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Introduction
At this time, the demand for 3D modeling using earth observations is high. The results 
of 3D observations become the primary data in terms of policy determination. Planning 
infrastructure is something that can be supported by 3D data observations. Traffic poli-
cies, utilities, permits, and urban planning are some of the problems that can be solved 
with 3D data observations.

3D city modeling has three stages: building detection, building extraction, and build-
ing reconstruction. The purpose of the first stage is to detect that a collection of points 
is a building. The second stage is to compute the polygons that fit the set of building 
points. The third stage determines the best plane for the roof. Some researchers have 
tried to conduct building extraction by using image processing from high-resolution 
images [1–3].
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S.M. Abdullah conducted building detection using a segmentation method [4]. The 
technique divides LIDAR data into the ground and non-ground points. After that, 
they iterated from the highest LIDAR point and searched for the planar shape of the 
roof segment. The region growing method was used for roof identification. The cor-
rectness and completeness of this study reached 70–90%.

The Digital Terrain Model (DTM) and Digital Surface Model (DSM) techniques 
have been used to extract data from point cloud data. The DSM and DTM techniques 
convert 3D point cloud data to a raster image. This was done by filtering using the 
Sohn filter generated by the DTM. Then, the DSM technique is applied to get the roof 
pixels. The classification obtained from this method reached 95.1% accuracy, 98.1% 
correctness, and 89.5% efficiency. Z. Hao used the DSM and DTM techniques to pro-
duce a Digital Elevation Model (DEM). To perform building extraction, he used the 
Gray Level Co-occurrence Matrix (GLCM), which is an unsupervised clustering tech-
nique. The GLCM technique is used to separate candidates from vegetation and trees 
[5].

LIDAR (Light Detection and Ranging) data are the data obtained from a laser sen-
sor, combined with several sensors, and they include laser and GPS data. LIDAR can 
be placed on the bottom of the aircraft and pointed to the ground. It will generate 
points that represent the surface below the aircraft. The topology includes buildings, 
plants, and vegetation. In the problem regarding the detection of urban buildings, some 
researchers have taken several approaches [6–11]. In LIDAR data or point cloud data, 
the data formed are only a collection of 3-dimensional points with additional RGB data. 
There is no information about the surface of an object from those points.

Some alternatives to obtain information from LIDAR generated data have been stud-
ied by researchers. The DSM is a standard method to get visual information about the 
surface from raw LIDAR data. In the DSM, the height feature becomes the primary com-
ponent that can be used to differentiate each point. The results of the differentiation of 
each point are represented in the form of a raster image. Zhao et al. employed the Gray 
Level Co-occurrence matrix [5] to the images resulting from the DSM process.

In addition to using the image processing method, the use of deep learning methods to 
conduct building extractions has also been studied by several researchers. Hsiuhan Lexie 
Yang et al. applied deep learning to remote sensing images to conduct building extrac-
tion [12]. Several experiments have been carried out, including the Fully Convolutional 
Network (FCN) method and SegNet (Semantic Segmentation). Experimental results 
show that the value of the F-Score is between 0.62 and 0.73.

Detecting buildings using deep learning was also studied by Faten et  al. [13]. They 
merged LIDAR data with Orthophoto data. Some features extracted from LIDAR data 
include the density, the boxy fit, the shape index, the DEM, and the DSM. The best accu-
racy result by this method is 86.19%. The use of the DSM to identify changes in an area 
by using aerial images and LIDAR data has also been studied. The resulting proposed 
method achieves 93% completeness and 90.2%.

Building segmentation methods have been divided into methods that rely on the 
extracted images from the DTM, the DSM, and the DEM [14–20]. In this research, 
we promote a building segmentation method that directly uses LIDAR data, which is 
in the form of point clouds. Many researchers have used the CNN method for image 
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processing and segmentation [21–33]. When processing LIDAR data, several research-
ers convert LIDAR data to the DTM, DSM, or DEM formats, which are then processed 
using a CNN [12] [13]. This causes an important feature to be missing, the z feature. In 
this paper, we strive to ensure that we provide a process that directly uses LIDAR data. 
Our research position is described in Fig. 1.

Anandkumar Ramaya applied the Euclidean clustering technique to open datasets to 
detect buildings [36]. The best accuracy results that were obtained range from 82% to 
89% when the number of buildings is 25 + 25 = 50. In this research, we used four data-
sets with a total number of 229 buildings. We captured the dataset ourselves using 
drones and LIDAR equipment. We conducted the building extraction process using the 
DGCNN, and the building segmentation is done using the Euclidean clustering method. 
Our results achieve accuracies from 74.28% to 95.57%.

Several researchers fused LIDAR Data and High-Resolution images to extract build-
ing from the data. They utilized deep learning for training the neural network. Huang, 
Jianfeng et al. used the gate residual refinement network to extract high-resolution aerial 
images and LIDAR data [37]. They converted the data to a pixel-based format to fit the 
data into the residual refinement network. Pan, Xuan, et al. utilized a fine segmentation 
network to do semantic labeling of aerial images [38]. It converted the LIDAR data to the 
DSM form then transformed into the neural network structure.

Chen Shanxiong et al. employed Adaptive Iterative Segmentation to extract the build-
ing [39]. They utilized LIDAR Data, which is in 3D- form to Digital Surface Model (2D- 
form). Based on these several references. We propose a new method that utilizes directly 
raw LIDAR data, which is 3D-data into the DGCNN network to extract building then 
utilize PCL to segment each building. Instead of losing some detail in the Z dimension, 
we try to preserve the x,y,z raw data. So the DGCNN network process 3-D data rather 
than 2-D data.

Proposed method

In this research, we perform building segmentation using LIDAR data. First, we per-
form data collection using LIDAR, it utilizes a drone to get the LIDAR point data. The 
drone flies approximately 200 meters above the ground. After the data collection has 
been completed in the field, the data will be cleaned and preprocessed. The next process 

Fig. 1  Our method position
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is preparing the training data in a building or house in a point cloud format. Each home 
or building will become training data for the DGCNN. The data will be used to train the 
DGCNN for 100 epochs. Figure 2 gives the overall description of our proposed method. 
Also, we used a public dataset to evaluate our metric from the city of Dublin [40]. We 
used this data in our experiment because it gives the same object with our dataset. It 
provides building objects, land, and vegetation in the city area. Besides, the data format 
is the same as our datasets, and it has the same properties and features.

After we extract the points of the building by using the DGCNN, then we utilize 
Euclidean Clustering to segment each of the buildings. Rusu developed Euclidean clus-
tering based on point cloud data by implementing the clustering method using kd-tree 
data structures [35]. The Euclidean clustering method works by segmenting objects that 
are on the same plane. For this reason, it is necessary to define what distinguishes one 
cluster from another cluster [35].

We also evaluated a pixel-based method to compare it with the DGCNN + Euclidean 
Cluster. LIDAR data is first converted into DSM form, so that lidar data changes to the 
2-D format. To perform building extraction, we utilize the binarization of the pixel-
based DSM image. The segmentation for each building was done using the Haralick and 
Shapiro method [41]. After the segmentation is done, we can get the label results for 
each building. The evaluation of this method is described in Tables 4 and 5.

We utilize the DGCNN algorithm to extract the building points from our dataset. It 
differentiates between the point collections of building and nonbuilding points, such as 
vegetation or land. The Dynamic Graph Convolutional Neural Network (DGCNN) is 
a neural network architecture inspired by PointNet that can perform classification and 

Fig. 2  Automatic building segmentation research flow
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segmentation directly on data in the form of point clouds. In PointNet, each point is 
processed locally to maintain the invariant permutation by ignoring the geometric rela-
tions between points [34]. The DGCNN architecture uses a convolution layer called 
EdgeConv, which has edge features where the relations between points, including geo-
metric structures, are considered [34].

EdgeConv exploits the local geometric structures by constructing graphs at adjacent 
points and applying convolution operations on each connected edge [34]. The DGCNN 
classification process uses the architecture shown in Fig. 3. Input data are in the form of 
N inputs, and M features, where features can be in the form of point clouds with point x, 
y, z coordinate data, or they can have other features added such as a color representation 
in the form of Red, Green, and Blue (RGB) data. For each point, the edge feature on the 
EdgeConv layer will be calculated, and each feature will be aggregated to calculate the 
EdgeConv calculation result for each point [34].

The Edge Convolution Operation (EdgeConv) applies asymmetric aggregation opera-
tion in the operator to determine the edge features that correspond to all edges of the 
reference point to each surrounding point. EdgeConv has the property that it is able to 

Fig. 3  DGCNN architecture
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recognize an object in an area, even if the object has been moved, rotated, or scaled, 
(enlarged or reduced) and then determine its nonlocal feature [34]. There are several 
options for determining the edge and operator functions used in a model. The PointNet 
model applies hΘ (x_i,x_j) = hΘ (x_i). The DGCNN adds edge detection using asym-
metric edge functions in the form of hΘ (x_i,x_j) = hΘ (x_i,x_j -x_i). This function was 
chosen to be implemented in the DGCNN because of its ability to combine the global 
structure form (formed by t reference points of x_i) and the surrounding information 
(obtained from the closest point relations x_j x_ij). EdgeConv takes the tensor input of 
the input n × f. The 3D edge features are obtained by applying a multilayer perceptron 
(MLP). The output of the EdgeConv block is formed after the pooling process, and it is a 
tensor with the size of n × a_n.

Unlike static CNN graphs, the DGNN graph is dynamically updated for each network 
layer. The DGCNN finds a set of k-nearest neighbors from the point of the layer changes 
in the network, which is calculated based on the embedding sequence. The distance 
in the feature space is different from the input distance, thus leading to the diffusion 
of nonlocal information across the point cloud data. Experiments using the DGCNN 
model provide the advantage of recalculating the graph using the nearest neighbors in 
the feature space generated from each layer. This is what distinguishes the DGCNN from 
CNN graphs that work with input fixes. This algorithm is called the DGCNN because 
the graph is dynamically processed with updates. With the updated graph, the receptive 
area will be spaced as wide as the point cloud distance so that it becomes scattered.

The formulation of our method starting, if there is an input in the form of point cloud 
P and O is the representation of a cluster, then the equation can be defined as follows:

where clusters Oi = {pi ∈ P} and Oj =
{

pj ∈ P
}

 have different points between them and 
dth is the maximum distance between the points in different clusters. The purpose of the 
above Eq. 1 is that if the difference between the points {pi ∈ P} with 

{

pj ∈ P
}

 is greater 
than dth , then pi is the part of cluster Oi and pj is the part of cluster Oj [35]. The process-
ing algorithm of Euclidean Clustering is described in Fig. 4.

After all data points of a building or house are ailable, we will annotate each point cloud 
datum as building, vegetation, or land. Furthermore, the DGCNN training process is car-
ried out using the following parameters: 150 epochs, and 4.096 points are sampled for each 

(1)min pi - pj2 ≥ dth

Fig. 4  Euclidean clustering pseudocode
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building. This step is carried out to divide separate buildings, land, and vegetation. We also 
evaluate the accuracy of this division. After the DGCNN process is performed, now we get 
only the point cloud data of the buildings. Then, we perform semantic segmentation using 
Euclidean Clustering. The results we get from Euclidean Clustering are labeled as buildings 
with different colors for the visualization. The visualization of the segmentation is shown in 
Fig. 7.

The explanation of Eq. 1 provides the process flow through Eq. 9.

If K is an array of 3D vectors of point cloud data, k consists of the horizontal (x), verti-
cal (y), and depth (z) of a variable. Variable B is a collection of variables k that make up 
a building. Variable L is a collection of points from k that are land. Notation B is a col-
lection of points for each building, and L is a collection of points for each nonbuilding. 
They are used to train the DGCNN, which produces a neural network model with the 
name EdgeModelBL. EdgeModelBL is a model that is used to determine the points clas-
sified as a building or nonbuilding.

If there are multiple points k and we want to predict the points classified as building 
or nonbuilding, we can do that by using EdgeModelBL (K) in Eq.  8. The result of the 
EdgeModelBL (K) model is that it generates a set of points that are automatically labeled 
as building or nonbuilding with the notation e in Eq. 6. The set of points labeled as build-
ing is NB and the set labeled as nonbuilding is NL.

(1)k =





x
y
z





(2)K = [k0, k1, k2, . . . , kn]

(3)B = [b0, b1, b2, . . . , bn]

(4)L = [l0, l1, l2, . . . , ln]

(5)DGCNN (B, L) = EdgeModelBL

(6)n =

[

k
e

]

(7)N = [n0, n1, n2, . . . , nn]

(8)EdgeModelBL(K ) = N.

(9)N = [NB, NL].

(10)EC(NB) = P
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N consists of the dots labeled buildings and the dots marked as nonbuilding. To seg-
ment each building, we just need a dot labeled as a building with the NB notation. 
Therefore, NB point sets will be segmented individually by Euclidean Clustering or EC 
in Eq. 10. Euclidean clustering will generate b points as buildings and r as the labels of 
those buildings, e.g., building 1, building 2, and building n. The set of building points b 
and the labels r of each building are included in P.

Results and discussions
The measurement results are calculated in the building extraction and building segmen-
tation process. The process of removing objects other than buildings is carried out in the 
building extraction process, and the process of segmenting each building is carried out 
in the building segmentation process. We perform data acquisition using drones that are 
equipped with LIDAR sensing devices. The tool will produce a collection of 3-dimen-
sional point clouds. A point cloud contains the data that we use as input data for the 
DGCNN algorithm. The data are gathered by flying a drone at the height of 200 m above 
the ground. The drone will move according to the specified flight plan. In addition, 
the LIDAR laser will shoot the laser light down to the ground and produce points that 
describe the condition of the surface under the drone. At this time, we perform surveil-
lance in 4 different locations for our own dataset. Dataset 1–4 is our own dataset, which 
acquiesced in the Depok area in Indonesia. The surveillance is illustrated in Fig. 5. Data-
set 5-8 are public datasets from the city of Dublin.

Building extraction

In the building extraction process, we utilized the DGCNN method. There are four 
datasets that we have gathered. The DGCNN configuration that we use is as follows: 50 
epochs, a batch size of 12, a learning rate of 0.001, the Adam optimizer, and a momentum 

(11)p =

[

b
r

]

(12)P = [p0, p1, p2, . . . , pn]

Fig. 5  LIDAR data acquisition drone
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of 0.9. The metrics we use in measuring the performance of the building extraction pro-
cess are Accuracy, Precision, Recall, F-Score, and Intersection Over Union (IOU). For 
each dataset, we use the x, y, and z features as our training features in the DGCNN.

The accuracy, precision, and recall metrics are used to evaluate how good the 
DGCNN model is at predicting a collection of points that are categorized as build-
ings or nonbuildings. Meanwhile, the Intersection Over Union metric seeks to assess 
the performance regarding the intersection of the points of the predicted data and 
ground truth data.

Table 1 shows the performance results of the building extraction process using the 
DGCNN. It can be seen that the separation between building points and nonbuild-
ing points is highly accurate for datasets 1 and 2. Datasets 1 and 2 are city areas. 
Thus, the height of the building is higher than the surrounding vegetation. Therefore, 
this makes the accuracy, precision, and recall results for datasets 1 and 2 better than 
those of the other datasets. The model can obtain good results that differentiate high 
buildings and the ground. In Table I, the accuracies for datasets 3 and 4 are above 
84%. However, the IOU shows that in these datasets, buildings and nonbuildings is 
not separated perfectly. It can be seen that the IOUs are 0.68 and 0.63, respectively. 
Datasets 3 and 4 consists of various objects, high buildings, small houses, vegetation, 
trees, and bushes. Therefore, it is difficult for the models to perfectly separate build-
ings and nonbuildings. We also measure the IOU score since the IOU will give a clear 
picture of the quality of the classification results. It can be seen in dataset four that 
although the accuracy obtained is relatively high, the intersection of the classification 
results generated with the ground truth data is 0.63. This result gives us information 
that only 60% of the points of the ground truth object and the predicted object inter-
sect. A detailed illustration of the IOU can be seen in Fig. 6. The real building is illus-
trated in Fig. 6(a), and the segmentation prediction is illustrated in Fig. 6(b).

Dataset 5–8 is the open LIDAR dataset from Dublin city. Based on Table  1, we 
can see that the Dublin LIDAR dataset (dataset 5,6,7,8) generally has almost the 
same building extraction performance compared to the Depok dataset (dataset 1–4). 
Table  2 is the result of the evaluation metric using the DSM (pixel-based) method. 
From Table  2, we can see that the Accuracy, Precision, Recall, F1-Score, and IOU 
consistently have smaller values than the DGCNN + Euclidean clustering method in 
Table 1. Image processing or pixel-based on LIDAR data causes the removal feature z 

Table 1  Building extraction performance results (DGCNN)

Dataset Accuracy Precision Recall F-Score IOU

Dataset 1 89.00% 0.90 0.86 0.87 0.78

Dataset 2 91.50% 0.90 0.89 0.89 0.81

Dataset 3 85.20% 0.79 0.81 0.80 0.68

Dataset 4 84.30% 0.79 0.74 0.76 0.63

Dataset 5 83.4% 0.83 0.77 0.79 0.67

Dataset 6 78.4% 0.77 0.82 0.77 0.63

Dataset 7 85.8% 0.82 0.83 0.83 0.71

Dataset 8 78.2% 0.76 0.77 0.76 0.62



Page 10 of 18Gamal et al. J Big Data           (2020) 7:102 

in the LIDAR data. In DSM, z features should be removed because DSM only uses the 
image-based principal. In the DSM method, the z is converted into color density. The 
process of the building extraction is not optimal with the converted z feature. Thus 
the evaluation metric has a reasonably large error compared to the DGCNN + Euclid-
ean Clustering method.

Building segmentation

In the building segmentation process, the separation between building objects is done by 
utilizing Euclidean clustering [35]. Euclidean clustering is utilized because this method 
has been developed for point cloud data specification. The Euclidean clustering input is 
the output data from the building extraction process. The point cloud data only consist 
of building points. Semantic segmentation is done using a model that has been trained 
using the data in each dataset. The parameters of the Euclidean Clustering of point cloud 
data are given in Table 3.

We use the parameters in Table 3 to perform the building segmentation process based 
on the output from the building extraction process. Our LIDAR data do not give a well-
ordered city mapping. They consist of various types of objects that are included in our 

Fig. 6  Illustration of the Intersection Over Union (IOU) of a building. a The Real Building. b Segmentation 
Prediction of a Building

Table 2  Building extraction performance results (DSM)

Dataset Accuracy Precision Recall F-Score IOU

Dataset 1 54.01% 0.81 0.54 0.64 0.55

Dataset 2 60.50% 0.87 0.61 0.71 0.63

Dataset 3 52.03% 0.78 0.52 0.62 0.51

Dataset 4 51.06% 0.76 0.51 0.61 0.48

Dataset 5 48.00% 0.63 0.45 0.52 0.47

Dataset 6 44.00% 0.58 0.38 0.46 0.39

Dataset 7 51.03% 0.67 0.48 0.55 0.51

Dataset 8 41.00% 0.56 0.32 0.40 0.32
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dataset. The resolution of our LIDAR sensing data is 1 m for a 40 point cloud. The dis-
tance between one building and another can be less than 1 m. Some buildings are enor-
mous, such as offices and malls.

Additionally, some buildings are tiny, such as security posts and small shops (3 × 3 
meters). Therefore, we have to choose a large range of cluster sizes. Each of the clusters 
represents the points of a building.

The search method is a data structure used to find the nearest neighbors at each point; 
the data structure that is used is the kd-tree. The minimum cluster size is the lowest 
number of points in a cluster or building. The maximum cluster size is the maximum 
number of points in a cluster. Tolerance is a tolerance variable for the distance between 
the points in a cluster. If the tolerance value is too small, a label that should be labeled as 
one building can be labeled as several buildings. Conversely, if the tolerance value is too 
large, some buildings can be labeled as one building only. The visualization results of the 
building segmentation utilizing Euclidean Clustering are described in Figs. 7 and 8 for 
the Depok dataset, and Figs. 9 and 10 for Dublin Dataset.

The metrics that we used to evaluate the segmentation results for each building are the 
Accuracy and IOU Score. In this evaluation, we want to test the success of the separa-
tion between one building and another. The accuracy metric aims to measure whether 
the results of the cluster are in the form of a building. Meanwhile, the Intersection Over 
Union metric is used to test the results of th cluster and assess if it has a large enough 
intersection with the original building.

Illustrations and examples of IOU evaluations can be seen in Fig. 6. In Fig. 6, we can 
see a building that is identified as a unit using pink. Meanwhile, the results of the Euclid-
ean Clustering produced three buildings that are colored pink, brown, and gray. In this 
case, the IOU value obtained for the building is 0.45 because the points are separated 
into three different buildings. Only 45% of the Euclidean clustering result has an inter-
section with the real points of the building. However, the accuracy is near 100% because 
all of the clusters are in the form of a building.

Table  4 explains the Euclidean clustering results for datasets 1–8. The building seg-
mentation is visualized in Figs. 7, 8, 9 and 10. Datasets 1–3 have 32, 35, and 61 buildings, 
respectively. The display of the buildings in datasets 1–3 can be seen clearly in Fig. 6a–
c, respectively. Visually, we can see that the gap or distance between one building and 
another building is quite tight in these datasets. The Euclidean clustering algorithm can-
not maximize the separation between one building and another building. therefore, the 
accuracies and IOUs for datasets 1–3 are from 74% to 81% and 0.65–0.69, respectively.

We can see in datasets 1–3 that the accuracy obtained is between 74.28% and 82.00%. 
6–9 buildings cannot be segmented as buildings. This happens because in dataset 1-3, 
several buildings have several points that are too small, and so they are not segmented as 

Table 3  Euclidean clustering parameters

Search method Kd-tree

Minimal cluster size 1000

Maximal cluster size 2000,000

Tolerance 1.1 meters
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buildings. The IOU results also show values from 0.65 to 0.72. These results indicate that 
several buildings have been segmented and can be separated from each other. However, 
the results of the separation are not perfect. As explained in Fig. 5, some buildings are 
not completely segmented. There are segmentation results that include only a few parts 
of the building.

As we can see in Table 4, the dataset achieves an accuracy of 91.67%. From the results 
of this accuracy, it can be explained that the number of buildings that can be segmented 
as buildings is quite good. However, good results were obtained because there was a 
large gap between one building and another, as shown by Fig. 7d. Considerable differ-
entiation between buildings gives Euclidean Clustering the ability to maximally sepa-
rate the building points of one building from those of another. If we measure the IOU in 
dataset 4, the obtained results are between 0.84. The IOU results show relatively agree-
ment between the segmented buildings and the ground truth buildings. Therefore, the 
intersection between the segmented buildings and the ground truth buildings reflects a 
good result.

Dataset 5–8 is the Dublin area dataset. In the Dublin dataset, we can see that the result 
of the metric evaluation value is better than the dataset 1–4, which is the Depok area 

Fig. 7  Visualization of building segmentation using the Euclidean Distance (Dataset 1 and 2)
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dataset. There are several factors that cause this to happen. The city layout of the Depok 
area is not well designed, so there is no clustering between office buildings, parks, and 
housing. Meanwhile, in a relatively developed city such as Dublin, the urban planning 
and arrangement are excellent, so that the placement of areas and Clustering of building 
designations have been appropriately implemented. In addition to city planning, the res-
olution of the LIDAR data also affects the results of the evaluation. In the Dublin data-
set, the LIDAR dataset resolution is 300 points per meter. In comparison, in the Depok 
dataset, the resolution possessed by the dataset is 45 points per meter. So that the build-
ing segmentation on data 5–8 has a better performance compared to the dataset 1–4.

As a comparison, we also conducted a segmentation evaluation using DSM (pixel-
based image). Pixel-based image evaluation is carried out by utilizing the Haralick 
method for segmenting each building. Table 5 shows the results of the evaluation using 
the DSM. From Table 5, in general, the evaluation metrics show a performance result 
that is not better than Table  4 for all datasets. This is due to the conversion of the z 
dimension. It happened when converting LIDAR data into DSM format.

Fig. 8  Visualization of building segmentation using the Euclidean Distance (Dataset 3 and 4)
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Based on several references, which uses the DSM format + deep learning such as 
[37–39]. These researchers used a combination of LIDAR data and High-Resolution 
aerial images. The fusion between lidar data that is converted into DSM with a high-
resolution image is one way to segment buildings. Deep learning and its variations are 
perfect if implemented for image processing needs. High-resolution images can help 
the performance of deep learning to classify results. In our research, we use LIDAR 
data with minimal resolution and do not use high-resolution images. Hence, the 
computation we do uses only three main features, namely x, y, z, in the point cloud 
data. We do not convert from 3-Dimensions to 2-Dimensions. All data remains in 3 
Dimensional formats. This can make the process shorter than converting to DSM.

We compare the process between the DSM conversion + CNN method and using 
the raw Lidar data. The usual method for building extraction is done by converting 
point cloud data to the DSM image (2-Dimensions). It converted 3-dimensional data 
into 2-dimensional data. The use of high-resolution images also requires considerable 
computing power in the processing. It utilized deep learning and employed hidden 
layers when training the data in several epochs.

Our method does not convert to DSM (2-Dimensions). The original features of the 
Point cloud are retained and fed directly into the neural network for results. So that 

Fig. 9  Visualization of building segmentation using the Euclidean distance (Dataset 5 and 6)
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in terms of process, the method we do has a process that is shorter than the usual 
method. In terms of environmental factors, the method we use does not depend 
on photos or aerial images. As we know that aerial images are of low quality when 
dealing with bad weather. The method we use only considers the point cloud of the 
lidar data from the laser sensor on the lidar, so that problems in bad weather can be 
resolved.

From the evaluation results of the eight datasets, we can conclude that the merging 
of the building extraction process using the DGCNN and the building segmentation 

Fig. 10  Visualization of building segmentation using the Euclidean distance (Dataset 7 and 8)
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process using Euclidean Clustering can segment buildings. According to the test 
results, the best results give an accuracy of 91.67% and an IOU score of 0.84. Based on 
our evaluation, the building extraction and building segmentation process produce an 
accuracy that varies from 81.25% to 91.67% and an IOU score that varies from 0.65 to 
0.84. This result has shown that the process of combining the DGCNN and Euclidean 
clustering can be used to automatically segment buildings.

Conclusion
The automatic segmentation of buildings can be accomplished by using a combination 
of two methods: the DGCNN as the method to separate buildings and nonbuildings 
and the Euclidean clustering method to segment the buildings. The evaluation process 
is done by using two metrics, the accuracy and IOU score, for each building. From the 
evaluation results, according to those metrics, the best results obtained achieve an accu-
racy of 91.67% and an average IOU score of 0.84. The test results of several datasets 
show that the IOU varies from 0.65 to 0.84. In the future, we will try to implement and 
explore some methods that can solve the problem of clustering buildings with small gaps 
between one building and another.

Abbreviation
CNN: Convolutional neural network; DEM: Digital Elevaion Model; DGCNN: Dynamic Graph Convolutional Neural Net-
work; DSM: Digital Surface Model; DTM: Digital Terrain Model; IOU: Intersection Over Union; LIDAR: Light Detection and 
Ranging.

Table 4  DGCNN + Euclidean clustering results

No Dataset Number 
of buildings

Buildings 
detected

Buildings 
undetected

Accuracy IOU

1 Dataset 1 32 26 6 81.25% 0.72

2 Dataset 2 35 26 9 74.28% 0.65

3 Dataset 3 61 52 9 82.00% 0.69

4 Dataset 4 36 33 3 91.67% 0.84

5 Dataset 5 62 58 4 93.55% 0.80

6 Dataset 6 75 73 2 92.23% 0.87

7 Dataset 7 103 95 8 88.89% 0.84

8 Dataset 8 54 48 6 93.00% 0.80

Table 5  DSM Results

No Dataset Number 
of buildings

Buildings 
detected

Buildings 
undetected

Accuracy IOU

1 Dataset 1 32 17 15 53.12% 0.46

2 Dataset 2 35 15 20 42.85% 0.34

3 Dataset 3 61 31 30 50.81% 0.42

4 Dataset 4 36 22 14 61.11% 0.54

5 Dataset 5 62 40 22 64.51% 0.53

6 Dataset 6 75 47 28 62.67% 0.51

7 Dataset 7 103 60 43 58.25% 0.49

8 Dataset 8 54 33 21 61.11% 0.53
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