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Introduction
The main idea of neural networks (NN) is based on biological neural system structure, 
which consists of several connected elements named neurons [1]. In biological systems, 
neurons get signals from dendrites and pass them to the next neurons via axon as shown 
in Fig. 1.

Neural networks are made up of artificial neurons for handling brain tasks like learn-
ing, recognition and optimization. In this structure, the nodes are neurons, links can be 
considered as synapses and biases as activation thresholds [2]. Each layer extracts some 
information related to the features and forwards them with a weight to the next layer. 
Output is the sum of all these information gains multiplied by their related weights. Fig-
ure 2 represents a simple artificial neural network structure.
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Deep neural networks are complex artificial neural networks with more than two 
layers. Nowadays, these networks are widely used for several scientific and industrial 
purposes such as visual object detection, segmentation, image classification, speech 
recognition, natural language processing, genomics, drug discovery, and many other 
areas [3].

Deep learning is a new subset of machine learning including algorithms that are 
used for learning concepts in different levels, utilizing artificial neural networks [4].

As Fig. 3 shows, if each neuron and its weight are represented by Xi and Wi j respec-
tively, the output result (Yj) would be:

Fig. 1  Typical biological neurons [20]

Fig. 2  Simple artificial neural network structure
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where σ is the activation function. A popular function that is used for activation in deep 
neural networks is ReLU (Rectified Linear Unit) function, which is defined in Eq. (2).

Leaky ReLU, tanhh and Sigmoid functions are some other activation functions with 
less frequent usage [5].

As shown in Fig. 4, each layer of a deep neural network’s role is to extract some fea-
tures and send them to the next layer with its corresponding weight. For example, in the 
first layer, color properties (green, red blue) are gained; in the next layer, edge of objects 
are determined and so on.

Convolutional neural networks are a type of deep neural networks that is mostly used 
for recognition, mining and synthesis applications like face detection, handwritting rec-
ognition and natural language processing [6]. Since parallel computations is an una-
voidable part of CNNs, several efforts and research works have been done for designing 

(1)Yj =

n∑

i=1

σ(WijXi)

(2)[σ(z)]j = max{zj and 0}

(3)σ(z) =
1

1+ e−z

Fig. 3  A typical deep neural network structure
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an optimized hardware for it. As a result, many application-specific integrated circuits 
(ASICs) as hardware accelerators have been introduced and evaluated in the recent dec-
ade [7]. In the next section, some of the most successful and impressive works related to 
CNN accelerators are introduced.

Related works
Tianshi et al. [8] proposed DianNao as a hardware accelerator for large-scale convolu-
tional neural networks (CNNs) and deep neural networks (DNNs). The main focus of 
the suggested model is on the memory structure to be optimized for big neural network 
computations. The experimental results showed speedup in computation and reduction 
of overhead in performance and energy. This research also demonstrated that the accel-
erator can be implemented in very small area in order of 3 mm2 and 485 mW power.

Zidong et  al. [9] suggested ShiDianNao as a CNN accelerator for image processing 
close to a CMOS or CCD sensor. The performance and energy of this architecture is 
compared to CPU, GPU and DainNao, which has been discussed in previous work [8]. 
Utilizing SRAM instead of DRAM made it 60 times more enery effiecent than DianNao. 
It is also 50×, 30× and 1.87× faster than a mainstream CPU, GPU and DianNao, with 
just 65 nm usage area and 320 mW power.

Wenyan et al. [6] offered a flexible dataflow accelerator for convolutional neural net-
works called FlexFlow. Working on different types of parallelism is the substantial con-
tribution of this model. Results of the tests showed 2–10 × performance speedup and 
2.5–10 × power efficiency in comparison with three investigated baseline architectures.

Eyriss is a spatial architecture for energy efficient data flows for CNNs which pre-
sented by Yu-Hsin et al. [10]. This hardware model is based on a dataflow named row 
stationary (RS). This dataflow minimizes energy consumption by reusing computation of 
filter weights. The proposed RS dataflow is investigated on AlexNet CNN configuration, 
which proved energy efficiency improvement.

Morph is a flexible accelerator for 3D CNN-based video processing that offered by 
Katrik et  al. [7]. Since the previous work and proposed architectures didn’t specificly 
focus on video processing, this model can be considered as a novelty in this area. Com-
parison of energy consumption in this architecture with previous idea, Eyriss [10] 
showed a high level of reduction that means energy saving. The main reason of this 
improvement is effective data reuse which reduces the access to higher level buffers and 
high cost off-cheap memory.

Michael et  al. [11] described Buffets that is an efficient and composable accelerator 
and independent of any particular design. Through this research, explicit decoupled 
data orchestration (EDDO) is introduced which allows evaluation of energy efficiency 

Fig. 4  Deep learning setup for object detection [21]
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in acceleators. Result of this work showed that with a smaller usage area, higher energy 
efficiency and lower control overhead is acquired.

Deep learning applications
Deep learning has a wide range of applications in recognition, classification and predic-
tion, and since it tends to work like the human brain and consequently does the human 
jobs in a more accurate and low cost manner, its usage is dramatically increasing. More 
than 100 papers published from 2015 to 2020, helped categorize the main applications as 
below:

•	 Computer vision
•	 Translation
•	 Smart cars
•	 Robotics
•	 Health monitoring
•	 Disease prediction
•	 Medical image analysis
•	 Drug discovery
•	 Biomedicine
•	 Bioinformatics
•	 Smart clothing
•	 Personal health advisors
•	 Pixel restoration for photos
•	 Sound restoration in videos
•	 Describing photos
•	 Handwriting recognition
•	 Predicting natural disasters
•	 Cyber physical security systems [12]
•	 Intelligent transportation systems [13]
•	 Computed tomography image reconstruction [14]

Method
As mentioned previously, artificial intelligence and deep learning applications are grow-
ing drastically, but they have high complexity computation, energy consumption, costs 
and memory bandwidth. All these reasons were major motivations for developing deep 
learning accelerators (DLA) [15]. A DLA is a hardware architecture that is specially 
designed and optimized for deep learning purposes. Recent DLA architectures (e.g. 
OpenCL) have mainly focused on maximizing computation reuse and minimizing mem-
ory bandwidth, which led to higher speed and performance [16].

Generally, most of the accelerators support just fixed data flow and are not reconfigur-
able, but for doing huge deployments, they need to be programmable. Hyoukjun et al. 
[15] proposed a novel architecture named MAERI (Multiply-Accumulate Engine with 
Reconfigurable Interconnects), which is reconfigurable and employs ART (Augmented 
Reduction Tree) which showed 8 ~ 459% better utilization for different data flows over 
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a strict network-on-chip (NoC) fabric. Figure 5 shows the overall structure of MAERI 
DLA.

In another research, Hyoukjun et al. offered a framework called “MAESTRO” (Mod-
eling Accelerator Efficiency via Spatio-Temporal Resource Occupancy) for predicting 
energy performance and efficiency in DLAs [17]. MAESTRO is an open-source tool that 
is capable of computing many NoC parameters for a proposed accelerator and related 
data flow such as maximum performance (roofline throughput), compute runtime, total 
runtime, NoC analysis, L1 to L2 NoC bandwidth, L2 to L1 bandwidth analysis, buffer 
analysis, L1 and L2 computation reuse, L1 and L2 weight reuse, L1 and L2 input reuse 
and so on. The topology, tool flow and relationship between each of its blocks of this 
framework are presented in Fig. 6.

Results and discussion
In this paper, we used MAESTRO to investigate buffer, NoC, and performance param-
eters of a DLA in comparison to a classical architecture for a specific deep learning data 
flow. For running MAESTRO and getting the related analysis, some parameters should 
be configured, as follows:

•	 LayerFile: Including the information related to the layers of neural network.
•	 DataFlow File: Information related to data flow.
•	 Vector Width: Width of the vectors.
•	 NoCBand width: Bandwidth of NoC.
•	 Multicast Supported: This logical indictor (True/False) is for defining that the NoC 

supports multicast or not.
•	 NumAverageHopsinNoC: Average number of hops in the NoC.
•	 NumPEs: Number of processing elements.

Fig. 5  MAERI micro architecture [15]



Page 7 of 11Bolhasani and Jassbi ﻿J Big Data           (2020) 7:100 	

For the simulation of this paper, we configured the mentioned parameters as presented 
in Table 1.

As presented in Table 1, we have selected Vgg16_conv11 as LayerFile, which is a con-
volutional neural network that has proposed by K. Simonyan and A. Zisserman. This 
deep convolutional network model was offered for image recognition with 92.7% accu-
racy on ImageNet dataset [18].

Two different data flow strategies are investigated and compared in this study: NLR 
and NVDLA. NLR stands for “No Local Reuse” which expresses its specific strategy and 
NVDLA is a novel DLA designed by NVIDIA Co [19].

Other parameters such as vector width, NoC bandwidth, multicast support capabil-
ity, average numbers of hops and numbers of processing elements in NoC have been 
selected based on a real hardware condition.

Simulation results demonstrated that NVDLA has better performance, runtime, 
higher computation reuse and lower memory bandwidth in comparison to NLR as pre-
sented in Table 2 and Figs. 7, 8, and 9.  

Fig. 6  MAESTRO topology [15]
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Conclusion
Artificial intelligence, machine learning and deep learning are growing trends affecting 
our lives in almost all aspects of human’s life. These technologies make our life easier by 
assigning routine tasks of human resources to the machines that are much more accu-
rate and fast. Therefore, any effort for optimizing performance, speed, and accuracy of 
these technologies is valuable. In this research, we focused on performance improve-
ments of the hardware that are used for deep learning purposes named deep learning 
accelerators. Investigating recent researches conducted on these hardware accelerators 
shows that they can optimize costs, energy consumption, run time about 8–459% based 
on MAERI’s investigation by minimizing memory bandwidth and maximizing computa-
tion reuse. Utilizing an open source tool named MAESTRO, we compared buffer, NoC 

Table 1  MAESTRO configuration parameters

No. Input parameter Value

1 LayerFile Vgg16_conv11

2 dataFlowFile NLR.m
NVDLA.m

3 vectorWidth 64

4 NoCBandwidth 128

5 multicastSupported True(1)

6 numAverageHopsinNoC 4

7 numPEs 32

Table 2  Simulation Results For NLR and NVDLA

Data Flow NLR NVDLA

Buffer analysis

 L1 Buffer Requiremnet (Byte) 18.00 66.00

 L2 Buffer Requiremnet (KB) 1.12 4.12

 L1RdSum 7,225,344 451,584

 L1WrSum 7,225,344 451,584

 L2RdSum 462,422,016 28,901,376

 L2WrSum 462,422,016 28,901,376

 L1 weight reuse 1 16

 L1 input reuse 4 16

 L2 weight reuse 448 190.26

 L2 input reuse 2633 4473

NoC analysis

 L1 to L2 NoC BW 128 32

 L2 to L1 NoC BW 160 1024

Performance analysis

 L1 to L2 Sum 56 32

 L1 to L2 Delay 4.43 4.25

 L2 to L1 Delay 0 0

 Roofline Throughput (GFLOPS with 1 GHZ clock) 896 128

 Compute Runtime 169 421

 Total Runtime (cycles) 1,428,553,728 384,072,192
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and performance parameters of NLR and NVDLA data flows. Results showed higher 
computation reuse for both L1 and L2 of the NVDLA data flow which is designed and 
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optimized for deep learning purposes and studied as deep leraning accelerator in this 
study. The results showed that the customized hardware accelartor for deep learning 
(NVDLA) had much shorter total runtime in comparison with NLR.
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