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Introduction
Where multiple organisations are related, the need to compare their operational output 
requires that their independent heterogeneous operational datasets are compatible for 
analysis. The suitability of datasets from heterogeneous sources for analysis is referred 
to as data comparability and the nature of such analysis is referred to as cross-popu-
lation analysis [1]. Data comparability is therefore an attribute of datasets that renders 
them usable for cross-population comparative analysis. A major difficulty in achieving 
data comparability is the heterogeneous nature of data obtained from multiple organisa-
tions and sources. The inherent heterogeneity is eliminated or reduced to their barest 
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minimum by cleansing and reformatting the datasets when the datasets are aggregated 
from their different sources. Aggregation is a step in the data value chain and the tech-
niques involved in aggregating data are data cleansing, reformatting and data integration 
[2].

Aggregating data from different sources to support decision-making at the level of 
management or supervision is a very important task. Aggregated data is required for 
decision-support because a decision that is not based on verifiable data creates room for 
contention and controversy leading to opposition to such a decision. Inherent in deci-
sion-making that is supported with data, is the fact that arriving at such decision is pre-
ceded by rigorous comparative analysis. Where the data used for comparative analysis 
is acquired from disparate sources, the associated heterogeneity creates problems that 
render the data incomparable. Depending on the nature of the decision scenario, the 
associated comparison could be between multiple processes in an organization or even 
between multiple organizations. The organizations could, in turn, be located within the 
same country or in geographically disperse locations. Data comparability is global if it 
involves governments or Non-Governmental Organizations (NGOs) whose operational 
scope is worldwide. The United Nations (UN), for example, has set up United Nations 
Educational, Scientific and Cultural Organization (UNESCO) with a declared purpose 
to contribute to promoting international collaboration in education, sciences, and cul-
ture to increase universal respect for justice, the rule of law, and human rights to funda-
mental freedom as proclaimed in the UN Charter. The UN Charter sets up the basis of 
cooperation between member nations of the United Nations [3]. In this way, UNESCO 
promotes education in member countries on behalf of the UN and thus can be said to 
have oversight and monitoring functions over education in member countries on behalf 
of the UN. To achieve this aim, organs of UNESCO regularly collect data on educational 
practices in member countries. A fundamental requirement of data so collected and pro-
cessed by the UN through the UNESCO Institute of Statistics is global comparability [2].

This paper is of the opinion that cross-population comparability is enhanced when 
an appropriate data model is used to store the underlying data used in the analytical 
process. The objectives of this paper are therefore threefold: (i) show how the current 
approach of storing data in disparate sources using Enterprise Resource Planning (ERP) 
applications introduces data heterogeneity which makes the stored data incomparable 
across multiple organizations; (ii) review how Big Data models have evolved from feder-
ated databases to data warehouses and a hybrid of both in response to the growth of data 
in the V-dimensions of Big Data when aggregated from multiple sources; (iii) show that 
the proposed data model enhances cross-population comparative analysis where multi-
ple organizations are involved.

The concept of Big Data came up as a technology to cope with the storage of mas-
sive data sets that were being moved from diverse sources into data warehouses. The 
dimensions of Big Data were then known as volume, velocity, variety and lately verac-
ity [4]. Volume refers to the size of data being created, Velocity is the speed at which 
data is created, captured, extracted, processed, and stored while variety connotes dif-
ferent data types and sources ranging from structured, semi-structured to unstructured 
data. Aggregating data from multiple organisations increases data volume to a level 
that it attains the status of Big Data. Velocity, variety and other dimensions of Big Data 
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usually come into play but when data is aggregated, volume is the Big Data dimension 
that must first be handled. Aggregating data from multiple sources has a consequence of 
data being lost in the process [5]. Data loss tampers with the veracity dimension of Big 
Data because veracity means the truthfulness, accuracy and integrity of data [4]. Verac-
ity raises issues of quality, reliability, uncertainty, as well as incompleteness.

To put volume in a perspective that emphasizes its relevance to data aggregation and 
data comparability across multiple organizations, volume may be redefined as volumi-
nosity, vacuum, and vitality–three additional V-dimensions of data as exposed by [4]. 
Voluminosity in volume states that there is already a very large set of data collected and 
even much more is available to be harvested. Between the volume collected so far and 
those yet to be collected there is a significant gap, making voluminosity a significant 
attribute of volume. In a nutshell, volume refers to the size of data being created from all 
sources in an organization including text, audio, video, social networks, research stud-
ies, medical data, space images, crime reports, weather forecasting and natural disaster 
[6]. The scale of data volume is now in terabytes, petabytes, and exabytes, a phenomenal 
challenge that is being addressed using a combination of big data technologies consisting 
of hardware and software [7]. The combination of commodity hardware and the Hadoop 
Distributed File System (HDFS) is an example of big data technology often deployed to 
address the issues of voluminosity.

The vacuum dimension of volume states that there is a strong requirement for empty 
spaces to store large volumes of data. Vacuum also refers to the creation of room to 
store, process and manage tremendous datasets from the existing datasets. This dimen-
sion of volume pops up the research question about how much storage space is available 
for incoming data rather than how much data has already been stored. The process of 
creating storage space for incoming data is equally as challenging as it is with managing 
vast sets of already stored data. The vacuum dimension of Big Data is concerned with 
creating space, by either augmenting storage devices or other techniques to compress 
the size of data [7]. The vitality of volume states that there is a massive amount of data 
actively served and unserved. Vitality emphasizes the survival of data in the storage envi-
ronment and thus its reliability. In a large data bank, some data are actively used while 
some are not [7]. However, companies generate revenue from the actively used data only 
and the rest are stored for future uses. There is the risk that data stored for future use 
is abandoned or not properly maintained. As the risk of being abandoned gets higher, 
anything can happen to those datasets not currently in use. In other words, with less 
investment and attention to the unserved data, they are exposed to incidences of fire, 
earthquake, flood, war, and terrorist which are the prominent causes of data loss. Thus, 
vitality is a critical component of volume. The lack of vitality, in any case, is symptomatic 
of the absence of disaster management systems which decimates data reliability or leads 
to complete data loss. Apart from reliability, vitality also describes flexibility, depend-
ability, and security. Vitality is an integral component of volume just as the volume is to 
Big-Data.

This work was also inspired by the concept of collocation in language processing. In 
corpus linguistics, collocation is used to describe a sequence of words that often occur 
together and can be extracted from a corpus. When applied to big data, collocation 
extraction involves finding interesting word combinations in large corpora [8, 9]. The 
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concept of collocation has also been applied to management of resources such as power, 
computing resources in a data center, placement of satellites and measuring instruments 
[10]. To cut costs, business entities often rent space for servers and other computing 
hardware in a data center. Typically, a data center operating this collocation arrange-
ment provides the building, cooling, power, bandwidth and physical security while the 
customers provide servers and storage. In satellite technology, collocation is used to 
describe the placing of two or more geostationary communications satellites in an orbit 
nearby each other. In remote sensing technology, collocation is used to describe match-
ing remote sensing measurements from two or more different instruments. In summary, 
collocation is the placement of several related entities in a single location or proximity. 
In a way similar to this generic definition of the word, collocation, the proposed Col-
location Data model permits data from different sources to be cultivated (collocated) 
as footprints of users on a single sign-on application. The application also processes the 
data collocated without any further preprocessing step since the single sign-on applica-
tion enforces a uniform data format on the data cultivated. The Collocation Data model 
views the locations from where the footprints of users used to cultivate big data come 
from as geographical scales [11].

The rest of this paper is organized as follows: “Related works” section reviews the 
development of data models from federated systems up to data lakes and warehouses 
and how the latter is applicable to big data sourced from multiple organisations. Data 
comparability is reviewed as a desirable quality of data when sourced from multiple 
sources or organisations that are related by regulatory bodies. In “Methodology” sec-
tion, the proposed model is discussed as the Collocation Data Model. The model is a 
big data store, designed using the novel Entity-Case diagram, a variant of the Use-Case 
diagram. Entity Relationship diagrams are subsequently used to decompose the Entity-
Case diagram to lower-level details describing data derived from multiple organizations. 
In “Results and discussion” section, it is shown how the Collocation Data Model seam-
lessly processes the performance data of students cultivated from the footprints of users 
from multiple schools. Use-Case diagrams are used to show the design of a single sign-
on application that implements all the features required to cultivate the collocated data 
and analyze them. Finally “Conclusion” section concludes the paper and outlines current 
and future lines of research.

Related works
Over the years, models that describe enterprise datasets have been developed and can 
be referred to as enterprise data models. Experience with big datasets show that the 
enterprise data models do not effectively model big data. This led to big data models 
beginning with federated systems, then data lakes and data warehouses. Enterprise data 
models have traditionally been implemented using relational database management sys-
tems (RDBMS). This was easy to do then because enterprise data models are proprietary 
to the applications to which they serve as backends and hence the volume of data is usu-
ally within manageable size. Big data models, on the hand are implemented using a poly-
glot of database management systems as no one database management system exemplify 
completely all the V-dimensions of big data [12].
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The enterprise data model

An enterprise data model used to model data about staff and students in a Nigerian Uni-
versity was implemented as a database backend to an Enteprise Resource Planning (ERP) 
system [13]. The data model was reported 12 as being applicable to other Universities 
supervised by the Nigerian Universities Commission (NUC). With the ERP, each Univer-
sity independently manages its administrative and academic programs. The architecture 
of the ERP as adapted from [13] is depicted in Fig. 1.

An Enterprise-Bound Data Model of educational institutions limits the scale of the 
model to the institution as an enterprise entity and hence not internationalized or 
even regionalized. The model scale is limited to harvesting data about students and the 
courses they are studying in an institution as depicted in Fig. 2.

The ERP data model gives an idea of the nature of data that can be sourced from an 
organisation. The model has however been grossly found wanting in modeling situations 
where multiple applications and databases are involved. This is because the ERP data 
model is implemented as an independent database, making it lack uniformity in terms 

Fig. 1  ERP Architecture of Tertiary Education adopted from [13]

Fig. 2  ERP-Based Data Model of Tertiary Education
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of data structure. The need for a data model that achieves uniformity in data collection 
and supports data analytics has been emphasized by relevant agencies in different coun-
tries and sectors of national life. In New Zealand, for example, the government has an 
Official Statistics System. To improve the quality of data on sexual orientation, a con-
ceptual framework of sexual orientation was developed as part of this statistical system 
[14]. Veracity, the quality of data on this system, is measured by its timeliness, accuracy, 
reliability, and comparability.

Aggregating data from multiple organisations such as universities under the same 
supervision or enterprise databases such as the Official Statistics System obtainable in 
New Zealand produces data in Big Data dimensions. The aggregation process requires 
the knowledge of the several ERP data models associated with each organisation and 
a corresponding Big Data model that describes the aggregated data. In the subsequent 
sections of this review, existing big data models are discussed in terms of their histori-
cal development. The gaps observed from this review form the basis for a novel big data 
model that enhances data comparability across multiple organisations.

Big data models

In many respects, aggregating data from several sources promotes data heterogeneity 
because each institution will implement the ERP data model using its preferred database 
schemas. The resultant heterogeneity makes cross-institutional comparative analysis 
tedious, requiring that the aggregated data is cleansed and reformatted. In the particu-
lar scenario of Universities, data comparability issues that arise create problems for 
agencies that regulate University education, who must source data from the independ-
ent enterprise databases for analysis. The aggregation operation introduced when data 
from several ERP data models are aggregated and linked elongates the data value chain 
as depicted in Fig. 3.

The aggregation operation creates data in V-dimensions of big data and hence is a 
major focus of research into big data models. The first attempt to model big data was 
the federated model and the game plan was to create a model that permitted a snap-
shot view of several enterprise data models. McLeod and Heimbigner were among 
the first to define a federated big data model, as one that “defines the architecture 
and interconnectivity of databases that minimize central authority yet support par-
tial sharing and coordination among database systems” [15]. Over the years, feder-
ated systems came to be known as a collection of cooperating (distributed) systems 
that are autonomous and possibly heterogeneous [16]. The federated system requires 
a lot of network bandwidth and stability to ensure online connectivity to the central 

Fig. 3  Data Value Chain [2]
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system since it cannot guarantee that the autonomous databases will be in the same 
location in all cases. The federated databases create mirrors of the original data being 
aggregated and do not create copies at the point of aggregation. This makes physical 
copies that can be historically referenced unavailable at the aggregation point.

A data warehouse is a big data model aimed at solving the problems associated 
with federated systems. A data warehouse was initially defined as a method of storing 
historical and integrated data for read-only view in decision support systems [17]. It 
was subsequently viewed as a repository of data sourced from multiple heterogene-
ous data sources, organized under a unified schema at a single site in order to facili-
tate management decision making. Building the data warehouse includes cleansing 
the data, reformatting the data to fit the unified schema (data integration) and min-
ing data [18]. Data mining is the process of discovering interesting knowledge from 
the large amounts of data stored in the data warehouses. Data mining comes with 
the ability for Online Analytical Processing (OLAP) which enables information to be 
viewed from different perspectives in the form of dashboards to facilitate decision-
making. Early implementations of the data warehouse model had storage limitations 
until Big Data stores were introduced. With the introduction of Big Data stores, the 
concept of OLAP was also extended to mean Big Data Analytics [19, 20].

The data warehouse model of data aggregation creates copies of data from differ-
ent sources while the federated database model allows a central view of autonomous 
databases. Since data in the warehouse are copies, they do not necessarily need to be 
aggregated real-time but the resultant data volume is usually big in the dimensions of 
Big Data. Both federated databases and data warehouses allow organizations to dra-
matically improve their capability to manage massive datasets. For one reason or the 
other, the federated databases may fail to give a complete view of the autonomous 
databases.

The Hadoop MapReduce framework is typical of the data warehouse big data model. 
The Hadoop component of the framework provides a distributed storage system man-
aged by the Hadoop Distributed File System (HDFS). HDFS supports the safe and rapid 
big data processing architecture of the MapReduce component of the Hadoop MapRe-
duce framework. In this way, the framework supports the design of applications that 
generate big data analytics for business intelligence among others. The data integration 
capability of Hadoop enables it to integrate data from different sources, in different for-
mats and characters into data lakes that support data input and output between multiple 
data sources and databases [21]. Bagui and Dhar [22] created a data warehouse using 
the Hadoop MapReduce framework on the Amazon AWS EMR. The data warehouse 
had 1.5 GB real life transactional dataset from 1.7 million web html documents mainly 
written in English and sourced from several websites. The dataset was downloaded from 
the FIMI website (https​://fimi.uantw​erpen​.be/data/). As a pre-processing step, the docu-
ments were filtered to remove the html tags and common stop words. A stemming algo-
rithm was then applied to convert each document into a distinct transaction containing 
a set of all distinct terms (items) that appeared in the document. Each data set is subse-
quently replicated and the replication combined with the dataset to make bigger data-
sets of 6 GB, 12 GB and 18 GB which were then used in the experiments. Voss et al. [5] 
referred to this pre-processing step as ETL (Extract Transform and Load).

https://fimi.uantwerpen.be/data/
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Google Collaboratory (Colab) is an online framework where one can write, execute 
Deep Learning and Machine Learning codes [23]. Colab uses the Jupyter Notebook tech-
nology to connect to Google Drive on the cloud or to the hard drive of a local computer 
depending on where the dataset is located. For bigger datasets, Colab can download such 
datasets directly from external sources to google drive at very high speed once authen-
tication to Google is confirmed. Loading data from external sources is a step towards a 
better architecture as it is a way of separating data storage from the notebook. Different 
versions of python and different runtime environments are available in the Colab frame-
work and they offer many possibilities to connect with external data stores. In particular, 
the AWS S3 and versions of relational databases that scale horizontally to accommodate 
the volume, variety and velocity of the big data dimensions of data have been used for 
file storagein Colab. Like existing big data models, Colab does not grow the dataset but 
requires that the dataset be sourced externally, loaded into storage, pre-processed and 
then analysed for analytics. Carneiro et al. [24] used Colab as a tool for accelerating deep 
learning computer vision and other GPU-centric applications. The experimental dataset, 
made up of images were loaded into Colab and processed for predictive analytics.

In summary, the existing big data models have a pre-processing step in the aggregation 
process that leads to data losses. While this may not be avoidable in instances where the 
data sources are unrelated, the reverse is the case when multiple organisations related 
by operational procedures, management or supervision are involved. Beyond the advan-
tage that these big data models help manage massive datasets, the data losses associ-
ated with them tamper with the veracity of the aggregated data. This paper proposes 
that this problem can be solved by developing a single sign-on application that cultivates 
data from multiple sources as footprints of users. This approach has the advantage of 
eliminating data losses, in the process of which the veracity of the aggregated data is 
improved and data comparability enhanced. The design of the proposed big data model 
will be such that the geographical locations (scales) where the data sources are domi-
ciled are reflected.

Footprints‑based big data models

Two big data models, namely the federated databases and the data warehouse models 
have been reviewed. It was exposed that both techniques aggregate data in large vol-
umes in the dimensions of Big Data but cannot guaranteed veracity of the aggregated 
data due to data losses often involved. In addition to this problem, the design tools used 
in modeling existing big data models do not indicate the sources from which the data 
was aggregated from to form big data.

Capturing the data sources when modeling big data is important because the increase 
in data volume results from the many number of autonomous sources often localized 
in geographical categories of states, regions, country among others. These geographical 
categories or scales are hierarchically arranged. For example, states are components of a 
country and a group of states form a region in a country. A global view of an agricultural 
data model proposed in [11], described data collected in respect of the operations of 
farmers and their personal details. The data description starts with the level of the farm 
field, then the agro-ecological zone, regional, national and global levels. Within the con-
text of each of these levels (geographical scales), actors are identified and the functions 
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they perform within the agricultural ecosystem are defined. The hierarchical nature of 
the geographical scales makes them factors or multiples by which aggregated data is 
scaled [11]. For ease of technical expression, the geographical scales will be referred to as 
data scaling factors or simply data scales henceforth.

In a way similar to the agricultural big data model, an application used by a multi-
national conglomerate can cultivate data about its operations on a global scale while 
the payroll of a local government area or city administration will have a narrower scale. 
Obviously, the higher the data scale, the more the volume dimension of data comes 
to play and vice versa. Data aggregated at the global data scale which is hierarchically 
higher than a country will be bigger than data aggregated at the country data scale. A 
larger data scale also means a larger user base with users requiring data in different for-
mats, thereby prompting the variety-dimension of data. A large user base also means 
high traffic across the internet or whatever form of communication that is used for con-
necting users in the several geographical scales defined by the data model.

Within the context of aggregated data, each data scale represents an additional level 
of data aggregation. At the farm level of an agricultural data model, data about several 
fields are defined. At the ecological zone level, data about several farms are aggregated. 
At the regional level, data about the farms in the region are aggregated. At the national 
scale, data about the farms in a country are aggregated. On the global scale, data about 
the farms world-wide are aggregated. The farms and their embedded fields are the enti-
ties about which agricultural data is collected. While the farm is the enterprise unit, the 
field is an embedded entity and both can be referred to in generic terms as the entity. 
Data collected about the entity are the atomic data units that must be aggregated from 
the multiple sources within the context of the data scales defined. Using this approach, 
it is possible to collocate the entire data of multiple organizations within the data scales 
using a uniform data format for all the organizational data. It is also obvious that the 
uniform format eliminates data heterogeneity and therefore achieves cross-organiza-
tional data comparability seamlessly.

Data comparability

The review of related works so far has shown that aggregating data using foot-
prints solves the problem of data loss which guarantees veracity. With data veracity 
achieved, further comparative analysis can be said to be reliable. In other words, with 
veracity achieved, data comparability is enhanced. Data comparability is a quality of 
data whose importance in cross-population analysis cannot be over-emphasized. Data 
comparability is a very useful concept in the ranking of universities and educational 
institutions in general [25]. Databases provided by Thomson Reuters and Elsevier 
have been used in global ranking schemes of universities [26–28]. Within the context 
of Big Data, these databases are expandable to take on more relevance. Considered as 
a justification for a Big Data-driven comparability model of international tertiary edu-
cation are the challenges faced by the World Education Indicators (WEI) Programme 
[29]. Data on foreign students are produced jointly by Organisation for Economic Co-
operation and Development (OECD) and UNESCO (Institute for Statistics) under 
this Programme and since 1997, OECD and 19 non-OECD countries have been asked 
to report their number of foreign students along with other information on their 
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education systems to OECD/UNESCO. Many countries that are now, student desti-
nations such as China and South Korea are not yet included in the WEI project but 
will be included in the future as OECD and UNESCO have plans to expand coverage. 
Very problematic and worrisome is the fact that the data reported to OECD are not 
always consistent with other statistics published by countries themselves or reported 
in other sources. This, in no small way, has negatively affected the comparability of 
these statistical data.

In a way similar to the operations of UNESCO, Food and Agricultural Organisa-
tion (FAO) operates on behalf of the UN in the agricultural sector and World Health 
Organisation (WHO) operates in the health sector [30]. Of course, several other 
organs of the UN monitor and regulate other aspects in member countries. Several 
other Regulatory bodies and NGOs operating at global, regional and national lev-
els exist to equally regulate and monitor the activities of subordinate agencies. In all 
these areas including agriculture, data comparability or consistency is a requirement 
for achieving cross-nationally comparable analytics [31].

The International Financial Reporting Standards (IFRS) has been globally accepted 
as a regulatory standard by firms that have adopted IFRS and the standard helps to 
provide useful information for global decision-makers, by enabling the comparison 
of the performance of two or more companies from different countries that adopt 
the standard [32]. The International Financial Reporting Standards (IFRS) is a set 
of guidelines that give a framework for reporting the performance of companies, to 
properly assess the financial health of organizations. IFRS aims to unify the differ-
ent national financial statements to create the comparability of such statements [33]. 
Investors, regulators, academics, and researchers have all emphasized the importance 
of the comparability of financial data. An analysis of two or more firms with similar 
comparable parameters implies that the results of one study apply to another. Finan-
cial statement comparability increases the overall quantity and quality of information 
available to analysts about the firm and lowers the cost of acquiring information [34]. 
Several factors point towards the importance of financial data comparability. Accord-
ing to the Securities and Exchange Commission (SEC) [35], when investors judge the 
merits of investments and comparability of investments, efficient allocation of capital 
is facilitated and investor’s confidence nurtured. The usefulness of comparable finan-
cial statements is underscored in the Financial Accounting Standards Board (FASB) 
accounting concepts statement which states that investing and lending decisions 
essentially involve evaluations of alternative opportunities, and they cannot be made 
rationally if comparative information is not available [33].

The importance of data quality especially as it regards data comparability is sub-
stantiated by global initiatives aimed at improving the global comparability of data 
[36, 37]. To give verve to these initiatives, many countries have made them part of 
the objectives of their diplomatic missions. The Global International Waters Assess-
ment (GIWA) is one such global initiative. GIWA is a global recognition of the inex-
tricable links between the freshwater and coastal marine environment. Its assessment 
framework collects environmental and socio-economic information to determine 
the impacts of a broad suite of influences on the world’s aquatic environment [38]. 
GIWA provides a global perspective of the world’s transboundary water by assessing 
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66 regions that encompass all major drainage basins and adjacent large marine eco-
systems. GIWA was, therefore, a holistic, globally comparable assessment of all the 
world’s transboundary waters based on comparable data from each region assessed.

Data comparability makes it easy to report analytical results using dashboards. 
The concept of a dashboard is extensively used by UN member countries to present 
reports across the countries. The Sustainable Development Goals (SDG) dashboards 
are used by the UN to monitor the implementation of the 2030 agenda of transform-
ing the world in line with the 17 goals for sustainable development in member coun-
tries [39]. The use of these dashboards unifies data sourced from different countries 
and makes them analytically meaningful. In Chile, a single window for environmental 
reporting has been developed [40]. Environmental operators use one unique portal to 
comply with all reporting requirements. In this way, duplication of reports is avoided 
and the data being of a single format makes it easier to generate reports to other 
international standards. For example, comparable data on school enrollment and gen-
der parity used by UNESCO to measure progress on Goal 4 of the SDG of the UN is 
based on the Education 2030 targets and compliance with the International Standard 
Classification of Education 2011 (ISCED 2011).

Comparing energy performance requirements for appliances across countries is dif-
ficult because of variations in product definitions, misaligned energy test procedures, 
and divergent efficiency metrics. This has made the global landscape of test proce-
dures and energy efficiency metrics complex, thus requiring concerted efforts across 
countries aimed at improving the global comparability of appliance energy efficiency 
standards and labels [41]. Dashboards have been used extensively to solve this prob-
lem. Dashboard reformat data and, in this instance, it has been found very useful in 
reporting results of global comparative analysis of energy efficiency.

With the heightened focus on sustainability around the world, the need for a data-
base of global toxic releases that can identify pollutant hot spots and potential needs 
for environmental regulation has led to the promulgation of the Pollutant Release and 
Transfer Registers (PRTRs) in more than 50 countries. The PRTR initiative is aimed 
at developing the capacity of countries to gather information in the form of chemical 
inventories or lists, supplemented by a means for disseminating the gathered infor-
mation (information exchange) as required in many international agreements. But 
there are significant barriers to comparing data from individual PRTRs, including 
varying thresholds for reporting requirements and substantial differences among the 
lists of included toxics. To enhance the comparability of existing PRTR data sets, five 
recommendations have been made [42]

1.	 Rather than try to compare entire PRTR datasets, identify specific chemicals and/or 
sectors where comparisons can be made

2.	 Identify chemical classes to compare across countries with existing PRTRs
3.	 Identify normalizing factors to facilitate comparisons
4.	 Pursue a “relative comparison” approach
5.	 Create a global PRTR​
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Each of the recommendations is targeted at reducing the heterogeneity of the data sets 
from individual PRTRs. The fifth recommendation reduces data heterogeneity to the 
barest minimum as data in a global register will also have uniform formats in so many 
respects. The concept of a global register for individual PRTR tallies with the concept of 
data aggregation whereby data is harvested from multiple PRTRs. With a global PRTR, it 
is easy to increase the scale at which data is aggregated. The higher the scale, the less of 
the comparability issues experienced.

It has been demonstrated that aggregating data achieves data comparability across 
multiple organizations which in turn makes it easier to produce reports and when the 
data grows large enough, it makes it possible to perform data analytics on data in the 
three dimensions of sight, namely hindsight, insight and foresight as captured in Fig. 4.

The three dimensions of sight, amount to the value proposition of Big Data Analytics. 
Whereas hindsight is entirely descriptive and partly diagnostic, insight is both diagnos-
tic and predictive; and foresight is partly predictive but largely prescriptive. Data aggre-
gation is fundamental to cultivating data big enough for Big Data Analytics. Prediction 
models assume that data in quantities large enough to guarantee prediction accuracy. 
Prediction accuracy is required if the full value proposition of the three dimensions of 
sight is to be realised.

Methodology

Literature has exposed several ways by which data comparability based on aggregation 
can be achieved across multiple organizations. Data is often lost in the process thereby 
reducing the suitability of the aggregated data for comparative analysis. This constraint is 
eliminated when data about the operations of multiple organizations are cultivated and 
harvested in a single database backend, under the control of a common application. Data 
cultivation and harvesting is a concept first introduced in [43] to refer to growing data 
over some time, to make it become big enough for predictive analytics. The data may 
belong to different organisations but they are grown using a single sign-on application. 

Fig. 4  The three dimensions of sight (adapted from [20])
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In the subsequent subsection, use-cases have been used to demonstrate the features of 
the application. The Big Data backend of the application is designed using entity-cases 
(an adapted form of the use-case paradigm) combined with ER-diagrams. A proof of the 
novel concept of data collocation is also done.

Use‑cases

Use cases are an abstraction of a system’s behaviour and hence they are used for docu-
menting user requirements. They may also be used for communication between various 
participants in a software project, i.e. system developers, its future users, and owners. 
Klimek and Szwed [44] noted that Use Cases are relatively easy-to-understand, even for 
people not familiar with information technology. Use cases enable the understanding of 
the system though they do not show lower-level implementation details. Use cases can 
also describe the system requirements and be used for formal verification of the require-
ments. This is often done at the initial phase of the system modelling so as to reduce 
production costs throughout the whole software development cycle.

The authors in [44] show that the functional requirements of a system under con-
struction can be depicted by a Use Case Diagram, Use Cases and their relationships are 
shown in Fig. 5.

Big data backend

In the ERP data model as depicted in Fig.  1, data exists in isolated institutional data-
bases otherwise referred to as institutional repositories. Data about a single organiza-
tion is reported to be occurring in petabytes getting to exabytes [30]. These statistics 
among others imply that the data volume generated by each ERP application used by an 
organization multiplied by the number of organizations about whom data comparability 
is required can only be imagined within the context of big data. The big data backend 
that stores the data can be implemented as p-stores, c-stores and NoSQL [12, 45]. In 
these Big Data stores, data about multiple organisations can be stored without necessar-
ily storing them according to organizations or sources from where they are generated. 
Should there even be a need to store according to organizations, such arrangements are 
transparent to the processing application and the user. This approach is an improvement 
on data warehousing given that it stores historical data as well as the current data being 
harvested from footprints.

The experimental data for this research is a dataset of multiple secondary schools. The 
availability of this dataset is stated in the declarations section of this manuscript. Existing 

Fig. 5  Use Case Diagram symbols [44]
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ERP data models implement the dataset as consisting of autonomous databases. Figure 6 
shows the independent databases of the ERP data model of the schools. Data about staff 
and students of each school are stored in the independent databases and mined into a 
warehouse implemented as a Data Lake. A Data Lake is a storage repository that holds a 
vast amount of raw data in its native (as-is) format until it is needed.

The data warehouse model of the dataset requires too much effort for data to be aggre-
gated from individual schools taking note of updates. Above all, the process often leads 
to data losses. A single sign-on application with a uniform backend can be created to 
grow the dataset from the footprints of users drawn from all the schools. The resulting 
Big Data set is then modelled appropriately.

Big data modelling

One of the compelling qualities of Big Data is that it transcends geographical zones and 
locations in terms of sources from which it is generated. Big Data models must therefore 
reflect such geographical scales from which big data is sourced. The Collocation data 
model reflects the geographical scales of the sources from which it cultivates big data 
using data scales as earlier described. In this paper, an adapted form of the Use-Case 
diagram is used to model the data scales. The Use-Case diagram has been used to model 
functions performed by actors in applications [44]. In this work, the Use-Case diagram is 
adapted such that as an entity-case diagram in which case, the actors are the data scales 
representing the organisations or sources from which the big data has been generated 
and the Uses are referred to as entities that store data elements about organisations. The 
data scales are the basis of aggregation and so can be referred to as data aggregator. This 
novel design methodology for big data stores is depicted in Fig. 7.

The proposed model

The data warehouse big data model has over the years helped reduce data heteroge-
neity, a major cause of incomparability of data harvested across multiple organiza-
tions but has not solved the problem of data veracity arising from data losses. The 

Fig. 6  Data Warehouse Model of Multiple Schools Data
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effort and energy dissipated in deploying data warehousing and mining techniques 
are reduced when the data about multiple organisations are collocated.

Data Collocation in the context of this paper describes a scenario, where multiple 
organizations related by common management or supervisory agency have their data 
stored in a single database and processed by a single sign-on application common to 
all of them. In a data warehouse, the data from heterogeneous sources are identified 
as coming from independent sources. In the collocation model, data is stored in dis-
tributed databases in which case, the location of any piece of data is transparent to 
both application and user. When the volume of data becomes big in the dimensions 
of Big Data, repeatedly increasing the capacity of existing hardware components to 
accommodate the increase in volume becomes unrealistic [7]. Rather adding com-
modity systems connected in a network has been found to be more useful. With a 
network of commodity systems in place, Big Data of any size can comfortably be 
organized as a distributed database and distributed among the computer resources.

The warehouse data model of the experimental data is depicted in Fig.  6 as inde-
pendent databases whose copies are piped into a data lake. The Collocation Data 
model of the dataset views each school as a data entry point from where data 
about staff and students are persisted into a database remotely using some form of 

Fig. 7  Entity-Case Diagram

Fig. 8  Architecture of a Data Collocation Model of Multiple Schools Data
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communication network. The size of the resultant data is such that a distributed data-
base is proposed for the model. The architecture of the collocation data model of the 
dataset is depicted in Fig. 8.

Collocation is a virtual concept where there are no obvious demarcations between the 
data belonging to each of the organizations participating in the collocation arrangement. 
Physically there are no guarantees that data of the same institutions will be located on 
the same storage resource because the collocation data model comes with an inherent 
capacity to distribute data across local and global networks. The collocation data model 
will generate data in a volume that can only be cultivated, stored and harvested using 
big data stores which by default take care of the concept of data aggregation [12]. In 
Fig. 5, the entity-case diagram was introduced as a data design model that can be used 
to design big data stores. When the agricultural big data was given as an example, the 
enterprise unit was the farm while farm fields were embedded entities. The data aggre-
gators were the ecological zone, regional, national and global scales. In considering the 
multiple schools’ scenario, the school is the enterprise unit and student, teacher, man-
agement among others are the embedded entities all referred to generically as the entity. 
The data aggregators can be defined as the local government area, state, and country in 
which the schools are sited. Putting the entity and data aggregators together, the design 
of a data store applicable to the architecture in Fig. 8 is depicted as an entity-case dia-
gram in Fig. 9.

The entity-case is further decomposed using an ER-diagram in Fig. 10.

Fig. 9  Entity-Case diagram of the collocation data model of Schools
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Developing applications with the database backend implemented using the Colloca-
tion Data model has the advantage of maintaining uniform data formats that enhance 
data comparability. It is the Data collocation concept that has made Facebook the behe-
moth it is today. Using big data technologies, multiple user data across the globe are 
collocated such that reports and analytics are generated on Facebook to describe user 
likes and preferences [46]. Recommender Systems and the Amazon Recommender sys-
tem, in particular, uses the same model. Shopping activities of users are harvested in the 
millions and stored as big data. The big data is then used to predict the user’s choice of 
products on sale [47]. Amazon can compare the shopping preferences of one shopper 
with another based on what one had bought previously. The poser is that, if Facebook 
and Amazon achieved data comparability in real-time by collocating data about multiple 
users in one application, then such can also be attempted for multiple organizations.

The design of the proposed Collocation Data Model has been demonstrated as con-
sisting of architecture, an entity-case diagram, and the Entity-Relationship diagram. The 
backend implementation of the Collocation Data model, on the other hand, is a distrib-
uted database whose implementation is based on the concept of database scalability. 
Partition schemes are used to achieve database scalability. The partition schemes are 
mainly vertical and horizontal partitioning schemes [48]. The partitions are arrived at 
using partition predicates. In either case, the invariant is the fact that the sum of the par-
titions distributed makes up the entire distributed database.

Proof of concept

Collocation creates a natural big data from multiple organizations, implying a uniform 
data format since the data are hosted in a single database, though distributed. The distri-
bution of data in a collocation data model creates partitions based on the partition pred-
icates used. In a case where the partition predicate is based on each organization, for 
example, a simple predicate is used to filter the data according to the individual organi-
zations and distributed accordingly. In actual practice, the partition predicate could be 
such that partitions the data according to some other attributes that are common to the 
organizations such as products, departments, the accounting cycle, and many others. 
The application of the partition predicate ensures that the cardinality of relations is kept 
below the threshold value at all times.

Fig. 10  E-R Diagram of the Collocation Data Model of a Group of Schools
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The experimental data for this research consists of the assessment scores of the stu-
dents in three schools collocated in a relation called assessment scores. As earlier 
mentioned, the availability of this dataset is stated in the declarations section of this 
manuscript. A big data strategy that implements the assessment scores relation as a big 
data store partitions the assessment scores data according to school and academic ses-
sions. Assessment scores relation is abstracted in Table 1.

At the implementation level, there can be as many schools depending on the data 
aggregator and number of participant schools at each level of aggregation. The scores of 
the students, as well as the number of students, have the potential of growing infinitesi-
mally as the academic sessions go by. The generated big data is partitioned horizontally 
and each partition distributed accordingly. Assuming SchoolID and SessionID are cho-
sen for use as partition attributes, then the partition predicates are formed from the dis-
tinct values in the value set associated with the partition attributes. The distinct values 
are SCH1, SCH2, and SCH3 for SchoolID and 2016/17 and 2017/18 for SessionID. The 
distinct values produce the partition predicates, SchoolID = ’ SCH1’ and SessionID = ’ 
2016/17’, SchoolID = ’ SCH1’ and SessionID = ’ 2017/18′, SchoolID = ’ SCH2’ and Ses-
sionID = ’ 2016/17’, SchoolID = ’ SCH2’ and SessionID = ’ 2017/18′, SchoolID = ’ SCH3’ 
and SessionID = ’ 2016/17’, SchoolID = ’ SCH3’ and SessionID = ’ 2017/18’. Each of the 
conjunctive predicates is concatenated to produce a code used to describe each of the 
partitions as depicted in Table 2.

The SessionID changes each academic session implying that new partitions are created 
each session and the previous partitions archived. The expectation is that assessment 
scores of students in a school within a session will not exceed a volume threshold value 
that can become a challenge to the database management system. In this way, the vol-
ume is taken care of as proposed by the Collocation data model.

Table 1  Relation (assessmentscores)

Tuple School ID Student ID Assesment type Subject Session ID Score

T1 SCH1 6823 CA MATHS 2017/18 45

T2 SCH1 6823 EXAM MATHS 2016/17 70

T3 SCH2 2677 CA MATHS 2017/18 73

T4 SCH2 2677 EXAM MATHS 2016/17 24

T5 SCH3 9418 CA MATHS 2017/18 90

T6 SCH3 9418 EXAM MATHS 2016/17 65

Table 2  Big data partitions of assessment scores

School ID Session ID Partition name Tuples

SCH1 2017/18 SCH12017/18 T1, …

SCH1 2016/17 SCH12016/17 T2, …

SCH2 2017/18 SCH22017/18 T3, …

SCH2 2016/17 SCH22016/17 T4, …

SCH3 2017/18 SCH32017/18 T5, …

SCH3 2016/17 SCH32016/17 T6, …
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Proof
Theorem Given P1, P2 … Pn as the partitions of a data set R, then R = {P1, P2, …, Pn} 

where n = the number of distinct values in the value set associated with the partition key 
that generated P1, P2 … Pn.
Axiom The following axioms are applicable:

1.	 A partition key has a value set, V whose element cannot be null
2.	 The number of distinct values of V is n = number of partitions produced

Proof: Let ϭ be the partition predicate associated with a distinct value of V, and then 
Card (ϭ) is the cardinality of the tuples filtered by ϭ.

Given any value of n, there exists ϭ1, ϭ2, …, ϭn, where.
ϭ1 filters all tuples in P1 from relation R,
Ϭ2 filters all tuples in P2 from relation R, and.
Ϭn filters all tuples in Pn from relation R,
Since the elements of V cannot be null, then Card(V) = Card (R).
Since ϭ1, ϭ2, …, ϭn filter the tuples of R according to the distinct values of V, it follows 

that.
Card(V) = Card(ϭ1) + Card(ϭ2) + …. + Card (ϭn) = 

∑
n

i
Card(σ i)

This implies that 
∑

n

i
Card(σ i) = Card (R) since n is the number of distinct values of V 

defined in R.
This shows that R = {P1, P2, …, Pn} since ϭ1, ϭ2, …, ϭn filter the tuples of R. QED.

Results and discussion

Longitudinal studies are used primarily in applied research aimed at discovering trends 
or patterns in groups of individuals over time. Many scientific disciplines, such as medi-
cine, sociology, technology and education have used longitudinal studies extensively. 
Voss et al. [5] created a data repository of longitudinal healthcare databases that were 
aggregated from several observational datasets into a data warehouse referred to as the 
Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). 
The source datasets were in varying formats, namely comma-separated text files and 
databases (MySQL, SQL Server, ORACLE, PostgreSQL). Constructing the OMOP Com-
mon Data Model data warehouse involves the ETL process made up of extracting, trans-
forming, and loading tasks. The process uses an open-source tool called WhiteRabbit to 
analyze the structure and content of each observational dataset. The analysis involves 
listing all tables, fields, and distinct values in the fields of each observational dataset. In a 
subsequent stage, a CDM Builder program transforms the raw observational data based 
on the analysis done by WhiteRabbit into the CDM. Each CDM Builder has properties 
that are unique to the observational datasets transformed. Voss et al. [5] reported that 
the aggregated CDM improves data quality, increases efficiency, and facilitates cross-
database comparisons, but at the cost of information loss across all six observational 
databases.

The Collocation data model, on the other hand does not require an ETL process. 
Assuming the Collocation data model was used in the longitudinal studies described 
above, the associated single sign-on application would have cultivated and harvested the 
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observational dataset in Big Data dimensions as footprints of users from the multiple 
healthcare units from which the observational datasets were drawn. This would have 
been an improvement on the entire process. This fact is extrapolated to mean that the 
Collocation data model solves the problems associated with existing big data models, 
namely the federated databases, data lakes and data warehouses. In existing models, big 
data is aggregated from diverse sources and formatted to attain a uniform format that 
enables the data to be analysed comparatively. In the process of cleansing the data this 
way, data losses are experienced. Existing models do not also reflect the geographical 
scales from which the data is aggregated.

In the experiments performed, the assessment scores of students in multiple schools 
were collocated thereby eliminating the need to cleanse the data. Both staff and students 
in the schools used a single sign-on application to perform their administrative and aca-
demic tasks as depicted using the Use-Case diagrams in Fig. 11.

From the footprints of these users, data was cultivated. The resulting database is a Big 
Dataset whose design followed the data structures demonstrated in Tables 1, 2. Charac-
teristic of the Collocation data model, the Big Dataset has an inherent uniform format. 
There are also no pre-processing steps involving data cleansing and hence there are no 
data loses. The design made the Big Dataset cross-organisationally comparable as well as 
facilitated the processing of the dataset using a central application. Using data aggrega-
tors, the geographical scales in which the data sources are located were reflected in the 
Collocation Data model.

Several schools were collocated in the experiment performed. The data about three 
of the schools are compared for the purpose of ranking them. The schools have been 

Fig. 11  Use-Case Diagram of the Functionalities of a School Management Software

Table 3  Statistical Features of the Dataset

Location (State) Number of students Distribution 
of Schools

Benue 842 X,Y

Kogi 204 Z

Total 1044
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named X, Y, and Z to keep their real names anonymous. Those selected for this research 
were marked as such in the database such that only data about them show in the results. 
Two of the selected schools are in the same geographical category (state) while the third 
school is in another state. Using state as the basis, the statistical features of the dataset 
are depicted in Table 3:

The sessional average scores of students in the nominated schools are compared to one 
another in mathematics and the English language and used to rate the schools’ academic 
performance. The initial datasets used for this research include the assessment scores 
which added up gives the termly totals. The termly totals are summed up and its aver-
age for each session computed for each school. A session is an academic year made up 
of three terms (semesters). The summation and average of the three sessional scores of 
each school gives the 3-year average scores. A sessional score in a subject is the aver-
age of the termly scores. A good sessional score therefore shows consistent performance 
through all the terms. The 3-year averages computed this way are presented in Tables 4, 
5 for each of the three classes in the first year of junior secondary school.

A 3-Year average of the sessional scores as computed for each organization and repre-
sented in Table 6. The data in Table 6 is presented graphically in Fig. 12.

It is observed from these results that the students’ performance in Mathematics seems 
to be at par in schools, X and Y. It is however poor in school, Z. School Z is at its best in 
English Language, followed by School X with school Y trailing. To get a broader picture 
of the performance of the schools, a simple ranking algorithm is used to compute the 
average scores in the two subjects as shown in the fourth column of Table 6 and depicted 
graphically in Fig. 13. School X is ranked the best, followed by School Y, then School Z.

Table 4  Sessional average in Mathematics in Junior Secondary School 1

Session School, X School, Y School, Z

2016/2017 61.25 55.665 53.5

2017/2018 48.5 57.335 48.5

2018/2019 61.665 58.085 44.165

3-year average 57.14 57.03 48.72

Table 5  Sessional average in the English Language in Junior Secondary School 1

Session School, X School, Y School, Z

2016/2017 55.165 60 59.835

2017/2018 56.665 53.5 52

2018/2019 56 44.5 57.835

3-year average 55.94 52.67 56.56

Table 6:  3-Year average scores

Subject Mathematics English language Overall ranking

School, X 57.14 55.94 56.54

School, Y 57.03 52.67 54.85

School, Z 48.72 56.56 52.64
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The analysis done so far can as well be done for every other class and subject offered 
in the schools. A ranking based on the performance in more subjects other than just 
the two used in this instance is possible and the best students in a school can be com-
pared across the multiple schools among other analytics that are possible.

The experimental dataset has been modeled using the Collocation data model. This 
facilitated the ranking analysis which was done without the need to aggregate data 
from autonomous data sources. In addition to this, the Collocation data model elimi-
nated the need for data cleansing and reformatting, a requirement in the aggregation 
step in the data value chain with existing big data models namely the federated and 
data warehouse big data models. Data cleansing and reformatting are expensive and 
also lead to data loss. By eliminating the occurrence of data losses, data veracity is 
improved and the comparability of the dataset is enhanced.

Inherent in the Collocation model is a novel big data design methodology that 
combines two existing design methodologies, namely the Use-Case and Entity-Rela-
tionship diagrams to reflect the multiple organisations from which data is generated 
from as well as the geographical scales in which the multiple data sources are located. 
The Collocation Data model by so doing standardizes the design of big datasets used 
by data-intensive applications. Facebook, for example is one such data-intensive 

Fig. 12:  3-Year Average Scores

Fig. 13:  3-Year Ranking
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application and it cultivates data about multiple individuals across the globe from 
their footprints as they interact with friends. Given this analogy, the Collocation Data 
model standardizes current practices whereby footprints of users are cultivated and 
harvested as big data.

Conclusions
The implementation of the Collocation Data model revealed that the aggregation step 
in the data value chain is eliminated when data from multiple organisations or sources 
is cultivated and harvested as footprints of users. This has been done using the experi-
mental dataset to show that there was no need to aggregate data from the three sources 
independently, an operation that would have required that the data is cleansed and 
reformatted to enable cross-population analysis such as ranking. This implies a cost 
saving directly proportional to the cost of the aggregation step. The elimination of the 
aggregation step in this study also means non-tangible cost-savings associated with the 
inconveniences of data loss that was avoided. The primary objective of this study which 
was to demonstrate that when data is collocated, data comparability is enhanced thereby 
making analytics seamless was therefore met. The experimental data is still at its infancy 
as footprints of student’s scores have been cultivated for only three academic sessions. 
As the academic sessions increase in number, data will grow and can be harvested in 
larger volumes. The increase in volume will make other predictive analytics aside rank-
ing possible in the near future. The accuracy of the predictive analytics will also increase 
as the dataset size increases. This research has also shown that the ability to analyze 
massive amounts of real-time data and predict the future behavior of organizations that 
are related is critical and useful to stakeholders especially those placed in a position of 
performing management and oversight functions over multiple organizations.
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