
parameter estimates as well as biased standard errors [14]. Count data frequently dis-
play overdispersion and excess zeros, which motivates zero-inflated count models [18]. 
Zero-inflated count models offer a way of modeling the excess zeros in addition to allow-
ing for overdispersion in a standard parametric model. ZINB regression model to over-
dispersion count data caused by excess zero. However, the hurdle model is flexible and 
can handle under-dispersion, over-dispersion, and excess zeros problem. In particular, 
a hurdle model is mixed by a binary outcome of the count being below or above the 
hurdle. The negative Binomial-Logit Hurdle Regression Model is better than the Poisson 
Regression Model to handle the problems of over-dispersion and excessive zeros [15].

Negative Binomial-Logit Hurdle (NBLH) are flexible models for dealing with zero-
inflated and overdispersed count data [19]. In estimating the parameters, Bayesian 
methods can be applied by the Markov Chain Monte Carlo (MCMC) simulation that can 
generate random values with the Gibbs-sampling algorithm. Hence the Bayesian method 
is more flexible for parameters estimation [20]. Therefore, the Bayesian parameter esti-
mation method was implemented for the Negative Binomial–Logit Hurdle model. In 
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many cases because of many zeros in the dependent variable, the mean is not equal to 
the variance value of the dependent variable. Due to that, the Poisson model is no longer 
suitable for this kind of data. Thus, we suggest using an NBLH regression model to over-
come the problem of over dispersion [21]. Therefore, this study aimed to assess the sta-
tus of under-five child mortality and modeling Bayesian zero-inflated regression model 
of the determinants of under-five child mortality.

Method
Study design and source of data

The dataset used for this study was obtained from 2016 Ethiopian Demographic Health 
Surveys conducted from January 18 to June 27, 2016, across the country. The survey 
was a population-based cross-sectional study. For the surveys, the 2016 EDHS sample 
was stratified and selected in two stages. In the first stage, a total of 645 clusters (202 in 
urban and 443 in rural) were randomly selected proportional to the household size from 
the sampling strata and in the second stage, 28 households per cluster were selected 
using systematic random sampling. In this survey, a total of 10,641 children under age 5 
of mothers selected from 645 clusters were included in this study.

Variables of the study

Dependent variable

The dependent variable for this study was the number of deaths of under-five per 
mother. That is the number of under-five children death was defined as the death of chil-
dren less than 60 months in the last 5 years preceding the survey.

Independent variable

The main predictors explored for under-five mortality have been grouped into demo-
graphic and socioeconomic. The demographic factors for this study are the mother’s 
age, birth order number, and mother’s age at the first birth. The socioeconomic factors 
are the mother’s level of education, residence mother, and household wealth index. Fre-
quency of ANC visits, using the contraceptive method, type of birth were the variables 
that were included in the utilization of maternal health services by the mother.

Statistical method

In this study, the variable of interest was count data. When the dependent variable is a 
count, it is appropriate to use non-linear models based on non-normal distribution to 
describe the relationship between the response variable and a set of predictor variables. 
For count data, the standard framework for explaining the relationship between the out-
come variable and a set of explanatory variables includes the Poisson, negative binomial 
regression, ZIP, ZINB, and hurdle models. The advanced models for this study count 
data are the NBLH model and the Bayesian negative binomial-Logit hurdle model [22].

Poisson and Negative Binomial Regression Model

Poisson regression has been widely used for fitting count data. It is traditionally con-
ceived as the basic count model upon which a variety of other count models are based 
[15]. The Poisson probability mass function, with rate parameter μi, is given by:
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where, yi is the number of under-five deaths the ith mother in a given time with 
rate parameter  μi, the mean and variance of the Poisson distribution is given as 
E(Y) = Var(Y) = μ. Poisson regression model derives from Poisson distribution and 
relates µI, β, and XT

i  through:

β are the vector coefficients XT
i  , which, unfortunately, in much of the cases, the num-

ber of under-five death data produces the variance which is greater than the mean, well 
known as over-dispersion. The over-dispersion is a result of extra variation in the num-
ber of under-five death means which can be caused by various factors like model mis-
specification, the omission of important covariates, and excess zero counts [23]. During 
this case, applying a Poisson regression model for the number of under-five death data 
would result in an underestimation of the standard error of the regression parameters. 
Therefore, the negative binomial model is introduced with:

The mean and variance of the negative binomial distribution are E [y|μ, ∅] = μ and V 
[y|μ, ∅] = μ (1 + ∅ μ). Where ∅ is the dispersion parameter (if ∅ > 0 and μ > 0). Special 
cases of the negative binomial include the Poisson ( ∅ = 0) and the geometric ( ∅ = 1). 
The method of maximum likelihood is used to estimate the parameters in the negative 
binomial regression model [24].

In some cases, excess zeros in the number of under-five death data exist and are con-
sidered as a result of overdispersion. In this case, the NB model cannot be used to handle 
the overdispersion which is due to the high number of zeros. To do this, zero-inflation 
models including ZIP and ZINB models can be alternatively used. Both the ZIP and 
ZINB models assume that all zeros count come from two different processes: the process 
generating excess zero counts derived from a binary model, and the process generating 
non-negative counts for the number of under-five death including zero values.

Zero Inflated Regression Model

Poisson regression and negative binomial model with many zero outcomes on the 
response variable. The ZIP regression model is more effective for many zero outcomes 
than Poisson regression. While the ZINB regression model is more effective for many 
zero outcomes than negative binomial regression [25].

Zero‑Inflated Poisson and Negative Binomial Regression Model

In ZIP regression, the counts Yi equal 0 with probability pi and follow a Poisson distribu-
tion with mean µi , with probability 1 − pi where i = 0, 1, 2,..., n. ZIP model can thus be 
seen as a mixture of two-component distributions, a zero part, and no-zero components, 
given by [15]:

(1)P(Yi = yi) =
e−µIµ

yi
i

yI!
, yi = 0, 1, 2, 3, 4, . . .

(2)Log(µi) = β0 + β1x1 + β2x2 + β3x3 + · · · + βpxp = XT
i β

(3)P(y = y) =
Ŵ(y+ φ)

Ŵ(y+ 1)Ŵ(φ)

(

φ

µ+ φ

)φ(
µ

µ+ φ

)y

, y = 0, 1, 2, 3 . . .
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The ZINB distribution is a mixture distribution assigning a mass of p to ‘extra’ zeros 
and a mass of (1 − p) to a negative binomial distribution, where 0 ≤ p ≤ 1. Based on the 
probability function of the zero –modified distribution, then the probability mass func-
tion for ZINB is:

 where φ−1 , µ and Ŵ(.) representing dispersion, mean, and gamma function respectively. 
Assume that there are p predictors for logistic regression function and negative binomial 
regression function. Hence, ZIP or ZINB regression model can be written as follow:

where β are the vector coefficients XT
i     and   γ   are the vector coefficients ZT

i .

Poisson and Negative Binomial‑ logit hurdle model

A hurdle model consists of two components—a point mass at zero and a distribution 
that generates non-zero counts. The first component is a binary component that gener-
ates zeros and ones (here “ones” correspond to non-zero values in data) and the sec-
ond component generates non-zero values from a zero-truncated distribution. The most 
widely used hurdle models are those with the hurdle value at zero [4]. All zeros in the 
hurdle model are assumed to be “structural” zeros, i.e., they are generated from a single 
process, and are observed since the condition is absent. We explore two zero-truncated 
count distributions for the hurdle model specification [22]. The Hurdle Model of count 
data can be expressed as follows for the Poisson and Negative Binomial distribution. We 
consider a Poisson Hurdle Regression Model in which the response variable y has the 
distribution:

where µi is the mean of the untruncated Poisson distribution.
A negative binomial hurdle distribution is given by:

where φ(≥ 0) is a dispersion parameter that is assumed not to depend on covariates. 
Zero and truncated hurdle model:

(4)P
(

Y = y
)

=
{

pi + (1− pi)e
−µi , yi=0

(1− pi)
e−µiµ

yi
i

yi!
, yi = 1, 2, 3, . . .

(5)P
�

Y = y
�

=











p+ (1− p)
�

φ
µ+φ

�φ

y = 0

(1− p)
Ŵ(y+φ)

Ŵ(y+1)Ŵ(φ)

�

φ
µ+φ

�φ�
µ

µ+φ

�y
, y = 1, 2, 3 . . .

,

(6)Logit(pi) = xTi β and Logit(µi) = ZT
i γ

(7)P(Y = y)

{

pi, yi=0

(1− pi)
e−µiµi

yi

yi!(1−e−µi)
, yi = 1, 2, 3, . . . ..

(8)P
(

Yi = yi
)

=
{

pi, yi = 0

(1− pi)
Ŵ(yi+φ)

Ŵ(yi+1)Ŵ(φ)
µyiφyi (1+µφ)−(yi+φ)

1−(1+∅µ)φ , yi = 1, 2, 3 . . .

(9)Logit(pi) = xTi β and Logit(µi) = ZT
i γ
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where β are the vector coefficients XT
i     and   γ   are the vector coefficients ZT

i .  The 
parameter ∅ is a measure of dispersion.

The Maximum Likelihood Estimation (MLE) method is used to estimate parameters 
in the count models. This study includes Poisson, Negative Binomial, ZIP, ZINB, Hurdle 
Poisson, and NBLH to accommodate the excess zeros for the number of under-five death 
count data. In this paper, Akaike’s information criteria (AIC) and log‐likelihood values 
are used for model selection measures. It is also used dispersion parameters to test for 
overdispersion. The generalized Pearson χ2 statistic which is the standard measure of 
goodness of fit is used to evaluate the sufficiency of the analyzing methods. AIC and 
log‐likelihood are basic methods for assessing the performance of the models and model 
selection [15].

Bayesian Negative Binomial–Logit Hurdle Model

The number of deaths of under-five per mother is a count variable. For modeling of count 
data, two-part models are applied in the presence of excessive zeros. Therefore, for a better 
fit an over-dispersed model that incorporates excessive zeros, i.e. Negative Binomial-Logit 
Hurdle (NBLH) Regression Model is used. The hurdle model is flexible and can handle 
both under-dispersion and over-dispersion problem. The NBLH model is used on data 
with either excessive zero counts in the response or at times too few zero counts. In the 
case where there are too few zero counts, a zero-inflated model cannot be used. The hurdle 
model is a good way to deal with such data [22]. It uses two-part. The first part estimates 
zero elements from the dependent variable are zero  hurdle  model and the second part 
estimates not zero elements (non-negative  integer) from the dependent variable is called 
truncated negative binomial models [26]. The probability density function of the negative 
binomial-logit hurdle model is:

where φ μ, and Γ(.) representing dispersion parameter, mean, and gamma function,
respectively. The most natural choice to model the probability of excess zeros is to use the 

Zero hurdle model with logit link function and a truncated negative binomial model with 
log link function respectively.

where β are the vector coefficients XT
i     and   γ   are the vector coefficients ZT

i .  The 
parameter ∅ is a measure of dispersion. When ∅ = 0, the NBLH model reduces to the 
Poisson regression model. For ∅ > 0, the NBLH model can be used to fit overdispersed 
count data. When ∅ < 0, the NBLH model can be used to fit under dispersed count data. 
The likelihood function of the negative binomial-logit hurdle distribution is as follows:

(10)P(Yi = yi) =
{

pi, yi = 0

(1− pi)
Ŵ(yi+φ)

Ŵ(yi+1)Ŵ(φ)
µyiφyi (1+µφ)−(yi+φ)

1−(1+∅µ)φ , yi = 1, 2, 3 . . .

(11)Logit(pi) = XT
i β and Logit(µi) = ZT

i γ
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The first and most important step in the Bayesian approach is choosing appropriate prior 
distributions. Let β and γ are the set of parameters for the above-mentioned model. We 
assume independent priors for these parameters. Since there is no prior information from 
historical data or previous experiments, then all parameters will use conjugate non-inform-
ative priors. The prior distribution for β and γ is assumed to be normal, while φ is assumed 
to be gamma-distributed. So, the joint prior distribution for NBLH regression parameters 
is:

where ∅~Gamma (a, b) with a = 0.001 and b = 0.001. but our a priori judgment was 
that knowledge of the slope parameter γ does not provide any information about β . The 
regression tool for full Bayesian inference was based on the posterior distribution of all 
parameters. Markov Chain Monte Carlo techniques were used to draw samples from the 
full conditionals of all parameter distribution which were then summarized to obtain 
model estimates in the posterior analysis that is:

where  f
(

β, γ,∅/y, X
)

 is the joint distribution of all parameters in the observation 
model,  L

(

β , γ ,∅/y, X
)

    is the likelihood for all observable data (Y, X) and f(β, γ,∅) is 
the joint prior distribution. Gibbs sampler was used to draw samples from the full con-
ditionals. The posterior distribution is difficult to be solved analytically. Therefore, a 
numerical simulation using the Markov Chain Monte Carlo-Gibbs sampling is used to 
update the parameters given initial values, and to sample the parameters given the simu-
lation is convergent. The most commonly used of this sampling technique is the Gibbs 
sampling algorithm. Gibbs sampling is an algorithm to generate a sequence of samples 
from the joint probability distribution of two or more random variables, to approximate 
the joint distribution. Gibbs sampling is applicable when the joint distribution is not 

(12)

L
�
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�

=
�
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×
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1+ eZ
T
i γ φ

�−(yi+φ)

1−
�

1+ ∅eZT
i γ

�φ
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
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known explicitly, but the conditional distribution of each variable is known. Moreover, 
the Gibbs sampling algorithm is a method to generate an instance from the distribution 
of each variable in turn, conditional on the current values of the other variables [27].

The convergence of the algorithm

Flexible software for Bayesian analysis of complex statistical models by using MCMC 
methods. We use these tools to estimate the NBLH regression models. MCMC is 
based on a combination of Markov chain and Monte Carlo estimation which eventu-
ally converges to the target distribution (the posterior distribution). If a chain becomes 
convergent means the produced sample from the target distribution has been obtained 
correctly. The Markov chain Monte Carlo (MCMC) method is a general simulation 
method for sampling from posterior distributions and computing posterior quantities 
of interest. MCMC methods sample successively from a target distribution. Each sample 
depends on the previous one, hence the notion of the Markov chain. The Markov chain 
method has been quite successful in modern Bayesian computing. Only in the simplest 
Bayesian models can you recognize the analytical forms of the posterior distributions 
and summarize inferences directly. In moderately complex models, posterior densities 
are too difficult to work with directly. With the MCMC method, it is possible to gener-
ate samples from an arbitrary posterior density and to use these samples to approximate 
expectations of quantities of interest. Several other aspects of the Markov chain method 
also contributed to its success. Most importantly, if the simulation algorithm is imple-
mented correctly, the Markov chain is guaranteed to converge to the target distribution 
[28–31]. MCMC technique depends on the approximate distribution which is improved 
by a simulation of each step until a convergence of the posterior distribution is achieved.

Appropriate diagnostics such as; the Gellman-Rubin convergence diagnostic test, Hei-
delberger Welch (stationarity test), Heidelberger-Welch (halfwidth test), monitoring the 
Markov Chain (MC) error, checking for autocorrelation, and observing the trace plots, 
can be used.

Results
Information on the number of deaths of under-five children obtained from a total of 
10,274 women in Ethiopia was studied. Table  1 showed the frequency and percent-
age distribution of the number of under-five deaths in Ethiopia based on information 
from 10,274 women. In this study, 71.09% of them never faced any child death, while 
the remaining 28.91% have at least one child death. This indicates zero outcomes were 

Table 1  Frequency distribution of the number of under-5 deaths in Ethiopia

U5CM Freq Percent Cum

0 7304 71.09 71.09

1 1799 17.51 88.60

2 712 6.93 95.53

3 273 2.66 98.19

4 114 1.11 99.30

5 72 0.70 100.00
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large in number. However large observations (i.e. large numbers of under-five deaths per 
mother) are observed less frequently. This leads to a positively skewed distribution. This 
indicates that the data could be fitted better by a negative binomial hurdle which takes 
into account excess zeroes.

From Fig. 1, we visualized that an over-dispersion of the response variable. Since the 
histogram is highly peaked at zero, we can state that the overdispersion is due to an 
excess of zeroes. Due to a large number of zero outcomes, the histogram is highly picked 
at the very beginning (about the zero values).

This leads to having a positive (or right) skewed distribution. This was an indication 
that the data could be fitted better by count data models which take into account excess 
zeroes and the distribution of the number of under-five deaths has a rapidly decreasing 
tail and is highly skewed to right with excess zeros.

Test for overdispersion

In Poisson regression analysis, Deviance and Pearson Chi-square goodness of fit statis-
tics indicate there was over-dispersion (Table 2). Since the Pearson Chi-square statistic 
divided by the degrees-of-freedom is higher than one and the observed value of 1.165, 
then the mentioned goodness of statistics represents that there was an overdispersion 

Fig. 1  Histogram of the number of under-five mortality in Ethiopia

Table 2  Test for overdispersion

Model Df Value Value/Df Poisson Vs Negative Binomial

Deviance H0: ∅ =0 Vs H1: ∅>0
z = 10.926, p-value < 2.2e−16
Beast model: Negative Binomial

 Poisson 10,259 9387.67 1.095

 NB 10,259 7552.41 0.736

Person

 Poisson 10,259 11,947.39 1.165

 NB 10,259 9939.28 0.969
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in the data set. Even if the Deviance and Pearson Chi-square goodness of fit statistics of 
7552.41and 9939.28 respectively in NB regressions is dropped considerably, still signifi-
cant over-dispersion exists; because we would like to divide this value by the degrees of 
freedom to be close to one. Moreover, the ratio of the Deviance and Pearson Chi-square 
statistic to their corresponding degrees of freedom are greater than one, indicating over-
dispersion in the data and the NB regression model is preferred over the Poisson model.

Figure 2a showed how well the model predicts the count values by overlaying the pre-
dicted probabilities for each under-five child death category on the frequency histogram 
of the actual under-five child mortality data. It appears that the typical regression model 
under-predicts the 0–5 under-five child mortality categories over-predicts all the other 
categories. The plots of the predicted probability of each model against the observed 
probability of the outcome show that the Poisson and the NB model under-estimated 
zero counts.

The zero-inflated models captured almost all zero values. Based on predicted prob-
abilities, the differences in model fit between the six models were remarkable. Still, the 
Poisson model and the NB model do not fit the data reasonably well because of high zero 
counts. The Poisson predicted about 68% zeros and the NB model predicted about 70% 
zeros compared to NB hurdle ZIP and ZINB about 71.09% observed zeros (Fig. 2b, c).

A Table 3 summary of the model comparisons based on Vuong’s statistics for the six 
regression models explored. The rankings of the model are as follows: Poisson < Nega-
tive binomial < ZINB = ZIP = NBLH = Poisson-logit Hurdle. [32]states that if the corre-
sponding p-value is bigger than a pre-specified critical value such as 0.05, then one can 
conclude that the two models fit the data equally well with no preference given to either 
model. But, if |V| yields a p-value smaller than the thresholds 0.05, then one of the mod-
els is better. Therefore, the ZINB, ZIP, NBLH, PLH was chosen as the best model.

Fig. 2  Comparison of the densities of each model fits a, b, c number of under-five child death
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Model selection criteria

The AIC values for the Poisson (PR), negative binomial (NB), ZIP, ZINB, PLH, nega-
tive binomial-logit hurdle (NBLH) were given in Table 4. The AIC obtained from the PR 
model was determined to be greater than that obtained from the other regression mod-
els. The model with the smallest AIC was NBLH.

Interpretation of Count Model coefficients (truncated negative binomial with log link)

According to the findings of this study, the wealth index of the household has a signifi-
cant influence on the number of under-five mortality. The expected number of non-zero 
under-five deaths for women in rich households was 0.84 times lower than the poor 
households. A mother’s age was a significant positive association with under-five mor-
tality. When we look at the age of mothers, the expected number of non-zero under-
five death for mothers aged 30–39 increased by 26.1% as compared to mothers aged less 
than 29 and equal controlling other variables in the model. Also, the expected number of 
non-zero under-five deaths for mothers aged 40–49 increased by 91.2% as compared to 
mothers aged less than 29 and equal by controlling other variables in the model.

The result also revealed that the expected number of non-zero under-five death whose 
mothers visited the health institution during pregnancy was 0.915 times lower com-
pared to whose mothers who have not received any antenatal. The finding of this study 
also revealed that mother’s levels of education have a significant factor in the number 
of under-five death. The expected number of non-zero under-five death for mothers 
with primary and secondary education is 0.704 times lower as compared to those with 

Table 3  Vuong non-nested hypothesis Test-statistic

Vuong non-nested hypothesis Test-statistic

M1 M2 V-statistics (P-value) Model comparization Preferable model

Poisson ZIP − 8.555 (< 2.22e−16) model2 > model1 ZIP

NB ZIP − 3.829 (6.4356e−05) model2 > model1 ZIP

Poisson ZINB − 8.664 (< 2.22e−16) model2 > model1 ZINB

NB ZINB − 4.466 (3.9850e−06) model2 > model1 ZINB

Poisson PLH − 8.706 (< 2.22e−16) model2 > model1 PLH

NB PLH − 4.261 (1.0149e−05) model2 > model1 PLH

PLH ZIP 0.742 (0.229) model1 > model2 PLH = ZIP

PLH ZINB 0.335 (0.36879) model1 > model2 PLH = ZINB

NBLH Poisson 8.794 (< 2.22e−16) model1 > model2 NBLH

NBLH NB 4.984 (3.1215e−07) model1 > model2 NBLH

NBLH ZIP 0.979 (0.16379) model1 > model2 NBLH = ZIP

NBLH ZINB 0.656 (0.25589) model1 > model2 NBLH = ZINB

Table 4  Model comparison using AIC and log-likelihood

Model Poisson NB ZIP ZINB PLH NBLH

AIC 16,316.3 16,081.45 16,040.42 16,040.02 16,035.46 16,035.29

Log-likelihood 16,286.3 16,049.45 15,980.42 15,978.02 15,975.46 15,973.29
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non-educated. Contraceptive use is found one of the important significant predictors of 
under-five mortality.

The expected number of non-zero under-five death for mothers who were used con-
traceptives was 0.731 times lower than mothers who have not used a contraceptive. 
The result also shown the expected number of non-zero under-five death in multiple 
births was 1.571 times greater as compared to the single birth. When we see the age 
of mothers at first birth, the expected number of non-zero under-five deaths for moth-
ers aged above or equal 26 years decreased by 37.9% as compared to mothers aged less 
than 15 years. Besides, the expected number of non-zero under-five deaths for mothers 
age 16–25 years decreased by 16% as compared to mothers aged less than 15 years (see 
Table 5).

Interpretation of Zero hurdle model coefficients (binomial with logit link)

The Zero hurdle model indicated that the estimated odds of the number of non-zero 
under-five deaths of women who lived in rural was 1.248 times more than those who 
lived in urban. In addition to this; as birth order increases the under-five mortality 

Table 5  Parameter estimations and SE for the models of HNB

Signif. Codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Parameter Negative Binomial-logit hurdle (NBLH)

Count model coefficients 
(truncated negbin with log 
link)

OR Zero hurdle model 
coefficients (binomial 
with logit link)

OR

Intercept − 10.60952 (35.602) 0.0001 − 2.40283*** (0.147) 0.091

Mothers age (ref =  <  = 29)

 30–39 0.232* (0.090) 1.261 0.223** (0.068) 1.250

 40–49 0.648*** (0.092) 1.912 0.803*** (0.081) 2.233

Place of residence (ref = Urban)

 Rural − 0.091 (0.080) 0.913 0.222** (0.079) 1.248

Mothers educational level (ref = No education)

 Primary and Secondary − 0.351*** (0.074) 0.704 − 0.183** (0.062) 0.833

 Higher − 0.587 (0.491) 0.556 − 1.144*** (0.226) 0.319

Wealth index combined (ref = poor)

 Middle − 0.08 (0.065) 0.923 − 0.109 (0.073) 0.319

 Rich − 0.175** (0.061) 0.840 − 0.168* (0.068) 0.897

Birth order number (ref = 1)

 2–4 9.955 (35.602) 2.106 1.227*** (0.114) 3.106

 5 +  10.864 (35.602) 5.228 2.326*** (0.1225) 1.024

Type of birth (ref = Single)

 Twin 0.451*** (0.1098) 1.571 0.915*** (0.178) 2.496

Mother’s age at the first birth (ref =  ≤ 15)

 16–25 − 0.221*** (0.050) 0.802 − 0.357*** (0.062) 0.700

 ≥ 26 − 0.476** (0.152) 0.621 − 0.634*** (0.135) 0.531

Current contraceptive method (ref = not using)

 Using − 0.313*** (0.067) 0.731 − 0.273*** (0.060) 0.761

Number of antenatal visits during pregnancy (ref = No antenatal visits)

 Antenatal visit − 0.088* (0.0528) 0.915 − 0.105 (0.054) 0.9003

 Log (theta) 3.0195*** (0.737) –



Page 13 of 23Workie and Azene ﻿J Big Data             (2021) 8:4 	

also increases. The estimated odds number of non-zero under-five deaths with chil-
dren’s birth order 2–4 and 5 + are 3.106 and 1.024 times more than the first order; 
respectively. According to the findings of this study, the wealth index of the house-
hold has a significant influence on the number of under-five mortality. The estimated 
odds that the number of non-zero under-five deaths for women in the rich households 
were decreased by a factor of 0.897 times the estimated odds number of non-zero 
under-five deaths for women in the poor households while holding all other variables 
in the model constant.

The finding also showed that estimated odds that the number of non-zero under-
five death for mothers who were used contraceptives was about 0.761 times lower than 
mothers who were not used. And also, the probability of under-five death decreased 
with the increasing educational level of the mother. The estimated odds that the number 
of non-zero under-five death with mothers who have a primary and secondary education 
are decreased by 16.7% than non-educated mother.

Finally, the result revealed that the type of birth and age at first birth has a significant 
factor for the likelihood of under-five death. The estimated odds that the number of non-
zero under-five death with children born in multiple births is 2.496 times more as com-
pared to children born in a single birth. The odds of the number of non-zero under-five 
death among children whose mother’s age at first birth greater than 26 and 16–25 years 
were decreased by 46.9 and 30%e than as compared to children whose mother’s age at 
first birth was less than 16 years. And also, estimated odds that the number of non-zero 
under-five death with mothers age 30–39 and 40–49 is 1.25 and 2.233 times more than 
as compared to mothers aged <  = 29 respectively.

Results of Bayesian Negative Binomial–Logit Hurdle Model

Bayesian approach results, it is needed checking the convergence assessment, that 
involves checking that the sequence or chain has converged to and provides a represent-
ative sample from the posterior distribution. Table 6 shows the Heidelberger and Welch 
stationarity tests for the Bayesian MCMC.
Time-series: It is one of the tests used to diagnosis the convergence of Bayesian anal-

ysis. The time series plot indicates a good convergence three independent generated 
channels will mix or overlapped (Appendix: Fig. 3a and b). Here, the diagnostic graphs 
conclude the simulation draws are reasonably converged, and therefore, we can be more 
confident about the accuracy of posterior inference.

Interpretation of Bayesian Count Model coefficients (truncated negative binomial with log 

link)

The finding of the analysis, it was shown that the most effective variable on the num-
ber of under-five child death. Women ages at first birth, the estimated coefficients of 
age groups of women are statistically significant for the number of under-five death. The 
results in Table show that the age category of women has a significant impact on the 
number of under-five death per woman. The expected number of under-five deaths those 
women aged 30–39 years had decreased by 98.04% as compared to the expected num-
ber of under-five deaths in the age group <  = 29 while holding all other variables in the 
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model constant. Similarly, the expected number of under-five deaths those women aged 
40–49 years had decreased by 25.3% as compared to the expected number of under-five 
deaths in the age group <  = 29 while holding all other variables in the model constant.

The finding of this study also revealed that the mother’s level of education had a sig-
nificant factor in reducing the number of under-five mortality. The expected number of 
under-five mortality for women with primary and secondary education was decreased 
by 31.96% as compared to those with no education controlling other variables in the 
model. Similarly, the finding of this study, the wealth index of the household has a sig-
nificant influence on reducing the number of under-five mortality. The expected num-
bers of under-five deaths for women in the rich households were decreased by 11.57% 
as compared to the expected number of under-five deaths for women in the poor house-
holds while holding all other variables in the model constant.

The finding of this study also revealed that types of birth had a statistically signifi-
cant impact on the number of under-five mortality. The expected numbers of under-
five deaths for multiple births were increased by a factor of 1.556 as compared to the 
expected number of under-five mortality for the single birth while holding all other vari-
ables in the model constant. Besides, the age of mothers at first birth, the expected num-
ber of non-zero under-five deaths for mothers aged 16–25, and ≥ 26 years are decreased 
by 16.64 and 29.25% as compared to mothers aged ≤ 15 years. The result also revealed 
that the expected number of non-zero under-five death whose mothers visited the health 
institution during pregnancy was 0.831 times lower compared to mothers who have 
not received any antenatal. In addition to this, as birth order increases the under-five 
mortality also increases. The expected number of non-zero under-five deaths with chil-
dren’s birth order 2–4 and 5 + is 35.52 and 113.86 times more than to the first order; 
respectively.

Contraceptive use is found one of the important significant predictors of under-five 
mortality. The estimated number of non-zero under-five death for mothers who were 
used contraceptives is about 0.733 times lower than mothers who were not used.

Interpretation of Bayesian Zero hurdle model coefficients

This implies convergence and accuracy of posterior estimates are attained and the model 
was appropriate to estimate posterior statistics. Because of the result with non-inform-
ative prior given in Table 3, considering the credible interval, the table shows that the 
following variable: mothers age, education level, birth order number, type of birth, age 
of respondent at 1st birth, current contraceptive method of using, number of antenatal 
visits during pregnancy were the significant predictors of the determinants of under-five 
child death. From the Bayesian zero hurdle model we found that the number of non-zero 
under-five death whose mothers visited the health institution during pregnancy was 
0.831 times lower compared to mothers who did not receive any antenatal (OR = 0.762; 
HPD CrI 0.690, 0.842). Additionally, the effects of maternal education on the under-five 
child mortality, we found that higher education level, primary and secondary education 
level women were 0.810 and 0.317 times less likely to the number of non-zero under-five 
child death compare to no educated women respectively. Furthermore, as the level of 
education increases, the odds of the number of non-zero under-five death also decreased 
by 0.810 and 0.317 respectively.
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Regarding the effects of the age of the respondents at first birth on child mortality, 
mothers aged 16–25 were 0.744 times less likely to the number of non-zero under-five 
child death compare to mothers aged ≤ 15  years. Besides, the estimated odds of the 
number of non-zero under-five deaths for mothers aged ≥ 26  years are decreased by 
27.02% as compared to mothers aged ≤ 15 years. Mothers who used contraceptives had 
decreased odds (OR = 0.756; HPD CrI 0.670, 0.851) of the number of non- zero under-
five child death compared with mothers did not use. The estimated odds that the number 
of non-zero under-five death with children born in multiple births was 2.404 times more 
as compared to children born in a single birth. The estimated odds number of under-
five deaths those women aged 30–39 years had decreased by 89.6% as compared to the 
age group <  = 29. Similarly, the estimated odds of the number of under-five deaths those 
women aged 40–49 years had decreased by 20.07% as compared to the age group <  = 29. 
The estimated odds number of non-zero under-five deaths with children’s birth order 
2–4 & 5 + are 4.031 & 16.151 times more than to the first order; respectively (Table 7).

Discussion
In this study, we found that Poisson and NB models are insufficient in the presence of 
excess zero counts. A previous study reported the performance of count models for 
health data concluding the ZINB model to be best fitted for overdispersed and zero-
inflated response variables. However, in the presence of overdispersion and excess of 
zeros, the NBLH model is better fitted the data which is characterized by excess zeros 
and high variability in the non-zero outcome than any other models, it also should be 
noted that NBLH which allows for over-dispersion and also accommodates the presence 
NBLH of excess zeros, is more appropriate among all zero-adjusted models and there-
fore, NBLH is selected as the best parsimonious model to predict the number of under-
five death in Ethiopia [33–35].

Results that there was a significant difference between the two approaches. The com-
parison between the two approaches had to better apprehend the determinants of the 
number of under-five deaths highlights lower standard errors of the estimated coeffi-
cients in the Bayesian Negative Binomial–Logit Hurdle Model. Thus, the Bayesian 
Negative Binomial–Logit Hurdle Model is more stable. On the other hand, the results 
from Bayesian Negative Binomial–Logit Hurdle Model and NBLH are difficult to com-
pare because of both utilized different tools for decision-making. Moreover, when both 
approaches produce similar results, findings from the Bayesian NBLH model are given 
preference because the technique is more robust and precise than the NBLH. Our 
results also give some support to previous findings [22, 36].

Besides of priors was to reduce the variance of the model and thereby lead to a bet-
ter model in the Bayesian approach. Based on the prior definition and the result from 
our analysis; we concluded that the Bayesian approach gives a better result. Findings 
from Bayesian and classical inference are not significantly different which could be due 
to the covariates or non-informative prior utilized in the model. Despite the similari-
ties in their results, it was still difficult to compare the two approaches because classical 
inference makes use of confidence interval to decide while Bayesian uses credible inter-
vals. Moreover, when both techniques produce similar results, findings from Bayesian 
are given more attention because it is more robust compared to the classical. It was also 
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possible to assess convergence of models under the Bayesian which could also make its 
result better than the classical inference [37].

According to the results, the mother education level was an important socio-economic 
predictor of the number of under-five child death, that was the mortality rate decreases 
with an increase in mother education level. The higher the level of education of the 
woman, the lower the risk of mortality. Educated mothers will be well informed about 
factors such as antenatal care, family planning and others that will lead to a reduction of 
child mortality. Similar results were obtained from previous studies [38–40].

Mother’s age at first birth is negatively correlated with child mortality that decreased 
the risk of child mortality as an increase in mother’s age at first birth. The estimated 
result also show that increases mothers’ age at first birth reduced the risk of child mor-
tality and mothers who gave birth to their first child at a younger age face higher child 
mortality risk which is similar to the previous studies conducted by different scholars in 
developing countries including Ethiopia, Nigeria and Bangladesh [41–45].

The risk of under-five death associated with multiple births was very high relative to 
single births and this study is similar to the previous studies that birth type to be linked 
with under-five child death as multiple births is associated with a higher risk of child 
mortality [42]. Child death with multiple births is higher relative to single ones. Because 
multiple births have a lower weight due to nutritional intake competition [46]. In addi-
tion to the current study, those under-five children, including infants, whose births were 
multiple had a higher rate of odds of mortality than those who were singleton births. So, 
these findings indicate the importance of meticulous identification and investigation of 
high Maternal and child determinants of under-five mortality risk pregnancies, includ-
ing multiple pregnancies, during the prenatal period to take appropriate action.

The finding of the study revealed that the death of under-five children from mothers 
use contraceptives was significantly less compared to the death of children from mothers 
who did not use a contraceptive [47]. Birth order was another important factor posi-
tively associated with under-five child mortality. Under-five child mortality increased as 
birth order increased. Birth order of greater than or equal to five (> = 5) has been said 
to experience significant-high childhood mortality, possibly due to less care, since the 
woman has more children to attend [48, 49]. More so, as the birth order increases, the 
age of the mother also increases.

The result also revealed that the number of under-five death whose mother’s antenatal vis-
ited during pregnancy was lower than not received any antenatal check. Hence, increased 
attendance at antenatal clinics reduced child mortality [31, 35]. According to the results, 
under-five mortality risk is higher for children of poor mothers compared to children of 
medium and rich mothers. In this study, the AIC statistic and predictive probability curve 
indicated that the Hurdle negative binomial model was the best model for the number of 
under-five death with about 71.09% zero counts. Several studies reported similar results that 
the Hurdle negative binomial model was the best model for count outcomes [50].
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Conclusion
This article considered several count data models to examine the factors associated 
with the number of under-five child mortality using a dataset with over-dispersion and 
inflated with zeros from EDHS, 2016 in Ethiopia. Six count regression models were 
compared in terms of AIC. The model comparison identified that NBLH models are 
better fitted for modeling the observed data with excess zeros and over-dispersion. In 
this study, we proved that there was a significant difference between the Bayesian and 
classical NBLH models. A comparison between the two approaches had better appre-
hend the socioeconomic determinants of the number of under-five deaths highlights 
lower standard errors of the estimated coefficients in the Bayesian NBLH Model. Thus, 
the Bayesian NBLH Model was more stable. Moreover, when both approaches produce 
similar results, findings from the Bayesian model are given preference because the tech-
nique is more robust and precise than the classical statistics. Furthermore, Using the 
Bayesian Negative Binomial–logit hurdle model helps in selecting the most significant 
factor: mother’s education, Mothers age, Birth order, type of birth, mother’s age at the 
first birth, using a contraceptive method, and antenatal visits during pregnancy were the 
most important determinants of under-five child mortality.

Table 7  Summary statistic of the posterior distribution of the model parameters

*Intercept ( β0 ); Mothers age: 30–39 ( β1&γ1 ), 40–49 ( β2&γ2 ); Rural ( β3&γ3 ); education level: Primary and Secondary ( β4&γ4 ) 
and Higher ( β5&γ5 ); wealth index: Middle ( β6&γ6 ), Rich ( β7&γ7 ); Birth order number: 2–4 ( β8&γ8),5 + (β9&γ9)3–4 (β9); twin 
( β10&γ10 ); mother’s age at the first birth: 16–25 ( β11&γ11), ≥ 26 ( β12&γ12 ); Current contraceptive method of using ( β13&γ13 ); 
antenatal visits ( β14&γ14).

Parameter Bayesian Negative Binomial-logit hurdle (NBLH)

Count model coefficients Parameter Zero hurdle model coefficients

Mean SD HPD of 95% CrI Mean SD HPD of 95% CrI

β0 0.100 0.043 (0.025, 0.193)

β1 − 3.933 0.712 (− 5.174, − 0.320) γ1 − 2.263 0.147 (− 2.559, − 1.982)

β2 − 0.292 0.049 (− 0.387, − 0.196) γ2 − 0.224 0.051 (− 0.324, − 0.124)

β3 − 0.137 0.081 (− 0.294, 0.023) γ3 0.129 0.079 (− 0.028, 0.283)

β4 − 0.385 0.075 (− 0.534, − 0.239) γ4 − 0.212 0.061 (− 0.331, − 0.094)

β5 − 0.803 0.533 (− 1.988, 0.114) γ5 − 1.149 0.228 (− 1.613, − 0.717)

β6 − 0.044 0.067 (− 0.177, 0.088) γ6 − 0.047 0.073 (− 0.192, 0.098)

β7 − 0.123 0.062 (− 0.246, − 0.002) γ7 − 0.071 0.067 (− 0.201, 0.059)

β8 3.570 0.713 (1.973, 4.845) γ8 1.394 0.115 (1.173, 1.628)

β9 4.735 0.709 (3.144, 6.004) γ9 2.782 0.117 (2.556, 3.019)

β10 0.442 0.115 (0.211, 0.662) γ10 0.877 0.176 (0.533, 1.221)

β11 − 0.182 0.051 (− 0.282, − 0.081) γ11 − 0.296 0.062 (− 0.420, − 0.174)

β12 − 0.346 0.156 (− 0.660, − 0.048) γ12 − 0.315 0.132 (− 0.575, − 0.057)

β13 − 0.310 0.068 (− 0.444, − 0.17) γ13 − 0.280 0.060 (− 0.400, − 0.161)

β14 − 0.185 0.053 (− 0.291, − 0.082) γ14 − 0.272 0.051 (− 0.371, − 0.172)
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Fig. 3  a, b Time series for convergence of coefficients for the predictors
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