
Efficient verification of parallel matrix
multiplication in public cloud: the MapReduce
case
Ramtin Bagheri, Morteza Amini*  and Somayeh Dolatnezhad Samarin

Introduction
Thanks to the existence of the Internet and its global popularity, the pace of generating
data has been escalated significantly in recent years. In 2014, a research showed that the
volume of generated data is doubled every year, and this multiplier will increase up to
ten until 2020 [1]. Therefore, challenges regarding storing and processing the massive
generated data has motivated researchers to find efficient solutions. Cloud-based ser-
vices have emerged to solve mentioned challenges, giving its users the ability to process
their big data.

The expansion of public clouds has drawn much attentions to itself since users can
simply rent their required resources without worrying about staggering costs of buy-
ing and maintaining them. In order to speed up the data processing in cloud services,
many hardware-based and software-based approaches have been proposed. Parallel

Abstract 

With the advent of cloud-based parallel processing techniques, services such as
MapReduce have been considered by many businesses and researchers for different
applications of big data computation including matrix multiplication, which has drawn
much attention in recent years. However, securing the computation result integrity in
such systems is an important challenge, since public clouds can be vulnerable against
the misbehavior of their owners (especially for economic purposes) and external
attackers. In this paper, we propose an efficient approach using Merkle tree structure
to verify the computation results of matrix multiplication in MapReduce systems while
enduring an acceptable overhead, which makes it suitable in terms of scalability. Using
the Merkle tree structure, we record fine-grained computation results in the tree nodes
to make strong commitments for workers; they submit a commitment value to the ver-
ifier which is then used to challenge their computation results’ integrity using elected
input data as verification samples. Evaluation outcomes show significant improve-
ments comparing with the state-of-the-art technique; in case of 300*300 matrices, 73%
reduction in generated proof size, 61% reduction in the proof construction time, and
95% reduction in the verification time.

Keywords:  MapReduce, Computation integrity, Matrix multiplication

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Bagheri et al. J Big Data (2020) 7:86
https://doi.org/10.1186/s40537-020-00362-1

*Correspondence:
amini@sharif.edu
Department of Computer
Engineering, Sharif University
of Technology, Azadi Ave.,
Tehran, Iran

http://orcid.org/0000-0001-7269-779X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00362-1&domain=pdf

Page 2 of 30Bagheri et al. J Big Data (2020) 7:86

processing is one of the latter type of techniques, by which input data is divided into
several groups, and each group is processed independently. MapReduce [2] is a par-
allel processing model of programming that have been implemented and used by a
diverse set of companies and academic researchers for big data processing purposes
such as machine learning and data analysis. There exist several software frameworks
implemented based on MapReduce model, among of which Hadoop MapReduce and
Spark are the most prominent ones.

Setting aside the benefits, cloud services have caused some security issues for their
customers; failures such as Byzantine, outside attacks, and even cloud owners’ eco-
nomic motivations (i.e., saving processing power by faking computations) leads to
incorrect results in those systems. Therefore, without being assured of the real behav-
ior of the cloud during the processing stage, users cannot consider the outputs as
trustworthy.

Among the MapReduce applications, matrix multiplication is one of the popular
ones. It is an essential operation in linear algebra, and has numerous applications
in many areas such as [3–5]. Public clouds offering MapReduce services can nicely
handle matrix multiplication computations since the MapReduce model is fully com-
patible with them. Nevertheless, considering the security issues mentioned for cloud
computing, finding an efficient approach for ensuring result integrity has been a chal-
lenge for outsourced computations. In this regard, several approaches addressing the
issue have been proposed; however, since multiplying big matrices is a heavy job, the
proposed approaches do not have a reasonable efficiency in this application and also
other similar applications.

In this paper, we propose a result verification approach for matrix multiplication
computations in the MapReduce model using the Merkle tree data structure; how-
ever, our approach is also applicable on any other applications having the same set of
computation features as matrix multiplication.

Briefly, our contributions in this paper are as follows:

•	 Proposing a new approach for verifying the matrix multiplication computation
results in MapReduce.

•	 Performing analysis on the system security.
•	 Implementing the proposed approach on a MapReduce system, measuring its per-

formance, and comparing it with related works.

In the rest of this paper, "Background" section gives some background information
about the concepts we used in our work. "Related Work" section reviews previous
related works and describe why they do not meet our needs. "Basic Definitions and
attack model" section introduces some basic definitions, which we are going to use
in our explanations and talks about the attack model we consider for our approach,
as well as the types of the errors that we want to detect. "Methods and proposed
approach" section explicates our main work. "Evaluation and analysis section focuses
on analyzing and evaluating the approach and its comparison with a recent related
work in terms of performance. Finally, "Conclusion" section concludes the paper and
introduces new research challenges in this field.

Page 3 of 30Bagheri et al. J Big Data (2020) 7:86 	

Background
Some basic concepts and definitions, which are required to be understood before studying
the proposed approach, are presented in the following.

MapReduce

MapReduce [2] is a programming model for processing big data clusters in distributed envi-
ronments. It has two main functions, Map and Reduce, and three main entity types: Master,
Worker, and Distributed File System (DFS). The master manages job flows and interactions
among other entities. Workers, consisting of mappers and reducers, do the computation
tasks assigned by the master. Finally, DFS acts as a distributed disk storage in the system.

The process flow in MapReduce, which is shown in Fig. 1, consists of three main phases:
Map, Shuffle, and Reduce. First, input data is divided into several specific-sized chunks and
each one is assigned to a mapper. Having called the inputs, mappers perform the computa-
tion determined in the map function and generate outputs, called intermediate records, in
form of key-value pairs and store them on their local storages. Then, in the shuffle phase,
the intermediate records are sorted, grouped, and assigned to the reducers defined by the
shuffler function. Afterwards, reducers apply the reduce function on their assigned data,
generate final results, and write them back on DFS.

There are different types of computations that can be performed using the MapReduce
model; however, they need to share a set of predefined characteristics [6] in order to benefit
the utilization brought by the model. The most important characteristic is that the compu-
tation should be able to be divided into independent subcomputations.

Matrix multiplication in MapReduce

If A = [aij] is an m× n matrix and B = [bij] is an n× p matrix, C = [cij] , the product of
AB, is an m× p matrix where each element cij is calculated as

(1)cij = �r Ai · �c Bj = ai1b1j + ai2b2j + · · · + ainbnj

Input
Data

Split Map
Reduce

Reduce

Key/Value

Split

Split

Map

Map

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

Key/Value

ShuffleDistributed
File System Mapper Reducer Distributed

File System

Master

Fig. 1  Data flow of a job in MapReduce [2]

Page 4 of 30Bagheri et al. J Big Data (2020) 7:86

In other words, element cij of matrix C is derived from the inner product of ith row of
matrix A (denoted as �r Ai  ) and jth column of matrix B (denoted as �c Bj).

The basic way of performing the computations is using the sequential algorithm,
which has the time complexity of O(n3) . In this regard, several approaches such as par-
allel algorithms [7–9] have been proposed over the years with the aim of reducing the
overall overhead and speeding up the computations.

Implementing matrix multiplication algorithms using the MapReduce model is one of
the efficient approaches as the calculations fit nicely into the MapReduce style of com-
puting. The element-to-element strategy (Fig. 2a), same as the sequential algorithm,
imposes significant communication overhead to the system. In order to mitigate the
problem and increase the utilization, several strategies are proposed over the years. Sun
[10] presented the row-to-column (Fig. 2b) strategy to decompose the first and the sec-
ond matrix into row and column vectors, respectively. Increasing the computation load
on mappers’ side, his technique aims to reduce the communication overhead. Zheng [11]
suggested decomposing the first matrix into elements or columns and the second matrix
into rows (Fig. 2c, d) for efficient computations in case of sparse matrices. Deng and Wu
[12] made a comparison between element-to-element, row-to-column, and element-to-
row strategies and claimed that the element-to-row strategy has the highest efficiency
among the others for both dense and sparse matrix types. Using a balanced number of
mappers, Kadhum [13] proposed element-to-row-block (Fig. 2e) and row-block-to-col-
umn-block (Fig. 2f) strategies as the general cases of the previous works to make a bal-
ance between the processing and the I/O overhead.

In overall, the aforementioned strategies try to keep a balance between communica-
tion and computation overheads. These strategies differ in how the input elements are
contributed in the matrix multiplication computation, which determine the placement
of the elements in the input blocks. In this regard, there are two main approaches for
matrix multiplication in MapReduce; double-job and single-job approaches. In the for-
mer, the first job is responsible for labeling and grouping the elements resulted by the
mappers, whereas the second one is responsible for performing the main computations
(i.e., inner products of the matrices’ elements) jointly done by the mappers and reducers.
In the latter approach, a preprocessing stage is required for organizing and grouping the
input data. Therefore, the main computations can be done in a single job by the mappers
and reducers.

a Element by element b Row by column c Element by row

d Column by row e Element by row-block f Row-block by column-
block

Fig. 2  Schemes of different strategies for matrix multiplication

Page 5 of 30Bagheri et al. J Big Data (2020) 7:86 	

Merkle tree‑based verification

The Merkle tree-based verification method is based on a data structure called Merkle
tree (aka hash tree) [14]. This method was introduced in [15] to ensure result integrity
in grid computing. A Merkle tree is a complete binary tree that utilizes two functions;
a one-way collision resistant hash function, and mapping function � , which maps a
set of nodes to a set of constant-sized strings that are generated using the hash func-
tion. In a Merkle tree, leaves contain the computation results of the input data. The
tree construction process begins from the leaves to the root, building each internal
node using its children.

In a Merkle tree, each node has a � value. Assume that L1, . . . , Ln are leaves con-
structed based on computation outputs f (x1), . . . , f (xn) . In order to build a Merkle
tree, the � value for leaf Li is defined as

Then, the participant builds a complete binary tree with these leaves. We use V to denote
an internal node, and Vleft and Vright to denote V’s two children. The � value of each
internal node is defined as

where “ ‖ ” represents concatenation of two strings, and hash is the one-way collision
resistant hash function (e.g., SHA-1). Using Eq. 3, the hash value of the root node,
marked as �(R) , can be computed in a bottom-up manner.

To facilitate our expression, we use � as an abstract representation of employing
Eqs. 2 and 3 to compute the �(R) for inputs x1, ..., xn as follows:

In other words, �(x1, . . . , xn) returns the � value of a Merkle tree’s root node if the Mer-
kle tree’s leaves are results of applying the f function on x1, . . . , xn.

The verification process begins when the computations are over and the results are
ready. Two roles participate in this process: prover, who is responsible for perform-
ing the assigned computations, and checker, who wants to ensure the integrity of the
results. The process consists of four steps; Commit, Challenge, Prove, and Verify. Fig-
ureDefinition 3 represents an example of a Merkle tree built on arbitrary computation
results f (x1), . . . , f (xn) , which we use during the explanation in order to better under-
standing the process. Those steps are described in the following:

Commit. Using Eqs. 2, and 3, the prover builds a Merkle tree on its computation
results (i.e., f (x1), . . . , f (xn) ), obtains � value of the root node (i.e., the hash of the
root node), and sends it to the checker. We refer to the sent value in this step as the
commitment value. In Fig. 3, R is the root node of the Merkle tree. Therefore, �(R) is
submitted as the commitment value.

Challenge. Having received the commitment value, the checker generates some
samples to challenge the prover. To be clear, sample si is equal to f (xi) , which is
resulted from applying the computation on randomly selected input data xi . Then, the
checker sends the generated samples to the prover. In the example shown in Fig. 3,

(2)�(Li) = f (xi), i ∈ [1, n]

(3)�(V) = hash
(

�(Vleft) ��(Vright)
)

(4)�(x1, . . . , xn) = �(R)

Page 6 of 30Bagheri et al. J Big Data (2020) 7:86

x10 is selected among the set of input data, and s10 = f (x10) is sent to the prover as the
verification sample.

Prove. For each sample si , the prover finds the corresponding leaf Li and the nodes
in its path to the root, extracts the complementary node of each, stores the � value of
the extracted nodes in a sequence, and finally sends the sequence to the checker. This
sequence of nodes is called proving path and is denoted as � . The nodes in a proving path
are required to regenerate the hash value of the root node using the corresponding sam-
ple. To show the derivation, we extend Eq. 4 as follows.

where si is a sample, �i is the corresponding proving path, and �(R) is the commitment
value.

In the example shown in Fig. 3, the prover receives f (x10) from the checker, finds the
corresponding leaf L10 , retrieves its proving path �10 = ��(L9),�(B),�(D),�(E)� , and
then, sends �10 to the checker. The proving path for each sample has log n nodes where n
is the number of leaves in the Merkle tree.

Verify. For each sample si and its proving path �i , the checker regenerates the � value
of the root node (i.e., �(R′) ) for each sample. The verification is passed successfully if
and only if for each generated sample, the recalculated � value of the root node and the
commitment value (generated in the commit step) are equal (i.e., �(R′) = �(R) ). If the
equality is not respected, the checker knows that the computation on the selected input
data has not been done correctly.

Related work
Several works have been done on the result integrity of general applications in the
MapReduce model. We can categorize them based on the techniques they use as log-
based, hardware-based, watermark-based, and replication-based.

(5)�(�i, si) = �(x1, . . . , xn) = �(R)

R

A B

C D

E F

L1 L2 L9 L10 L16L15
.

Φ(Li) = f(xi) ∀i ∈ [1, n]

Φ(A) = hash(Φ(L9) ‖ Φ(L10))

Φ(C) = hash(Φ(A) ‖ Φ(B))

Φ(E) = hash(Φ(C) ‖ Φ(D))

Φ(R) = hash(Φ(F) ‖ Φ(E))

Fig. 3  An example of Merkle tree-based verification scheme

Page 7 of 30Bagheri et al. J Big Data (2020) 7:86 	

Log-based solutions (e.g., [16, 17]) analyze logs generated by the system to build pro-
files for workers. Then, the profiles are compared against a normal one to detect delin-
quent workers. Yoon et al. [17] suggested that Hadoop framework logs, as well as system
calls, can be collected for analysis purposes. Nonetheless, since system call logs are very
rich information and not all of them are going to be used for the verification process,
only specific details of these logs, such as access logs to the file system and mapping/
reducing task logs are considered. Despite the low overhead and less modification to the
system, these solutions are vulnerable against mimicry attacks [18]. In this type of attack,
attacker sends fake commands and generates unreal logs and reports them in order to
impersonate its captured workers as honest ones.

Hardware-based solutions (e.g., [19–21]) require the installation of secure module at
the infrastructure of the cloud. They use secure hardware chip Trusted Platform Mod-
ules (TPMs) installed on computational nodes, which can verify the integrity of their
software stack ranking from the bios configuration at the booting procedure to the
application that executes the mapping or reducing task. The system is initialized by reg-
istering each worker with a unique identifier on the master side, who is communicating
with them during the job processing phase. However, trusted hardware-based solutions
may affect the flexibility of big data computation, since the required modules need to be
integrated with the system core.

Watermark-based solutions (e.g., [22, 23]) inject some data with predefined results, called
watermarks, to the main input data and measure the workers’ honesty by comparing the
predefined results with the outputs that workers produce on the watermarks. The main
assumption for these solutions is that workers should not know which data is watermark or
they can lure the mechanism by submitting correct results for watermark data while sub-
mitting faulty outputs for the rest. More injected watermarks leads to a more accurate fault
detection, yet the computation overhead imposed by processing watermarks increases as
well. In addition, Ding et al. [22] leverage EigenTrust [24], a reputation-based trust manage-
ment system (RTMS), to track the source of faults. Nevertheless, detecting faulty nodes is
still accompanied with considerable amount of false positives. Lack of an efficient water-
mark generator is another unanswered yet important challenge in these methods.

Replication-based solutions (e.g., [25–30]) are among the most practical solutions for
this purpose, since they do not need the MapReduce model to be altered fundamentally.
In order to verify a task result, the task is replicated among multiple, randomly selected
workers, and then, their results are compared together in order to detect inconsisten-
cies. We also call them voting-based solutions since workers’ results are like votes, and
the correct result is considered as the one with the most number of votes. The major
assumption in these solutions is that the majority of workers should be benign and
always do their tasks honestly. SecureMR framework [25] is the first solution to address
the result integrity issue in MapReduce model, which is based on task replications. Ding
et al. [26] proposed an approach (named VAWS) using weighted undirected graphs for
finding inconsistencies among workers’ submitted results. Bendahmane et al. [27] sug-
gest using an RTMS to keep the account of workers’ computational behavior history for
further decision makings. Khan et al. [28] proposed Hatman as the method that lever-
ages an RTMS implementation based on EigenTrust. Producing correct results by hon-
est workers in replication-based result verification systems is not guaranteed, because

Page 8 of 30Bagheri et al. J Big Data (2020) 7:86

the failure reason is sometimes out of workers’ control, such as incorrect computations
or buggy codes. Samuel et al. [29] suggest inserting watermark-like quizzes (i.e., fake
predefined tasks with the same structure as the normal ones) to workers in random
time periods to calibrate their honesty rating in the system.

Despite the improvements, voting-based methods still are not entirely invulnerable
against collusion attacks and cannot perform well enough in extreme faulty environ-
ments. Moreover, these methods waste lots of computation power and noticeably
increase the time of performing the tasks. To remedy this problem, some approaches
(e.g., [31, 32]) use trusted computational nodes, called verifiers, for recalculating the
workers’ tasks. In order to avoid computational bottlenecks, verifiers do not verify all
the tasks. Instead, some tasks are selected and assigned to them in a probabilistic man-
ner. In addition, the verification target can be subtasks’ results, which requires smaller
input data for verifiers. That being said, compared to the number of other workers,
verifiers are in the minority, since completely trusted entities are expensive to have.

A similar work to ours is Wang et al.’s MtMR [33], which uses the Merkle tree-
based verification technique to increase the utilization of verifiers in the system. In
MtMR, verifiers check mappers’ and reducer’s results by sending samples obtained
from arbitrary input blocks, receiving the corresponding proving paths, and verifying
the consistency of the proving paths and the commitment value. Although mappers’
results are verified in O(log n) in each round, reducers’ are verified in O(n) because
of the heavy sample building process and communication overhead. This problem has
greater effects in case of specific applications, where the reducers’ inputs are heavy,
such as matrix multiplication. In our approach, we show that the overall time com-
plexity of the result verification process do not exceed O(log n) per verification sample.

Freivalds [34] proposed a novel approach to verify the matrix multiplication result in 1979.
Utilizing randomization, his algorithm can verify a matrix product in O(kn2) with probabil-
ity of failure less than 2−k provided that the verification process is executed for k rounds. In
2013, Thaler et al. [35] described an interactive proof protocol that can be specifically used
for verifying the result of matrix multiplication. The time complexity of the prover and the
checker in this protocol is O(n2) and O(n2 log n) , respectively. This shows no improvement
compared to the Freivalds’ classic protocol; however, it can be implemented in practice and
used as a primitive for computations containing multiple runs of matrix multiplications. In
addition, in terms of complexity, using the methods proposed in verifiable computations for
verifying the results in MapReduce framework is more complicated than the probabilistic
algorithms specifically proposed for the MapReduce framework.

There are also several works such as [36–39] addressing the result integrity of
matrix multiplication in public cloud using cryptographic methods. Since they
do not assume any restricting rules on the cloud side, they can be applied on the
MapReduce model as well. However, they assume that clients can iterate over all the
elements in the input matrices, which has time complexity of O(n2).

Basic definitions and attack model
Before introducing the proposed approach, some concepts should be defined pre-
cisely and the considered attack model for our approach should be described.

Page 9 of 30Bagheri et al. J Big Data (2020) 7:86 	

Basic definitions

For every two matrices Am×n and Bn×p and their multiplication result Cm×p , we intro-
duce the following terms.

Definition 1

(Result Element). The element cij is a result element if it is an element placed in the row i
and column j of the multiplication result.

Definition 2
(Element Pair). The pair 〈aij , bjk〉 is called an element pair , where i ∈ [1,m] , j ∈ [1, n], and
k ∈ [1, p].

Definition 3
(Intermediate Product). The multiplication result of the two elements in each element
pair is called an intermediate product ckij where 〈aij , bjk〉 is the corresponding element pair.

Definition 4
(Sibling Intermediate Product). Sibling intermediate products Sij is the set of all interme-
diate products ckij ( k ∈ [1, n]) which are required for calculating result element cij.

Having introduced these fundamental definitions, we present a simple lemma,
which is used later in this paper.

Lemma 1

The sum of all the members of sibling intermediate products Sij is equal to the result
matrix element cij.

Proof
The members of Sij are c1ij , . . . , c

n
ij where n is the number of columns in the first matrix in

the multiplication. By aggregating them together we have

which is the same equation as the summation operation in an inner product of two vec-
tors derived from the two matrices. �

For example, assume that we want to multiply two matrices A and B as

n
∑

k=1

ckij = cij

Page 10 of 30Bagheri et al. J Big Data (2020) 7:86

to produce matrix C where

In Eq. 7, row �r A1 and column �c B2 are contributing in an inner product operation to pro-
duce result matrix element c12 . The pairs 〈a11, b12〉 and 〈a12, b22〉 are element pairs. Also,
c112 = 5 and c212 = 14 are members of sibling intermediate products S12.

Attack and error model

Workers (i.e., mappers and reducers) in MapReduce can be classified into three different
types based on their behavior:

Honest. They do their computation tasks correctly without any deviation from the
predetermined way.

Semi-honest (Lazy) Cheater. In order to reduce the cost, these workers are inclined to
commit cheat at their tasks whenever it is considered as a rational move, i.e., when it is
cheaper than being honest. Since saving computational power is the main goal here, the
cloud owner is responsible for managing the process. Hence, attempts to cover cheating
behaviors should not result in blaming other workers.

Malicious. There are situations where a number of workers are compromised by
attackers and therefore they become faulty nodes who deliberately make errors in the
computations. Malicious workers not only attempt to cover their dishonest behavior
traces at any cost, they can sabotage the system independently or in a team including
some other same-type workers.

As we explain later, detecting malicious worker behavior imposes significant over-
head to the system. Therefore, the focus in our proposed approach is on detecting faulty
behaviors performed by semi-honest workers since their tendency to maximize their
cost-saving attitude is aligned to the approach needs.

Moreover, possible errors emerging in matrix multiplication computations can be
related to at least one of the following reasons:

•	 Element pairs’ multiplication. Intermediate elements are not correctly computed, or
there is at least one element pair that does not contribute in calculating intermediate
elements.

•	 Intermediate products’ summation. The summation of intermediate products is not
correctly computed, or there is a sibling intermediate product that is not contributed
in calculating the final result.

(6)
[

a11 a12
a21 a22

]

×

[

b11 b12
b21 b22

]

=

[

c11 c12
c21 c22

]

A =

[

1 2
3 4

]

B =

[

5 6
7 8

]

(7)

�r A1 · �c B2 = (a11 × b12)+ (a12 × b22)

= (1× 6)+ (2× 8)

= c112 + c212 = c12

= 5+ 14 = 19

Page 11 of 30Bagheri et al. J Big Data (2020) 7:86 	

The integrity of matrix multiplication result is assured if there exist no instances of these
errors in the computations.

Methods and proposed approach
In this section, we discuss our proposed approach, its architecture model, and process
steps in more details.

Architecture model

Our approach uses a hybrid cloud model structure, which is shown in Fig. 4. The main
computations and verification process are performed inside the public and private cloud,
respectively. Workers and DFS (Distributed File System) are inside the public cloud while
the master and verifiers are inside the private cloud. The cloud domains are connected to
each other using a public communication infrastructure like Internet; however, for the
sake of privacy, the data transmission can be secured using encryption over data. Our
approach is not depended on encryption technique which is used for maintaining pri-
vacy Since we focus on integrity of computations in this paper, no further discussion will
be placed on the required features of the encryption technique.

Assumptions

Being an isolated system, the private cloud is easy to be secured and become a trusted
domain. The public cloud, however, is not trusted and so do its entities. Since there exist
methods to guarantee DFS integrity (e.g., [40]), we can make an exception that DFS is
a trusted entity. Therefore, that leaves the workers in the public cloud as the untrusted
entities in the system.

Despite the fact that there are several verifiers to perform the verification in the pri-
vate cloud, we assume verifiers as a single entity to avoid considering the inner relations
between them.

The main computations in matrix multiplication using the MapReduce model are per-
formed on element pairs and sibling intermediate products. No matter which imple-
mentation of matrix multiplication (explained in "Matrix multiplication in MapReduce"
section) is used, element pairs are not going to change. For example, in Eq. 6, 〈a11, b11〉 is
always a valid element pair without considering which multiplication technique is going
to be applied. Therefore, our approach can be applied on any implementation of matrix

Fig. 4  The architecture model of the proposed approach

Page 12 of 30Bagheri et al. J Big Data (2020) 7:86

multiplication in the MapReduce model. Nevertheless, for the sake of simplicity, we used
the column-by-row technique in our examples in this paper.

Moreover, we assume that the whole process is a single MapReduce job (e.g., prepa-
ration process is performed on input matrices). The fact that matrix multiplication is
performed in single-job or double-job manner only affects the time in which the whole
computation is done. That means it does not affect the process flow in our approach nor
the verification results.

The result verification process

As we mentioned in "Related Work" section, each proposed solution in the literature has
its own advantages and disadvantages; however, in our opinion, replication-based solu-
tions are more interesting than the others based on two reasons: Firstly, they do not need
any modification to be made in the infrastructure layer. Secondly, desirable fault detec-
tion accuracy is achievable by adjusting proper amount of computation power, which the
granularity increases using the Merkle-tree based verification method. In our approach,
which utilizes the Merkle tree verification method, we want to reduce the overhead while
keeping the fault detection accuracy at the same level as the state-of-the-art solution’s.

The verification process is carried out between the verifier, as the checker, and reducers,
as the provers, to ensure the integrity of both map and reduce outputs. The process has
the following main phases: Preparation, Initialization, Sampling, Proof Construction, and
Proof Verification. In what follows, we elaborate the procedure in each phase, separately.

Initialization

The initialization phase runs concurrently with the reduce phase. During this phase,
each reducer builds a Merkle tree Mij per each result matrix element cij . We denote the
set of result matrix elements computed in Reducer r as Er , which we will use later. The
leaves of each Merkle tree Mij are the sibling intermediate products Sij . In the following,
we call those Merkle trees as computation trees.

During the reduce phase, reducers sum intermediate products in each sibling group
together to produce the final matrix elements. By using the Merkle-tree based verifica-
tion method in the way that is introduced in [15], the hash value of root node is used
to verify that sibling intermediate products, are only considered in the tree construc-
tion process. In other words, there is no guarantee that all the intermediate products are
actually used to produce the result elements. As the result, semi-honest reducers can
ignore a proportion of the input data while applying the reduce function. A naive solu-
tion would be scheduling a deep probe through replicating a proportion of reduce tasks,
like what MtMR [33] already does. Nonetheless, since the verifiers are the minority, the
solution does not scale with the size of input data, thereby causing bottlenecks in the
system in case of processing over big data.

To rectify the problem, we need the ability to verify that for each arbitrary input data,
required computations are truly performed. Two types of computations are performed in
matrix multiplication; multiplying elements in each pair, and summing sibling intermedi-
ate products. The integrity of the former can be verified with the current configuration of

Page 13 of 30Bagheri et al. J Big Data (2020) 7:86 	

Merkle tree (i.e., by checking whether a corresponding leaf exists in the tree). However,
in order to verify the integrity of the latter, we need to modify the default configuration.

In matrix multiplication, each intermediate product ckij , where k ∈ [1, n] , participates
in a summation operation with other sibling intermediate products to produce cij . We
change how the summation is performed: if we assume sibling intermediate products
Sij are placed in the leaves of a complete binary tree and every inner node contains the
sum of its children’s value, then the sum of all values in the leaves is placed in the root
node. To verify that whether an intermediate product has contributed in the computa-
tions, we should retrieve nodes in the corresponding proving path and perform log(n)
summations until we reach the root node. We call the path of performing summation
operations for each leaf as contribution trace. Therefore, we can say that by making the
required modifications, the whole process is verifiable for each value in the leaves in
time complexity of log(n).

We introduce assignment function � to take the results of summation operations into
account. Assume that L1ij , . . . , L

n
ij are the leaves of Merkle tree Mij . Lkij , where k ∈ [1, n] , is

corresponded to ckij and its � equals to cij . In other words, we have:

Subsequently, for each inner node V, its � value is calculated as

where Vleft and Vright are V’s left and right children, respectively.
Using � values, verifier have access to the contribution trace of selected samples. That

being said, simply using � value does not give the intended assurance, since cheater
workers can alter contribution traces whenever it is necessary (e.g., when the committed
cheats are going to be revealed).

The solution here is to ask each reducer to take its Merkle tree nodes’ � values into
account while producing its commitment value. As a result, if any reducer cheats in its
sum operations, it becomes undeniable (we discuss it in Theorem 2), since the commit-
ment value is calculated using � values as well. In order to make the dependency, we
alter function � and denote the modified version as �′ . For each leaf node Lkij in Merkle
tree Mij , the �′ value is defined as

Subsequently, the �′ value of each inner node V is defined as

As a result, the hash value of root node in each computation tree is depended on (1) the
multiplication result of each element pair, and (2) the contribution trace of each inter-
mediate product.

By the end of reduce phase, each reducer r has constructed |Er | computation trees
and have to submit the hash values of their root nodes as the commitment. To
avoid extra overhead, it is desirable to merge computation trees in each reducer and

(8)�(Lkij) = ckij = aik × bkj , k ∈ [1, n]

(9)�(V) = �(Vleft)+�(Vright)

(10)�′(Lkij) = hash
(

�(Lkij) � i � j � k
)

, k ∈ [1, n]

(11)�′(V) = hash
(

�′(Vleft) ��(Vleft) ��
′(Vright) ��(Vright) ��(V)

)

Page 14 of 30Bagheri et al. J Big Data (2020) 7:86

produce a single commitment value. Therefore, each reducer builds another Merkle
tree, called as the joiner tree, on top of its computation trees. From now on, we call
the Merkle tree constructed in this way as a joined tree, which is combination of com-
putation trees and a joiner tree. By ending the initialization phase, each reducer r has
calculated its commitment value �′(Rr) . Figure 5 depicts the schema of the reducer r’s
joined tree with Rx1y1 , . . .Rxnyn as its computation trees, where n = |Er | and (xi, yj) are
row and column number of the result matrix.

During the construction of each node V in a joined tree, we have �(V) = 0 pro-
vided that V is an inner node in the joiner tree. Each node in the proving path is also
labeled to guide the verifier whether the node belongs to the joiner tree or not.

For instance, the data flow of a simple matrix multiplication job in MapReduce is
depicted in Fig. 6a where the matrices A and B (provided in Eq. 6) are its input. Mapper
1 has respectively the first column and the first row of matrices A and B while mapper 2
has the second column and the second row of these matrices. As we mentioned earlier,
for the sake of simplicity, we apply the column-to-row multiplication technique and sin-
gle-job MapReduce computation mode in the example. Also, Fig. 6b shows the Reducer
1’s joined tree where M1

11 and M1
12 are its computation trees and R1 is the root node.

At the end of initialization phase, each reducer r sends value �(Rr) to the verifier.
As it was explained in the initialization phase, the value of �(Rr) is depended on the
results of all the multiplication and summation operations contributed in computing
the elements in Er.

Sampling

In the sampling phase, the verifier generates and sends some samples to the reducers to
challenge them. Sampling process consists of two parts: selecting input blocks, and gen-
erating the samples.

...

Rr

Joiner tree
Com

putation trees

x1y1Rx1y1R x2y2Rx2y2R x3y3Rx3y3R xnynRxnynR

Fig. 5  Schema of a joined tree

Page 15 of 30Bagheri et al. J Big Data (2020) 7:86 	

The verifier randomly selects some mappers and collects their input blocks. In case of
existing multiple blocks per each mapper, the verifier again can randomly pick some of
the blocks in each mapper. Having picked input blocks, the verifier performs the map
computations and generates some intermediate products. Since the size of each block
is so small compared to the size of input data (for example, in Hadoop MapReduce,
block sizes are 64 MB by default), the computation overhead caused by replicating each
map task is negligible. Each sample skij consists of intermediate product ckij and the cor-
responding auxiliary information is added to guide the reducer to find the related leaf
in its joined tree. These information consists of the location of the element in the input
matrices. The verifier sends each sample skij to the reducer responsible for producing cij ,
whom can be known by examining the shuffler function.

For instance, in the example depicted in Fig. 6, the verifier randomly selects mapper 1,
fetches its input block (i.e., the first row of the matrix B and the first column of A), runs
the map function on the block data to reach the corresponding intermediate products (i.e.,
1 ∗ 5 , 3 ∗ 5 , 1 ∗ 6 , and 3 ∗ 6 ), and randomly selects samples s111 = 5 , s121 = 15 , and s221 = 18
among the calculated intermediate products. Finally, it sends the first two samples to
reducer 1 and the third one to reducer 2. It is worth mentioning that if selected mappers
have multiple input blocks, the verifier can randomly pick arbitrary number of them.

A
A

B

B

b The joined tree in Reducer 1

Mapper 1 Reducer 1

Mapper 2 Reducer 2

1 * 5

2nd Row of
the result

1st Row of
the result

c11

c12

c21

c22

Input blocks

1 * 6

3 * 5 3 * 61

3

2 * 7 2 * 8

4 * 7 4 * 8

Map outputs Shuffle Reduce Inputs Results

3 * 5 3 * 6

4 * 7 4 * 8

Intermediate products Sibling intermediate
products

1 * 5 1 * 6

2 * 7 2 * 8

65

2

4

87

Bl
oc

k
1

Bl
oc

k
2

a The data flow of the example

Fig. 6  An example of matrix multiplication in MapReduce [2]

Page 16 of 30Bagheri et al. J Big Data (2020) 7:86

Proof construction

For each sample sij , reducers collect and send evidence to the verifier in order to con-
vince it of the two following claims:

(1)	 Mappers have correctly calculated the intermediate product related to the sample,
and

(2)	 All the sibling intermediate products are contributed correctly in the summation
operation.

In other words, by verifying reducers’ computations, the verifier can ensure the map-
pers’ computations, too.

For each received sample skij , the related reducer searches ckij among the leaves of its
computation trees and finds leaf Lkij using the auxiliary information accompanied the
sample. Then, it finds the path from the leaf to the root node Rr , and builds the proving
path �kij . Then, for each node V in the proving path, it replaces (�′(V),�(V)) with �(V) .
Finally, the reducer replies the verifier with the new proving path.

In the example shown in Fig. 6b, Reducer 1 receives sample s111 = 5 and finds the cor-
responding leaf L111 (the half-green node) in its Merkle tree M1

11 . Then, it retrieves L111 ’s
proving path which is

and sends it to the verifier.

Proof verification

For each sample, the verifier ought to rebuild the � value of the root node in the related
joined tree. For each sample skij , the corresponding �kij received from the reducer is veri-
fied using Algorithm 1. In the algorithm, we respectively use variables Phi and Theta
for storing the values � and � during the node reconstruction procedure, as well as
PTheta for computing the � value for the parent node using its child nodes. Lines 1–2
initialize the required variables. Lines 3–15 loop through the nodes in the proving path
to reconstruct the root node. Lines 4–8 calculate the � values of the nodes in the root
path according to the label that the corresponding reducer attached to the nodes in the
proving path. Lines 9–13 calculates the � values of the nodes placed in the left or right
subtree (depending on which side the complementary nodes are placed). Line 14 stores
the � value of the parent node in the main variable, Theta. Finally, lines 16–20 checks
whether the constructed root node is eligible or not.

If the verification algorithm on �kij finishes successfully, two things are guaranteed
about the intermediate product ckij :

1.	 It has been existed in the reducer’s input data. Since the verifier knows which map-
per sent ckij to the reducer, it can also know that the mapper has correctly produced ckij
using element pair 〈aij , bjk〉.

2.	 It has correctly contributed in the summation operation performed in the targeted
reducer.

�
1
11 = � (�′(L211),�(L211)), (�

′(R12),�(R12)) �

Page 17 of 30Bagheri et al. J Big Data (2020) 7:86 	

For instance, let’s resume the example trace in Fig. 6. Having received
�
1
11 = � (�′(L211),�(L211)), (�

′(R12),�(R12)) � from Reducer 1, the verifier starts com-
puting the nodes using Algorithm 1. First, using �′(L211) and �(L211) , �

′(R11) and �(R11)
are computed. Finally, �′(R1) and �(R1) are computed using the generated values and
�′(R12) and �(R12) . If �′(R1) is equal to the commitment value from the corresponding
reducer and �(R1) is the same as c11 , the verifier ensures the correct contribution of c111
in computing the result element c11.

Evaluation and analysis
In this section, we provide different types of analysis for our proposed approach. First,
we prove the security of the approach. Then, we formally look into the detection ratio
analysis, as well as overhead it imposes to the system. For further clarification, we define
“cheating in a node” as cheating in the computation that its result, in the form of � value,
is placed inside the node.

Security analysis

In order to prove that our approach is secure, we provide the security proof for each
stage in MapReduce, i.e., map and reduce.

Page 18 of 30Bagheri et al. J Big Data (2020) 7:86

Theorem 1

(Security of element pairs multiplication - map phase). Assume that there exists mapper
M who announces the faulty output set O′

M instead of expected set OM as its computation
results. If the verifier chooses sample S ∈ (OM − O′

M) , the fault is detected.

Proof
According to the assumptions, consider that the verifier picks sample s ∈ (OM − O′

M) .
Moreover, assume that reducer r is associated with the sample through the shuffler func-
tion. The verifier, sends s to the reducer and receives �s as the related proof path. In order
to ensure the sample’s contribution in computations, the verifier needs to check

where � is defined in Eq. 5 and �′(Rr) is the hash value of the root node in the joined
tree of reducer r (i.e., its commitment value) which its generation process consists of
one-way collision resistant hash computations. Since reducer r is not aware of s before
generating the commitment value �′(Rr) , s is not contributed in its generation. The only
way for covering up the fault is to generate proof path �′s that

where Ir and I ′r are the expected and faulty input set for reducer r, respectively.

Because of H characteristics, generating the same hash value as �′(Rr) , with different set
of inputs such that �(Ir) = �(I ′r) is computationally infeasible. In addition, since map
tasks do not overlap with each other, no one except mapper m would produce mapping
result set equal to Om − O′

m . Therefore, the cheat is detected upon the selection of the
proper sample s.� �

According to Theorem 1, since submitting the commitment occurs before the reveal-
ing of the samples, reducers cannot cover up the possible faults made by the mappers.
Likewise, we can use the same proof when a portion of data is missing instead of being
corrupted. Therefore, the wisest decision for mappers is to correctly compute the inter-
mediate products.

Theorem 2

(Security of intermediate product summation - reduce phase). Assume that semi-honest
reducer r receives the correct input set Ir for its reduce task; however, instead of expected
output set Or , it announces the faulty result O′

r , which is the result of cheating on compu-
tations of input portion ir ⊂ Ir . If the verifier chooses sample s ∈ ir , the cheat is detected.

�(s, �s)
?
=�′(Rr)

�(s, �′s) = �(I ′r) = �(Ir) = �′(Rr)

Page 19 of 30Bagheri et al. J Big Data (2020) 7:86 	

Proof
Consider that the verifier picks sample s ∈ ir , sends it to the reducer r, and receives the
proving path �i , which then is used to check

If the input portion ir is not correctly contributed in the computations, there is at least
one inner node V in the reducer r’s joined tree that

Since the miscalculation is originated from input set ir and we have s ∈ ir , then Eq. 12’s
condition would be applied to at least one of the constructed nodes in the verifier. There-
fore, for the same reason mentioned in Theorem 1, the commitment value and the hash
value of the constructed root node would not be equal.

It is worth mentioning that there is no computationally feasible way for the reducer to
hide the cheats it made. The reason is the construction method we use for the inner
nodes (Eq. 11). The existence of � values of children nodes in constructing each node
guarantees that reducer is aware of those values. Therefore, it cannot change them in
the future, because it makes the submitted commitment value invalid, and thus, reveals
the cheat with an appropriate sample. The only way to cover up the cheats is to make an
equal �′ value with different inputs for the faulty node. As this operation means revers-
ing a one-way hash function, it is assumed to be computationally infeasible.� �

Now, we can define the best place to cheat by semi-honest reducers.

Lemma 2

For a strategic semi-honest reducer, the best places to cheat are in the nodes at level H − 1
of the computation trees, where H is the height of the tree.

Proof
If a cheating is committed at a node placed closer to the root, the node will be ancestor of
more leaves; that means the cheating can be exposed with more samples. Assume that in
Fig. 7, marked nodes A and E are the two candidate places for a reducer to cheat. Cheat-
ing in node A is revealed using an arbitrary sample among eight nodes (i.e., F to M). How-
ever, cheating in node E is revealed only by using N or O as the sample. �

Detection ratio analysis

To reach the overall detection probability equation, first, we need to define some nota-
tions described in Table 1. Considering Lemma 2, the worst case scenario in calculating
detection ratio is when reducers act as semi-honest strategists.

�(s, �i)
?
=�′(Rr)

(12)�(V) = �(Vleft)+�(Vright)

Page 20 of 30Bagheri et al. J Big Data (2020) 7:86

Theorem 3

(Cheat detection probability). In a MapReduce job with N input records for reducers
(mappers’ outputs) and assuming reducers as semi-honest strategists, cheat detection
probability D is equal to

and the average undetected error number E is

Proof
We name the computation tree nodes at level H − 1 , as parent nodes, in their computa-
tion trees. Meanwhile, each parent node has two leaves, which we call as its child nodes.
We look to compute the probability that no cheat is detected during the verification phase,
denoted as D′ , whether it happened or not. It happens if the following two conditions hold
for each parent node:

(a)	 The reducer cheats in a parent node, yet its children are not selected as samples. In
this case, the probability is

(b)	 The reducer does not cheat in a parent node. However, its child nodes may be faulty
since those are mappers’ output and mappers can cheat in their outputs as well.
Therefore, the probability is equal to

(13)D = 1−
(

C(1− S)2 + (1− C)(1− SC)2
)Np

(14)
E =NpC(1− S)

(

C(1− S)2 + (1− C)(1− SC)2
)Np−1

.
(

(1− S)(1+ 2C)+ 2(1− SC)(1− C)(1− SC)2
)

p = C(1− S)2

Fig. 7  Example of different places to cheat in a reduce task

Page 21 of 30Bagheri et al. J Big Data (2020) 7:86 	

Where P(j, 2) is the number of 2-permutations of j objects. Reminding that Np = N/2
nodes are placed in H − 1 level, we have:

Using binomial theorem, we have:

Therefore, cheat detection probability D is

Now, we want to find the average number of errors (mathematic expectation) that is not
detected in the verification process. To do so, we examine cases that were assumed in
the beginning.

If case a) happens, it means that the parent node is faulty. Also, its children can be faulty
as well since they are not samples, and therefore, the cheats will not be detected. In this
case, The expectation for the number of faulty children is 2C. Therefore, if case a) hap-
pens, (1+ 2C)i cheats are not detected. Moreover, each time case b) happens, in average,

q = (1− C)

2
∑

j=0

P(j, 2)

= (1− C)

2
∑

j=0

(

2
j

)

(C(1− S))j(1− C)2−j

= (1− C)(1− S.C)2

D′ =

Np
∑

i=0

P(i,Np)

=

Np
∑

i=0

(

Np

i

)

piqNp−i

=

Np
∑

i=0

(

Np

i

)

(

C(1− S)2
)i(

(1− C)(1− S.C)2
)Np−i

D′ =
(

C(1− S)2 + (1− C)(1− S.C)2
)Np

D = 1− D′

= 1−
(

C(1− S)2 + (1− C)(1− S.C)2
)Np

Table 1  Notations used in the evaluation and analysis discussions

Notation Description

H The height of computation trees in reducers

N The total number of input records for all reduce jobs.

Np The total number of nodes in level H − 1 of each joined tree (=N/2).

S The ratio of randomly selecting reduce input records

C The cheating probability during the map and reduce phase

Ts Total number of samples used for the verification process

Page 22 of 30Bagheri et al. J Big Data (2020) 7:86

mappers can inject 2C(1− S)(1− S.C) (mathematic expectation of probability q) faulty
computations into the reducer’s inputs without being noticed by the verifier. Therefore, If
case a) and b) happens i and Np − i times, respectively, 3i + (Np − i)2C(1− S)(1− S.C)
faulty nodes can be existed in a computation tree without being detected. Hence, aver-
age number of undetected errors, denoted as E, can be computed as:

All the multipliers except i can come out of the summation. Therefore, the equation is
simplified to (we use p and q from cases a and b to save space):

On the other hand, we have:

Thus, after simplifications and factoring operations, we end up with:

� �

Figure 8 depicts D and E in case of different cheat rate values using single values for
Np and S. In case of detection rate, our approach and MtMR [33] are the same even
though MtMR need to use double number of samples to achieve the same detection rate
(pre-reduce and reduce phase). However, the results show that the average number of
undetected errors in our approach is less than half of the MtMR’s. Since pre-reduce and
reduce phases in MtMR are two distinct phases, the average number of errors in each
phase are aggregated together to be comparable with our approach.

Complexity analysis

In this section, the proposed approach overhead is analyzed in terms of time and space
complexity. The results of the analysis are listed in Table 2. The notations used in this
table are derived from Table 1.

In the initialization phase, reducers built the tree structures on N input records (i.e.,
intermediate products). Therefore, 2N nodes are built in total, which makes the space

E =

Np
∑

i=0

(

i(1+ 2C)+
(

Np − i
)

2C(1− S)(1− S.C)
)

(

Np

i

)

.

(

C(1− S)2
)i(

(1− C)(1− S.C)2
)Np−i

E =(1+ 2C − 2C(1− S)(1− S.C))

Np
∑

i=0

i

(

Np

i

)

piqNp−i

+ Np2C(1− S)(1− S.C)

Np
∑

i=0

(

Np

i

)

piqNp−i

Np
∑

i=0

i

(

Np

i

)

piqNp−i = Npp(p+ q)Np−1

E =NpC(1− S)
(

C(1− S)2 + (1− C)(1− S.C)2
)Np−1

.
(

(1− S)(1+ 2C)+ 2(1− S.C)(1− C)(1− S.C)2
)

Page 23 of 30Bagheri et al. J Big Data (2020) 7:86 	

complexity for this phase equal to O(N). Moreover, each reducer sends its commit-
ment value to the verifier which results in the space complexity of O(1). During the tree
construction, �′ and � values are calculated for each node. Thus, 4N calculations are
required, which results in the time complexity of O(N).

In the sampling phase, the verifier prepares Ts input records and sends them to the
reducers. Therefore, the time and space complexities for the calculations and transmis-
sion are O(Ts).

In the proof construction phase, the reducers generate proving paths for the given
samples. Each generation process needs looping over logN nodes in the corresponding
tree. Totally, the time complexity of computing proving paths is O(Ts logN) . The space
complexity of the transmission is also O(Ts logN).

Finally, in the proof verification phase, Ts proving paths are used to partially verify the
computations. Each proving path needs 2 logN calculations (for computing � and �′
values for each node) to produce the expected commitment value. Therefore, the time
complexity is O(Ts logN).

Results and discussion

Since we were curious to measure the expected performance improvements, we imple-
mented our approach on a custom MapReduce system using Python as the main pro-
gramming language. Experiments are conducted on Intel Core i7-10510U and 16
GB DDR3 SDRAM. To gain the highest computation power during experiments, we
enforced the serial task processing, meaning that only one task is get processed at any
moment. For running the MapReduce jobs in the system, we deployed 25 mappers, 10
reducers, and a verifier. Input matrices are generated randomly for each experiment.
Moreover, we executed each test scenario 20 times to increase the accuracy.

We evaluated our approach in three parts: Setup, where the required structures are
built in reducers’ side, Proof Construction, where the reducers generate the proofs
required for given verification samples, and Proof Verification, where the generated
proofs are verified. In each phase, we compare our results with the ones reported for the
state-of-the-art technique for this purpose, i.e. MtMR [33]. In MtMR, the verification
process is performed in two separate phases (e.g., pre-reduce and reduce). In order to
reach a fair comparison, we represent the related performance results in MtMR as the
aggregation.

The verification process for each sample is independent of the others. In other words,
variation in the sampling ratio has a linear effect on the result. Therefore, we fixed the
sampling ratio to 1% of intermediate products in all tests. Also, we realized that the most
important parameter is the size of input matrices. Thus, we used matrices in the range
of 10x10 to 300x300 as the input. Finally, since we are measuring the worst case perfor-
mance, the cheating probability is not considered in workers.

Figure 9 shows the results in setup phase; by growing the input size, the required setup
time and storage space grow as well. The setup time for our approach and MtMR is
roughly the same; however, as the size of the inputs grows, the required storage space
in our approach becomes slightly bigger than MtMR. That makes sense, since we record
extra information in each Merkle tree node.

Page 24 of 30Bagheri et al. J Big Data (2020) 7:86

0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 0.00200
Cheat rate

0.0

0.2

0.4

0.6

0.8

1.0

D
et
ec
ti
on

ra
te

Np = 27000000

S = 0.0002

MtMR
Our approach

a Cheat detection probability

0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 0.00200
Cheat rate

0

500

1000

1500

2000

2500

3000

3500

A
ve
ra
ge

nu
m
be
r
of

un
de
te
ct
ed

er
ro
rs

Np = 27000000

S = 0.0002

(0.00019, 3676)

(0.00009, 1378)

MtMR
Our approach

b Average number of undetected errors
Fig. 8  Comparison of our approach with MtMR [33] in terms of cheat detection probability and average
number of undetected errors

Table 2  Time and space complexity analysis for the proposed approach

Stage Storage Public cloud
computations

Private cloud
computations

Data transmissions

Initialization O(N) O(N) – O(1)

Sampling O(Ts) – O(Ts) O(Ts)

Proof construction – O(Ts logN) – O(Ts logN)

Proof verification – – O(Ts logN) –

Page 25 of 30Bagheri et al. J Big Data (2020) 7:86 	

For the proof construction phase, we measured the time and space that a reducer
needs to construct the proof for given samples. The results are shown in Fig. 10. Here
we can see tangible differences between the two approaches. In terms of proof construc-
tion time, our approach is much faster than MtMR since we provide only logN node
information per sample, where N is the number of reduce intermediate products for
each reducer; however, MtMR needs to prepare the full input records (i.e., N) per each
sample. For the same reason, the size of the proof increases with the number of given
samples.

The evaluation results for the proof verification phase, where we measured the
required time to verify the proofs received from the reducers, are represented in Fig. 11.
In our approach, the verifier only needs to do logN hashes to rebuild the targeted
reducer’s commitment value. That being said, in MtMR, the verifier needs to do an extra
reduce task. Hence, compared to MtMR, we can check many more samples in the same
period of time.

Conclusion
In this paper, we proposed an approach for efficient result verification in systems where
parallel processing techniques, such as MapReduce, are utilized. There exists several
solutions for this purpose that can be divided into four categories: log-based, watermark-
based, hardware-based, and replication-based. Each solution has its own merits and
demerits; log-based methods are vulnerable against mimicry attacks, hardware-based
methods impose fundamental modification to the system, watermark-based methods
suffer from false-positive detection and lack of efficient generator, and replication-based
methods waste lots of computation power. Also, verification-based methods, which is
grouped in the previous category, benefit from trusted nodes, which are expensive to
have.

Utilizing Merkle tree structure, we aimed to mitigate verification-based disad-
vantages by efficiently using verifier entities. To better illustrate our work, we chose
matrix multiplication, since it is one of the most popular applications in the MapRe-
duce and its computations fits nicely into the model. The novelty of our work is
derived from the fact that fine-grained computation results are contributed to pro-
duce a commitment value. In our approach, each reducer constructs a Merkle tree
using map phase output data, and submits the hash value of the root node to the veri-
fier as the commitment value. In the tree construction phase, we insert extra informa-
tion in node, which helps to make the commitment value more powerful against the
attempts to deceive the verification mechanism.

To reveal the cheating behavior, a proportion of input data is selected as the sam-
ples and used in the verification process. During the process, each sample is sent to
the corresponding reducer to generate proving paths. per each sample and its prov-
ing path, the verifier rebuild the hash value of the root node and compare it with the
commitment value in order to find probable inconsistencies. More cheating behavior
performed by the workers, higher probability of detecting the errors.

Although our approach work for both types of malicious and semi-honest workers,
we do not recommend using it for detecting the former type of workers, because of
the overhead it imposes to the system (i.e., high sampling ratio). In fact, malicious

Page 26 of 30Bagheri et al. J Big Data (2020) 7:86

workers do not have cost-effectiveness motivations. Therefore, they do not risk
increasing the cheating probability while they can sabotage the system with a mini-
mum number of miscalculations. Moreover, our approach can detect faulty results
in two types of computation in matrix multiplication: multiplying element pairs, and
summing intermediate products.

Evaluation results show significant improvements over the state-of-the-art tech-
nique. For example, in case of multiplying two 300x300 sized matrices, we achieved

0 50 100 150 200 250 300
Input matrix size

0

5

10

15

20

25

30

35

Se
tu
p
ti
m
e
(s
)

Our approach
MtMR [32]

a Setup time

0 50 100 150 200 250 300
Input matrix size

0

200

400

600

800

1000

1200

Se
tu
p
si
ze

(M
B
)

Our approach
MtMR [32]

b Setup storage size
Fig. 9  Required time and space for the setup phase

Page 27 of 30Bagheri et al. J Big Data (2020) 7:86 	

86% reduction in the average generated proof size, 90% reduction in the overall proof
construction time, and 98% reduction in the verification time.

it is worth mentioning that not only does the proposed approach suit the matrix
multiplication application well, but also it is compatible with the applications that
their computations on the inputs can be modeled using a Merkle tree.

0 50 100 150 200 250 300
Input matrix size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
ro
of

co
ns
tr
uc
ti
on

ti
m
e
(s
)

Our approach
MtMR [32]

a Proof construction time

0 50 100 150 200 250 300
Input matrix size

0

50

100

150

200

250

P
ro
of

si
ze

(M
B
)

Our approach
MtMR [32]

b Generated proof size
Fig. 10  Required time and space for the proof construction phase ( sampling ratio = 0.01)

Page 28 of 30Bagheri et al. J Big Data (2020) 7:86

Abbreviations
DFS: Distributed file system; TPM: Trusted platform modules; RTMS: Reputation-based trust management system.

Acknowledgements
We would like to thank the reviewers in the Data and Network Security Laboratory at Sharif University of Technology.

Authors’ contributions
RB conceived and designed the research, performed the implementation and experimentation, and performed the
evaluation and validation. MA acted as the advisor and challenged the research results in each step. SDS introduced this
topic to RB and drafted the security analysis section. All authors provided feedback to RB and helped shape the research.
All authors read and approved the final manuscript.

Funding
The conducted research was fully self-funded.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 23 June 2020 Accepted: 27 September 2020

References
	1.	 IDC, Digital Universe: The Speed of Data Creation is Rapidly Accelerating. 2014. https​://www.emc.com/colla​teral​/

analy​st-repor​ts/idc-digit​al-unive​rse-2014.pdf.
	2.	 Dean J, Ghemawat S. Mapreduce. Commun ACM. 2008;51(1):107. https​://doi.org/10.1145/13274​52.13274​92. arXiv​

:10.1.1.135.4448.
	3.	 Russkov A, Shchur L. Matrix multiplication and universal scalability of the time on the intel scalable processors, In:

Journal of Physics: Conference Series, Vol. 1163, IOP Publishing, 2019;0 12079.
	4.	 Vasudevan A, Anderson A, Gregg D. Parallel multi channel convolution using general matrix multiplication, In: 2017

IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP), IEEE,
2017;19–24.

0 50 100 150 200 250 300
Input matrix size

0

20

40

60

80
P
ro
of

ve
rifi

ca
ti
on

ti
m
e
(s
)

Our approach
MtMR [32]

Fig. 11  Proof verification time ( sampling ratio = 0.01)

https://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
https://doi.org/10.1145/1327452.1327492
http://arxiv.org/abs/10.1.1.135.4448
http://arxiv.org/abs/10.1.1.135.4448

Page 29 of 30Bagheri et al. J Big Data (2020) 7:86 	

	5.	 AL-Laham MM. Encryption-decryption rgb color image using matrix multiplication. Int J Comput Sci Inform Technol.
2015;7(5):109–19.

	6.	 Highland F, Stephenson J. Fitting the problem to the paradigm: algorithm characteristics required for effective use
of mapreduce. Procedia Comput Sci. 2012;12:212–7.

	7.	 Ballard G, Demmel J, Holtz O, Lipshitz B, Schwartz O. Communication-optimal parallel algorithm for strassen’s matrix
multiplication, In: Proceedinbgs of the 24th ACM symposium on Parallelism in algorithms and architectures - SPAA
’12, ACM Press, 2012. https​://doi.org/10.1145/23120​05.23120​44.

	8.	 Choi J, Walker DW, Dongarra JJ. Pumma: parallel universal matrix multiplication algorithms on distributed memory
concurrent computers. Concurrency Pract Exp. 1994;6(7):543–70. https​://doi.org/10.1002/cpe.43300​60702​.

	9.	 Fox GC, Otto SW, Hey AJ. Matrix algorithms on a hypercube I: matrix multiplication. Parallel Comput.
1987;4(1):17–31.

	10.	 Sun Z, Li T, Rishe N. Large-scale matrix factorization using MapReduce. Proceed IEEE Int Conf Data Min ICDM.
2010;33199(2):1242–8. https​://doi.org/10.1109/ICDMW​.2010.155.

	11.	 Zheng J, Zhu R, Shen Y. Sparse matrix multiplication algorithm based on mapreduce. J Zhongkai Univ Agri Engineer.
2013;26:11.

	12.	 Deng S, Wenhua W. Efficient matrix multiplication in hadoop. Int J Comput Sci Appl. 2016;13(1):93–104.
	13.	 Kadhum M, Qasem M H, Sleit A, Sharieh A. Efficient MapReduce Matrix Multiplication with Optimized Mapper Set,

In: R. Silhavy, R. Senkerik, Z. Kominkova Oplatkova, Z. Prokopova, P. Silhavy (Eds.), Cybernetics and Mathematics
Applications in Intelligent Systems, Vol. 574, Springer International Publishing, 2017;186–196.

	14.	 Merkle R C. A Digital Signature Based on a Conventional Encryption Function, In: C. Pomerance (Ed.), Advances in
Cryptology — CRYPTO ’87, Vol. 293, Springer Berlin Heidelberg, 1988. https​://doi.org/10.1007/3-540-48184​-2_32.

	15.	 Du W, Jia J, Mangal Manish, Murugesan Mummoorthy, Uncheatable grid computing, In: 24th International Confer-
ence on Distributed Computing Systems, 2004. Proceedings., IEEE, 2004;4–11.

	16.	 Liao C, Squicciarini A. Towards provenance-based anomaly detection in MapReduce, Proceedings - 2015 IEEE/ACM
15th International Symposium on Cluster. Cloud Grid Comput CCGrid. 2015;2015:647–56. https​://doi.org/10.1109/
CCGri​d.2015.16.

	17.	 Yoon E, Squicciarini A. Toward Detecting Compromised MapReduce Workers through Log Analysis, In: Proceedings
of the IEEE/ACM 14th International Symposium on Cluster, Cloud and Grid Computing, IEEE, 2014;41–50. https​://doi.
org/10.1109/CCGri​d.2014.120.

	18.	 Wagner D, Soto P. Mimicry attacks on host-based intrusion detection systems, In: Proceedings of the 9th ACM
Conference on Computer and Communications Security, ACM, 2002;255–264.

	19.	 Ruan A, Martin A. TMR: Towards a Trusted MapReduce Infrastructure, In: Proceedings of the IEEE 8th World Congress
on Services, IEEE. 2012;141–148. https​://doi.org/10.1109/SERVI​CES.2012.28.

	20.	 Bissiriou C A A, Zbakh M. Towards Secure Tag-MapReduce Framework in Cloud, In: Proceedings of the IEEE 2nd
International Conference on Big Data Security on Cloud, IEEE. 2016;96–104. https​://doi.org/10.1109/BigDa​taSec​urity​
-HPSC-IDS.2016.78.

	21.	 Zhang C, Chang E C, Yap R H C. Tagged-mapreduce: A general framework for secure computing with mixed-sensi-
tivity data on hybrid clouds, In: Proceeding of the IEEE/ACM 14th International Symposium on Cluster, Cloud and
Grid Computing, 2014;31–40. https​://doi.org/10.1109/CCGri​d.2014.96.

	22.	 Ding Y, Wang H, Chen S, Tang X, Fu H, Shi P. PIIM: Method of Identifying Malicious Workers in the MapReduce System
with an Open Environment, In: Proceedings of the IEEE 8th International Symposium on Service Oriented System
Engineering, IEEE, 2014;326–331. https​://doi.org/10.1109/SOSE.2014.47.

	23.	 Huang C, Zhu S, Wu D. Towards Trusted Services: Result Verification Schemes for MapReduce, In: Proceedings of
the IEEE/ACM 12th International Symposium on Cluster, Cloud and Grid Computing, IEEE, 2012;41–48. https​://doi.
org/10.1109/CCGri​d.2012.77.

	24.	 Kamvar S D, Schlosser M T, Garcia-Molina H. The Eigentrust algorithm for reputation management in P2P networks,
In: Proceedings of the ACM 12th international conference on World Wide Web, ACM Press, New York, 2003;640. https​
://doi.org/10.1145/77524​0.77524​2.

	25.	 Wei W, Du J, Yu T, Gu X. SecureMR: A Service Integrity Assurance Framework for MapReduce, In: Proceedings of the
IEEE Annual Computer Security Applications Conference, IEEE, 2009;73–82. https​://doi.org/10.1109/ACSAC​.2009.17.

	26.	 Ding Y, Wang H, Wei L, Chen S, Fu H, Xu X. VAWS: constructing trusted open computing system of mapReduce with
verified participants E97.D. IEICE Transact Informat Syst. 2014;. https​://doi.org/10.1587/trans​inf.E97.D.721.

	27.	 Bendahmane A, Essaaidi M, Moussaoui A E, Younes A. Result verification mechanism for MapReduce computation
integrity in cloud computing, In: Proceedings of the IEEE International Conference on Complex Systems (ICCS), IEEE,
2012;1–6. https​://doi.org/10.1109/ICoCS​.2012.64585​83.

	28.	 Khan S M, Hamlen K W. Hatman: Intra-cloud Trust Management for Hadoop, in: Preceedings of the IEEE 5th Interna-
tional Conference on Cloud Computing, IEEE, 2012;494–501. https​://doi.org/10.1109/CLOUD​.2012.64.

	29.	 Samuel T A, Abdul Nizar M. Credibility-based result verification for Map-reduce, In: Proceedings of the IEEE Annual
India Conference (INDICON), IEEE, 2014;1–6. https​://doi.org/10.1109/INDIC​ON.2014.70306​82.

	30.	 Wang Y, Wei J. VIAF: Verification-Based Integrity Assurance Framework for MapReduce, In: Proceedings of the IEEE
4th International Conference on Cloud Computing, IEEE, 2011;300–307. https​://doi.org/10.1109/CLOUD​.2011.33.

	31.	 Wang Y, Wei J, Srivatsa M. Result Integrity Check for MapReduce Computation on Hybrid Clouds, In: Proceedings of
the IEEE 6th International Conference on Cloud Computing, IEEE, 2013;847–854. https​://doi.org/10.1109/CLOUD​
.2013.118.

	32.	 Xiao Z, Xiao Y. Achieving accountable MapReduce in cloud computing. Futur Generat Comput Syst. 2014;30(1):1–13.
https​://doi.org/10.1016/j.futur​e.2013.07.001.

	33.	 Wang Y, Shen Y, Wang H, Cao J, Jiang X. MtMR: ensuring MapReduce computation integrity with Merkle tree-based
verifications. IEEE Transact Big Data. 2016;14(8):1. https​://doi.org/10.1109/TBDAT​A.2016.25999​28.

	34.	 Freivalds R. Fast probabilistic algorithms, In: International Symposium on Mathematical Foundations of Computer
Science, Springer, 1979;57–69.

https://doi.org/10.1145/2312005.2312044
https://doi.org/10.1002/cpe.4330060702
https://doi.org/10.1109/ICDMW.2010.155
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/CCGrid.2015.16
https://doi.org/10.1109/CCGrid.2015.16
https://doi.org/10.1109/CCGrid.2014.120
https://doi.org/10.1109/CCGrid.2014.120
https://doi.org/10.1109/SERVICES.2012.28
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.78
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.78
https://doi.org/10.1109/CCGrid.2014.96
https://doi.org/10.1109/SOSE.2014.47
https://doi.org/10.1109/CCGrid.2012.77
https://doi.org/10.1109/CCGrid.2012.77
https://doi.org/10.1145/775240.775242
https://doi.org/10.1145/775240.775242
https://doi.org/10.1109/ACSAC.2009.17
https://doi.org/10.1587/transinf.E97.D.721
https://doi.org/10.1109/ICoCS.2012.6458583
https://doi.org/10.1109/CLOUD.2012.64
https://doi.org/10.1109/INDICON.2014.7030682
https://doi.org/10.1109/CLOUD.2011.33
https://doi.org/10.1109/CLOUD.2013.118
https://doi.org/10.1109/CLOUD.2013.118
https://doi.org/10.1016/j.future.2013.07.001
https://doi.org/10.1109/TBDATA.2016.2599928

Page 30 of 30Bagheri et al. J Big Data (2020) 7:86

	35.	 Thaler J. Time-optimal interactive proofs for circuit evaluation, In: Annual Cryptology Conference, Springer,
2013;71–89.

	36.	 Kumar M, Vardhan M. Engineering Vibration, Communication and Information Processing, vol. 478. Singapore:
Springer; 2019 10.1007/978-981-13-1642-5.

	37.	 Zhang S, Li H, Dai Y, Li J, He M, Lu R. Verifiable outsourcing computation for matrix multiplication with improved
efficiency and applicability. IEEE Int Things J. 2018;5(6):5076–88. https​://doi.org/10.1109/JIOT.2018.28671​13.

	38.	 Bultel X, Ciucanu R, Giraud M, Lafourcade P. Secure Matrix Multiplication with MapReduce, In: Proceedings of the
12th International Conference on Availability, Reliability and Security - ARES ’17, ACM Press, New York, New York,
USA, 2017;1–10. https​://doi.org/10.1145/30989​54.30989​89.

	39.	 Zhang S, Li H, Jia K, Dai Y, Zhao L. Efficient secure outsourcing computation of matrix multiplication in cloud com-
puting, 2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings https​://doi.org/10.1109/
GLOCO​M.2016.78417​83.

	40.	 Bowers K D, Juels A, Oprea A. Hail: A high-availability and integrity layer for cloud storage, In: Proceedings of the
16th ACM conference on Computer and communications security, ACM, 2009;187–198.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/JIOT.2018.2867113
https://doi.org/10.1145/3098954.3098989
https://doi.org/10.1109/GLOCOM.2016.7841783
https://doi.org/10.1109/GLOCOM.2016.7841783

	Efficient verification of parallel matrix multiplication in public cloud: the MapReduce case
	Abstract
	Introduction
	Background
	MapReduce
	Matrix multiplication in MapReduce
	Merkle tree-based verification

	Related work
	Basic definitions and attack model
	Basic definitions
	Attack and error model

	Methods and proposed approach
	Architecture model
	Assumptions
	The result verification process
	Initialization
	Sampling
	Proof construction
	Proof verification

	Evaluation and analysis
	Security analysis
	Detection ratio analysis
	Complexity analysis
	Results and discussion

	Conclusion
	Acknowledgements
	References

