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Introduction
Thanks to the existence of the Internet and its global popularity, the pace of generating 
data has been escalated significantly in recent years. In 2014, a research showed that the 
volume of generated data is doubled every year, and this multiplier will increase up to 
ten until 2020 [1]. Therefore, challenges regarding storing and processing the massive 
generated data has motivated researchers to find efficient solutions. Cloud-based ser-
vices have emerged to solve mentioned challenges, giving its users the ability to process 
their big data.

The expansion of public clouds has drawn much attentions to itself since users can 
simply rent their required resources without worrying about staggering costs of buy-
ing and maintaining them. In order to speed up the data processing in cloud services, 
many hardware-based and software-based approaches have been proposed. Parallel 
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processing is one of the latter type of techniques, by which input data is divided into 
several groups, and each group is processed independently. MapReduce [2] is a par-
allel processing model of programming that have been implemented and used by a 
diverse set of companies and academic researchers for big data processing purposes 
such as machine learning and data analysis. There exist several software frameworks 
implemented based on MapReduce model, among of which Hadoop MapReduce and 
Spark are the most prominent ones.

Setting aside the benefits, cloud services have caused some security issues for their 
customers; failures such as Byzantine, outside attacks, and even cloud owners’ eco-
nomic motivations (i.e., saving processing power by faking computations) leads to 
incorrect results in those systems. Therefore, without being assured of the real behav-
ior of the cloud during the processing stage, users cannot consider the outputs as 
trustworthy.

Among the MapReduce applications, matrix multiplication is one of the popular 
ones. It is an essential operation in linear algebra, and has numerous applications 
in many areas such as [3–5]. Public clouds offering MapReduce services can nicely 
handle matrix multiplication computations since the MapReduce model is fully com-
patible with them. Nevertheless, considering the security issues mentioned for cloud 
computing, finding an efficient approach for ensuring result integrity has been a chal-
lenge for outsourced computations. In this regard, several approaches addressing the 
issue have been proposed; however, since multiplying big matrices is a heavy job, the 
proposed approaches do not have a reasonable efficiency in this application and also 
other similar applications.

In this paper, we propose a result verification approach for matrix multiplication 
computations in the MapReduce model using the Merkle tree data structure; how-
ever, our approach is also applicable on any other applications having the same set of 
computation features as matrix multiplication.

Briefly, our contributions in this paper are as follows:

•	 Proposing a new approach for verifying the matrix multiplication computation 
results in MapReduce.

•	 Performing analysis on the system security.
•	 Implementing the proposed approach on a MapReduce system, measuring its per-

formance, and comparing it with related works.

In the rest of this paper,  "Background" section gives some background information 
about the concepts we used in our work. "Related Work"  section reviews previous 
related works and describe why they do not meet our needs. "Basic Definitions and 
attack model"  section introduces some basic definitions, which we are going to use 
in our explanations and talks about the attack model we consider for our approach, 
as well as the types of the errors that we want to detect. "Methods and proposed 
approach" section  explicates our main work.  "Evaluation and analysis section focuses 
on analyzing and evaluating the approach and its comparison with a recent related 
work in terms of performance. Finally, "Conclusion" section concludes the paper and 
introduces new research challenges in this field.
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Background
Some basic concepts and definitions, which are required to be understood before studying 
the proposed approach, are presented in the following.

MapReduce

MapReduce [2] is a programming model for processing big data clusters in distributed envi-
ronments. It has two main functions, Map and Reduce, and three main entity types: Master, 
Worker, and Distributed File System (DFS). The master manages job flows and interactions 
among other entities. Workers, consisting of mappers and reducers, do the computation 
tasks assigned by the master. Finally, DFS acts as a distributed disk storage in the system.

The process flow in MapReduce, which is shown in Fig. 1, consists of three main phases: 
Map, Shuffle, and Reduce. First, input data is divided into several specific-sized chunks and 
each one is assigned to a mapper. Having called the inputs, mappers perform the computa-
tion determined in the map function and generate outputs, called intermediate records, in 
form of key-value pairs and store them on their local storages. Then, in the shuffle phase, 
the intermediate records are sorted, grouped, and assigned to the reducers defined by the 
shuffler function. Afterwards, reducers apply the reduce function on their assigned data, 
generate final results, and write them back on DFS.

There are different types of computations that can be performed using the MapReduce 
model; however, they need to share a set of predefined characteristics [6] in order to benefit 
the utilization brought by the model. The most important characteristic is that the compu-
tation should be able to be divided into independent subcomputations.

Matrix multiplication in MapReduce

If A = [aij] is an m× n matrix and B = [bij] is an n× p matrix, C = [cij] , the product of 
AB, is an m× p matrix where each element cij is calculated as

(1)cij = �r Ai · �c Bj = ai1b1j + ai2b2j + · · · + ainbnj
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Fig. 1  Data flow of a job in MapReduce [2]
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In other words, element cij of matrix C is derived from the inner product of ith row of 
matrix A (denoted as �r Ai  ) and jth column of matrix B (denoted as �c Bj ).

The basic way of performing the computations is using the sequential algorithm, 
which has the time complexity of O(n3) . In this regard, several approaches such as par-
allel algorithms [7–9] have been proposed over the years with the aim of reducing the 
overall overhead and speeding up the computations.

Implementing matrix multiplication algorithms using the MapReduce model is one of 
the efficient approaches as the calculations fit nicely into the MapReduce style of com-
puting. The element-to-element strategy (Fig.  2a), same as the sequential algorithm, 
imposes significant communication overhead to the system. In order to mitigate the 
problem and increase the utilization, several strategies are proposed over the years. Sun 
[10] presented the row-to-column (Fig. 2b) strategy to decompose the first and the sec-
ond matrix into row and column vectors, respectively. Increasing the computation load 
on mappers’ side, his technique aims to reduce the communication overhead. Zheng [11] 
suggested decomposing the first matrix into elements or columns and the second matrix 
into rows (Fig. 2c, d) for efficient computations in case of sparse matrices. Deng and Wu 
[12] made a comparison between element-to-element, row-to-column, and element-to-
row strategies and claimed that the element-to-row strategy has the highest efficiency 
among the others for both dense and sparse matrix types. Using a balanced number of 
mappers, Kadhum [13] proposed element-to-row-block (Fig. 2e) and row-block-to-col-
umn-block (Fig. 2f ) strategies as the general cases of the previous works to make a bal-
ance between the processing and the I/O overhead.

In overall, the aforementioned strategies try to keep a balance between communica-
tion and computation overheads. These strategies differ in how the input elements are 
contributed in the matrix multiplication computation, which determine the placement 
of the elements in the input blocks. In this regard, there are two main approaches for 
matrix multiplication in MapReduce; double-job and single-job approaches. In the for-
mer, the first job is responsible for labeling and grouping the elements resulted by the 
mappers, whereas the second one is responsible for performing the main computations 
(i.e., inner products of the matrices’ elements) jointly done by the mappers and reducers. 
In the latter approach, a preprocessing stage is required for organizing and grouping the 
input data. Therefore, the main computations can be done in a single job by the mappers 
and reducers.

a Element by element b Row by column c Element by row

d Column by row e Element by row-block f Row-block by column-
block

Fig. 2  Schemes of different strategies for matrix multiplication



Page 5 of 30Bagheri et al. J Big Data            (2020) 7:86 	

Merkle tree‑based verification

The Merkle tree-based verification method is based on a data structure called Merkle 
tree (aka hash tree) [14]. This method was introduced in [15] to ensure result integrity 
in grid computing. A Merkle tree is a complete binary tree that utilizes two functions; 
a one-way collision resistant hash function, and mapping function � , which maps a 
set of nodes to a set of constant-sized strings that are generated using the hash func-
tion. In a Merkle tree, leaves contain the computation results of the input data. The 
tree construction process begins from the leaves to the root, building each internal 
node using its children.

In a Merkle tree, each node has a � value. Assume that L1, . . . , Ln are leaves con-
structed based on computation outputs f (x1), . . . , f (xn) . In order to build a Merkle 
tree, the � value for leaf Li is defined as

Then, the participant builds a complete binary tree with these leaves. We use V to denote 
an internal node, and Vleft and Vright to denote V’s two children. The � value of each 
internal node is defined as

where “ ‖ ” represents concatenation of two strings, and hash is the one-way collision 
resistant hash function (e.g., SHA-1). Using Eq.  3, the hash value of the root node, 
marked as �(R) , can be computed in a bottom-up manner.

To facilitate our expression, we use � as an abstract representation of employing 
Eqs. 2 and 3 to compute the �(R) for inputs x1, ..., xn as follows:

In other words, �(x1, . . . , xn) returns the � value of a Merkle tree’s root node if the Mer-
kle tree’s leaves are results of applying the f function on x1, . . . , xn.

The verification process begins when the computations are over and the results are 
ready. Two roles participate in this process: prover, who is responsible for perform-
ing the assigned computations, and checker, who wants to ensure the integrity of the 
results. The process consists of four steps; Commit, Challenge, Prove, and Verify. Fig-
ureDefinition 3 represents an example of a Merkle tree built on arbitrary computation 
results f (x1), . . . , f (xn) , which we use during the explanation in order to better under-
standing the process. Those steps are described in the following:

Commit. Using Eqs.  2, and 3, the prover builds a Merkle tree on its computation 
results (i.e., f (x1), . . . , f (xn) ), obtains � value of the root node (i.e., the hash of the 
root node), and sends it to the checker. We refer to the sent value in this step as the 
commitment value. In Fig. 3, R is the root node of the Merkle tree. Therefore, �(R) is 
submitted as the commitment value.

Challenge. Having received the commitment value, the checker generates some 
samples to challenge the prover. To be clear, sample si is equal to f (xi) , which is 
resulted from applying the computation on randomly selected input data xi . Then, the 
checker sends the generated samples to the prover. In the example shown in Fig. 3, 

(2)�(Li) = f (xi), i ∈ [1, n]

(3)�(V ) = hash
(

�(Vleft) ��(Vright)
)

(4)�(x1, . . . , xn) = �(R)
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x10 is selected among the set of input data, and s10 = f (x10) is sent to the prover as the 
verification sample.

Prove. For each sample si , the prover finds the corresponding leaf Li and the nodes 
in its path to the root, extracts the complementary node of each, stores the � value of 
the extracted nodes in a sequence, and finally sends the sequence to the checker. This 
sequence of nodes is called proving path and is denoted as � . The nodes in a proving path 
are required to regenerate the hash value of the root node using the corresponding sam-
ple. To show the derivation, we extend Eq. 4 as follows.

where si is a sample, �i is the corresponding proving path, and �(R) is the commitment 
value.

In the example shown in Fig. 3, the prover receives f (x10) from the checker, finds the 
corresponding leaf L10 , retrieves its proving path �10 = ��(L9),�(B),�(D),�(E)� , and 
then, sends �10 to the checker. The proving path for each sample has log n nodes where n 
is the number of leaves in the Merkle tree.

Verify. For each sample si and its proving path �i , the checker regenerates the � value 
of the root node (i.e., �(R′) ) for each sample. The verification is passed successfully if 
and only if for each generated sample, the recalculated � value of the root node and the 
commitment value (generated in the commit step) are equal (i.e., �(R′) = �(R) ). If the 
equality is not respected, the checker knows that the computation on the selected input 
data has not been done correctly.

Related work
Several works have been done on the result integrity of general applications in the 
MapReduce model. We can categorize them based on the techniques they use as log-
based, hardware-based, watermark-based, and replication-based.

(5)�(�i, si) = �(x1, . . . , xn) = �(R)

R

A B

C D

E F

L1 L2 L9 L10 L16L15
. . . . . .

Φ(Li) = f(xi) ∀i ∈ [1, n]

Φ(A) = hash(Φ(L9) ‖ Φ(L10))

Φ(C) = hash(Φ(A) ‖ Φ(B))

Φ(E) = hash(Φ(C) ‖ Φ(D))

Φ(R) = hash(Φ(F ) ‖ Φ(E))

Fig. 3  An example of Merkle tree-based verification scheme
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Log-based solutions (e.g., [16, 17]) analyze logs generated by the system to build pro-
files for workers. Then, the profiles are compared against a normal one to detect delin-
quent workers. Yoon et al. [17] suggested that Hadoop framework logs, as well as system 
calls, can be collected for analysis purposes. Nonetheless, since system call logs are very 
rich information and not all of them are going to be used for the verification process, 
only specific details of these logs, such as access logs to the file system and mapping/
reducing task logs are considered. Despite the low overhead and less modification to the 
system, these solutions are vulnerable against mimicry attacks [18]. In this type of attack, 
attacker sends fake commands and generates unreal logs and reports them in order to 
impersonate its captured workers as honest ones.

Hardware-based solutions (e.g., [19–21]) require the installation of secure module at 
the infrastructure of the cloud. They use secure hardware chip Trusted Platform Mod-
ules (TPMs) installed on computational nodes, which can verify the integrity of their 
software stack ranking from the bios configuration at the booting procedure to the 
application that executes the mapping or reducing task. The system is initialized by reg-
istering each worker with a unique identifier on the master side, who is communicating 
with them during the job processing phase. However, trusted hardware-based solutions 
may affect the flexibility of big data computation, since the required modules need to be 
integrated with the system core.

Watermark-based solutions (e.g., [22, 23]) inject some data with predefined results, called 
watermarks, to the main input data and measure the workers’ honesty by comparing the 
predefined results with the outputs that workers produce on the watermarks. The main 
assumption for these solutions is that workers should not know which data is watermark or 
they can lure the mechanism by submitting correct results for watermark data while sub-
mitting faulty outputs for the rest. More injected watermarks leads to a more accurate fault 
detection, yet the computation overhead imposed by processing watermarks increases as 
well. In addition, Ding et al. [22] leverage EigenTrust [24], a reputation-based trust manage-
ment system (RTMS), to track the source of faults. Nevertheless, detecting faulty nodes is 
still accompanied with considerable amount of false positives. Lack of an efficient water-
mark generator is another unanswered yet important challenge in these methods.

Replication-based solutions (e.g., [25–30]) are among the most practical solutions for 
this purpose, since they do not need the MapReduce model to be altered fundamentally. 
In order to verify a task result, the task is replicated among multiple, randomly selected 
workers, and then, their results are compared together in order to detect inconsisten-
cies. We also call them voting-based solutions since workers’ results are like votes, and 
the correct result is considered as the one with the most number of votes. The major 
assumption in these solutions is that the majority of workers should be benign and 
always do their tasks honestly. SecureMR framework [25] is the first solution to address 
the result integrity issue in MapReduce model, which is based on task replications. Ding 
et al. [26] proposed an approach (named VAWS) using weighted undirected graphs for 
finding inconsistencies among workers’ submitted results. Bendahmane et al. [27] sug-
gest using an RTMS to keep the account of workers’ computational behavior history for 
further decision makings. Khan et al. [28] proposed Hatman as the method that lever-
ages an RTMS implementation based on EigenTrust. Producing correct results by hon-
est workers in replication-based result verification systems is not guaranteed, because 
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the failure reason is sometimes out of workers’ control, such as incorrect computations 
or buggy codes. Samuel et  al. [29] suggest inserting watermark-like quizzes (i.e., fake 
predefined tasks with the same structure as the normal ones) to workers in random 
time periods to calibrate their honesty rating in the system.

Despite the improvements, voting-based methods still are not entirely invulnerable 
against collusion attacks and cannot perform well enough in extreme faulty environ-
ments. Moreover, these methods waste lots of computation power and noticeably 
increase the time of performing the tasks. To remedy this problem, some approaches 
(e.g., [31, 32]) use trusted computational nodes, called verifiers, for recalculating the 
workers’ tasks. In order to avoid computational bottlenecks, verifiers do not verify all 
the tasks. Instead, some tasks are selected and assigned to them in a probabilistic man-
ner. In addition, the verification target can be subtasks’ results, which requires smaller 
input data for verifiers. That being said, compared to the number of other workers, 
verifiers are in the minority, since completely trusted entities are expensive to have.

A similar work to ours is Wang et  al.’s MtMR [33], which uses the Merkle tree-
based verification technique to increase the utilization of verifiers in the system. In 
MtMR, verifiers check mappers’ and reducer’s results by sending samples obtained 
from arbitrary input blocks, receiving the corresponding proving paths, and verifying 
the consistency of the proving paths and the commitment value. Although mappers’ 
results are verified in O(log n) in each round, reducers’ are verified in O(n) because 
of the heavy sample building process and communication overhead. This problem has 
greater effects in case of specific applications, where the reducers’ inputs are heavy, 
such as matrix multiplication. In our approach, we show that the overall time com-
plexity of the result verification process do not exceed O(log n) per verification sample.

Freivalds [34] proposed a novel approach to verify the matrix multiplication result in 1979. 
Utilizing randomization, his algorithm can verify a matrix product in O(kn2) with probabil-
ity of failure less than 2−k provided that the verification process is executed for k rounds. In 
2013, Thaler et al. [35] described an interactive proof protocol that can be specifically used 
for verifying the result of matrix multiplication. The time complexity of the prover and the 
checker in this protocol is O(n2) and O(n2 log n) , respectively. This shows no improvement 
compared to the Freivalds’ classic protocol; however, it can be implemented in practice and 
used as a primitive for computations containing multiple runs of matrix multiplications. In 
addition, in terms of complexity, using the methods proposed in verifiable computations for 
verifying the results in MapReduce framework is more complicated than the probabilistic 
algorithms specifically proposed for the MapReduce framework.

There are also several works such as [36–39] addressing the result integrity of 
matrix multiplication in public cloud using cryptographic methods. Since they 
do not assume any restricting rules on the cloud side, they can be applied on the 
MapReduce model as well. However, they assume that clients can iterate over all the 
elements in the input matrices, which has time complexity of O(n2).

Basic definitions and attack model
Before introducing the proposed approach, some concepts should be defined pre-
cisely and the considered attack model for our approach should be described.
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Basic definitions

For every two matrices Am×n and Bn×p and their multiplication result Cm×p , we intro-
duce the following terms.

Definition 1

(Result Element). The element cij is a result element if it is an element placed in the row i 
and column j of the multiplication result.

Definition 2
(Element Pair). The pair 〈aij , bjk〉 is called an element pair , where i ∈ [1,m] , j ∈ [1, n], and 
k ∈ [1, p].

Definition 3
(Intermediate Product). The multiplication result of the two elements in each element 
pair is called an intermediate product ckij where 〈aij , bjk〉 is the corresponding element pair.

Definition 4
(Sibling Intermediate Product). Sibling intermediate products Sij is the set of all interme-
diate products ckij ( k ∈ [1, n]) which are required for calculating result element cij.

Having introduced these fundamental definitions, we present a simple lemma, 
which is used later in this paper.

Lemma 1

The sum of all the members of sibling intermediate products Sij is equal to the result 
matrix element cij.

Proof
The members of Sij are c1ij , . . . , c

n
ij where n is the number of columns in the first matrix in 

the multiplication. By aggregating them together we have

which is the same equation as the summation operation in an inner product of two vec-
tors derived from the two matrices. �

For example, assume that we want to multiply two matrices A and B as

n
∑

k=1

ckij = cij
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to produce matrix C where

In Eq. 7, row �r A1  and column �c B2  are contributing in an inner product operation to pro-
duce result matrix element c12 . The pairs 〈a11, b12〉 and 〈a12, b22〉 are element pairs. Also, 
c112 = 5 and c212 = 14 are members of sibling intermediate products S12.

Attack and error model

Workers (i.e., mappers and reducers) in MapReduce can be classified into three different 
types based on their behavior:

Honest. They do their computation tasks correctly without any deviation from the 
predetermined way.

Semi-honest (Lazy) Cheater. In order to reduce the cost, these workers are inclined to 
commit cheat at their tasks whenever it is considered as a rational move, i.e., when it is 
cheaper than being honest. Since saving computational power is the main goal here, the 
cloud owner is responsible for managing the process. Hence, attempts to cover cheating 
behaviors should not result in blaming other workers.

Malicious. There are situations where a number of workers are compromised by 
attackers and therefore they become faulty nodes who deliberately make errors in the 
computations. Malicious workers not only attempt to cover their dishonest behavior 
traces at any cost, they can sabotage the system independently or in a team including 
some other same-type workers.

As we explain later, detecting malicious worker behavior imposes significant over-
head to the system. Therefore, the focus in our proposed approach is on detecting faulty 
behaviors performed by semi-honest workers since their tendency to maximize their 
cost-saving attitude is aligned to the approach needs.

Moreover, possible errors emerging in matrix multiplication computations can be 
related to at least one of the following reasons:

•	 Element pairs’ multiplication. Intermediate elements are not correctly computed, or 
there is at least one element pair that does not contribute in calculating intermediate 
elements.

•	 Intermediate products’ summation. The summation of intermediate products is not 
correctly computed, or there is a sibling intermediate product that is not contributed 
in calculating the final result.

(6)
[

a11 a12
a21 a22

]

×

[

b11 b12
b21 b22

]

=

[

c11 c12
c21 c22

]

A =

[

1 2
3 4

]

B =

[

5 6
7 8

]

(7)

�r A1 · �c B2 = (a11 × b12)+ (a12 × b22)

= (1× 6)+ (2× 8)

= c112 + c212 = c12

= 5+ 14 = 19
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The integrity of matrix multiplication result is assured if there exist no instances of these 
errors in the computations.

Methods and proposed approach
In this section, we discuss our proposed approach, its architecture model, and process 
steps in more details.

Architecture model

Our approach uses a hybrid cloud model structure, which is shown in Fig. 4. The main 
computations and verification process are performed inside the public and private cloud, 
respectively. Workers and DFS (Distributed File System) are inside the public cloud while 
the master and verifiers are inside the private cloud. The cloud domains are connected to 
each other using a public communication infrastructure like Internet; however, for the 
sake of privacy, the data transmission can be secured using encryption over data. Our 
approach is not depended on encryption technique which is used for maintaining pri-
vacy Since we focus on integrity of computations in this paper, no further discussion will 
be placed on the required features of the encryption technique.

Assumptions

Being an isolated system, the private cloud is easy to be secured and become a trusted 
domain. The public cloud, however, is not trusted and so do its entities. Since there exist 
methods to guarantee DFS integrity (e.g., [40]), we can make an exception that DFS is 
a trusted entity. Therefore, that leaves the workers in the public cloud as the untrusted 
entities in the system.

Despite the fact that there are several verifiers to perform the verification in the pri-
vate cloud, we assume verifiers as a single entity to avoid considering the inner relations 
between them.

The main computations in matrix multiplication using the MapReduce model are per-
formed on element pairs and sibling intermediate products. No matter which imple-
mentation of matrix multiplication (explained in "Matrix multiplication in MapReduce" 
section) is used, element pairs are not going to change. For example, in Eq. 6, 〈a11, b11〉 is 
always a valid element pair without considering which multiplication technique is going 
to be applied. Therefore, our approach can be applied on any implementation of matrix 

Fig. 4  The architecture model of the proposed approach
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multiplication in the MapReduce model. Nevertheless, for the sake of simplicity, we used 
the column-by-row technique in our examples in this paper.

Moreover, we assume that the whole process is a single MapReduce job (e.g., prepa-
ration process is performed on input matrices). The fact that matrix multiplication is 
performed in single-job or double-job manner only affects the time in which the whole 
computation is done. That means it does not affect the process flow in our approach nor 
the verification results.

The result verification process

As we mentioned in "Related Work" section, each proposed solution in the literature has 
its own advantages and disadvantages; however, in our opinion, replication-based solu-
tions are more interesting than the others based on two reasons: Firstly, they do not need 
any modification to be made in the infrastructure layer. Secondly, desirable fault detec-
tion accuracy is achievable by adjusting proper amount of computation power, which the 
granularity increases using the Merkle-tree based verification method. In our approach, 
which utilizes the Merkle tree verification method, we want to reduce the overhead while 
keeping the fault detection accuracy at the same level as the state-of-the-art solution’s.

The verification process is carried out between the verifier, as the checker, and reducers, 
as the provers, to ensure the integrity of both map and reduce outputs. The process has 
the following main phases: Preparation, Initialization, Sampling, Proof Construction, and 
Proof Verification. In what follows, we elaborate the procedure in each phase, separately.

Initialization

The initialization phase runs concurrently with the reduce phase. During this phase, 
each reducer builds a Merkle tree Mij per each result matrix element cij . We denote the 
set of result matrix elements computed in Reducer r as Er , which we will use later. The 
leaves of each Merkle tree Mij are the sibling intermediate products Sij . In the following, 
we call those Merkle trees as computation trees.

During the reduce phase, reducers sum intermediate products in each sibling group 
together to produce the final matrix elements. By using the Merkle-tree based verifica-
tion method in the way that is introduced in [15], the hash value of root node is used 
to verify that sibling intermediate products, are only considered in the tree construc-
tion process. In other words, there is no guarantee that all the intermediate products are 
actually used to produce the result elements. As the result, semi-honest reducers can 
ignore a proportion of the input data while applying the reduce function. A naive solu-
tion would be scheduling a deep probe through replicating a proportion of reduce tasks, 
like what MtMR [33] already does. Nonetheless, since the verifiers are the minority, the 
solution does not scale with the size of input data, thereby causing bottlenecks in the 
system in case of processing over big data.

To rectify the problem, we need the ability to verify that for each arbitrary input data, 
required computations are truly performed. Two types of computations are performed in 
matrix multiplication; multiplying elements in each pair, and summing sibling intermedi-
ate products. The integrity of the former can be verified with the current configuration of 
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Merkle tree (i.e., by checking whether a corresponding leaf exists in the tree). However, 
in order to verify the integrity of the latter, we need to modify the default configuration.

In matrix multiplication, each intermediate product ckij , where k ∈ [1, n] , participates 
in a summation operation with other sibling intermediate products to produce cij . We 
change how the summation is performed: if we assume sibling intermediate products 
Sij are placed in the leaves of a complete binary tree and every inner node contains the 
sum of its children’s value, then the sum of all values in the leaves is placed in the root 
node. To verify that whether an intermediate product has contributed in the computa-
tions, we should retrieve nodes in the corresponding proving path and perform log(n) 
summations until we reach the root node. We call the path of performing summation 
operations for each leaf as contribution trace. Therefore, we can say that by making the 
required modifications, the whole process is verifiable for each value in the leaves in 
time complexity of log(n).

We introduce assignment function � to take the results of summation operations into 
account. Assume that L1ij , . . . , L

n
ij are the leaves of Merkle tree Mij . Lkij , where k ∈ [1, n] , is 

corresponded to ckij and its � equals to cij . In other words, we have:

Subsequently, for each inner node V, its � value is calculated as

where Vleft and Vright are V’s left and right children, respectively.
Using � values, verifier have access to the contribution trace of selected samples. That 

being said, simply using � value does not give the intended assurance, since cheater 
workers can alter contribution traces whenever it is necessary (e.g., when the committed 
cheats are going to be revealed).

The solution here is to ask each reducer to take its Merkle tree nodes’ � values into 
account while producing its commitment value. As a result, if any reducer cheats in its 
sum operations, it becomes undeniable (we discuss it in Theorem 2), since the commit-
ment value is calculated using � values as well. In order to make the dependency, we 
alter function � and denote the modified version as �′ . For each leaf node Lkij in Merkle 
tree Mij , the �′ value is defined as

Subsequently, the �′ value of each inner node V is defined as

As a result, the hash value of root node in each computation tree is depended on (1) the 
multiplication result of each element pair, and (2) the contribution trace of each inter-
mediate product.

By the end of reduce phase, each reducer r has constructed |Er | computation trees 
and have to submit the hash values of their root nodes as the commitment. To 
avoid extra overhead, it is desirable to merge computation trees in each reducer and 

(8)�(Lkij) = ckij = aik × bkj , k ∈ [1, n]

(9)�(V ) = �(Vleft)+�(Vright)

(10)�′(Lkij) = hash
(

�(Lkij) � i � j � k
)

, k ∈ [1, n]

(11)�′(V ) = hash
(

�′(Vleft) ��(Vleft) ��
′(Vright) ��(Vright) ��(V )

)
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produce a single commitment value. Therefore, each reducer builds another Merkle 
tree, called as the joiner tree, on top of its computation trees. From now on, we call 
the Merkle tree constructed in this way as a joined tree, which is combination of com-
putation trees and a joiner tree. By ending the initialization phase, each reducer r has 
calculated its commitment value �′(Rr) . Figure 5 depicts the schema of the reducer r’s 
joined tree with Rx1y1 , . . .Rxnyn as its computation trees, where n = |Er | and (xi, yj) are 
row and column number of the result matrix.

During the construction of each node V in a joined tree, we have �(V ) = 0 pro-
vided that V is an inner node in the joiner tree. Each node in the proving path is also 
labeled to guide the verifier whether the node belongs to the joiner tree or not.

For instance, the data flow of a simple matrix multiplication job in MapReduce is 
depicted in Fig. 6a where the matrices A and B (provided in Eq. 6) are its input. Mapper 
1 has respectively the first column and the first row of matrices A and B while mapper 2 
has the second column and the second row of these matrices. As we mentioned earlier, 
for the sake of simplicity, we apply the column-to-row multiplication technique and sin-
gle-job MapReduce computation mode in the example. Also, Fig. 6b shows the Reducer 
1’s joined tree where M1

11 and M1
12 are its computation trees and R1 is the root node.

At the end of initialization phase, each reducer r sends value �(Rr) to the verifier. 
As it was explained in the initialization phase, the value of �(Rr) is depended on the 
results of all the multiplication and summation operations contributed in computing 
the elements in Er.

Sampling

In the sampling phase, the verifier generates and sends some samples to the reducers to 
challenge them. Sampling process consists of two parts: selecting input blocks, and gen-
erating the samples.

...

Rr

Joiner tree
Com

putation trees

x1y1Rx1y1R x2y2Rx2y2R x3y3Rx3y3R xnynRxnynR

Fig. 5  Schema of a joined tree
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The verifier randomly selects some mappers and collects their input blocks. In case of 
existing multiple blocks per each mapper, the verifier again can randomly pick some of 
the blocks in each mapper. Having picked input blocks, the verifier performs the map 
computations and generates some intermediate products. Since the size of each block 
is so small compared to the size of input data (for example, in Hadoop MapReduce, 
block sizes are 64 MB by default), the computation overhead caused by replicating each 
map task is negligible. Each sample skij consists of intermediate product ckij and the cor-
responding auxiliary information is added to guide the reducer to find the related leaf 
in its joined tree. These information consists of the location of the element in the input 
matrices. The verifier sends each sample skij to the reducer responsible for producing cij , 
whom can be known by examining the shuffler function.

For instance, in the example depicted in Fig. 6, the verifier randomly selects mapper 1, 
fetches its input block (i.e., the first row of the matrix B and the first column of A), runs 
the map function on the block data to reach the corresponding intermediate products (i.e., 
1 ∗ 5 , 3 ∗ 5 , 1 ∗ 6 , and 3 ∗ 6 ), and randomly selects samples s111 = 5 , s121 = 15 , and s221 = 18 
among the calculated intermediate products. Finally, it sends the first two samples to 
reducer 1 and the third one to reducer 2. It is worth mentioning that if selected mappers 
have multiple input blocks, the verifier can randomly pick arbitrary number of them.

A
A

B

B

b The joined tree in Reducer 1

Mapper 1 Reducer 1

Mapper 2 Reducer 2

1 * 5

2nd Row of 
the result

1st Row of 
the result

c11
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c21

c22

Input blocks

1 * 6

3 * 5 3 * 61

3

2 * 7 2 * 8

4 * 7 4 * 8

Map outputs Shuffle Reduce Inputs Results

3 * 5 3 * 6

4 * 7 4 * 8

Intermediate products Sibling intermediate 
products

1 * 5 1 * 6

2 * 7 2 * 8

65

2
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k 
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a The data flow of the example

Fig. 6  An example of matrix multiplication in MapReduce [2]
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Proof construction

For each sample sij , reducers collect and send evidence to the verifier in order to con-
vince it of the two following claims: 

(1)	 Mappers have correctly calculated the intermediate product related to the sample, 
and

(2)	 All the sibling intermediate products are contributed correctly in the summation 
operation.

In other words, by verifying reducers’ computations, the verifier can ensure the map-
pers’ computations, too.

For each received sample skij , the related reducer searches ckij among the leaves of its 
computation trees and finds leaf Lkij using the auxiliary information accompanied the 
sample. Then, it finds the path from the leaf to the root node Rr , and builds the proving 
path �kij . Then, for each node V in the proving path, it replaces (�′(V ),�(V )) with �(V ) . 
Finally, the reducer replies the verifier with the new proving path.

In the example shown in Fig. 6b, Reducer 1 receives sample s111 = 5 and finds the cor-
responding leaf L111 (the half-green node) in its Merkle tree M1

11 . Then, it retrieves L111 ’s 
proving path which is

and sends it to the verifier.

Proof verification

For each sample, the verifier ought to rebuild the � value of the root node in the related 
joined tree. For each sample skij , the corresponding �kij received from the reducer is veri-
fied using Algorithm  1. In the algorithm, we respectively use variables Phi and Theta 
for storing the values � and � during the node reconstruction procedure, as well as 
PTheta for computing the � value for the parent node using its child nodes. Lines 1–2 
initialize the required variables. Lines 3–15 loop through the nodes in the proving path 
to reconstruct the root node. Lines 4–8 calculate the � values of the nodes in the root 
path according to the label that the corresponding reducer attached to the nodes in the 
proving path. Lines 9–13 calculates the � values of the nodes placed in the left or right 
subtree (depending on which side the complementary nodes are placed). Line 14 stores 
the � value of the parent node in the main variable, Theta. Finally, lines 16–20 checks 
whether the constructed root node is eligible or not.

If the verification algorithm on �kij finishes successfully, two things are guaranteed 
about the intermediate product ckij : 

1.	 It has been existed in the reducer’s input data. Since the verifier knows which map-
per sent ckij to the reducer, it can also know that the mapper has correctly produced ckij 
using element pair 〈aij , bjk〉.

2.	 It has correctly contributed in the summation operation performed in the targeted 
reducer.

�
1
11 = � (�′(L211),�(L211)), (�

′(R12),�(R12)) �
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For instance, let’s resume the example trace in Fig.  6. Having received 
�
1
11 = � (�′(L211),�(L211)), (�

′(R12),�(R12)) � from Reducer 1, the verifier starts com-
puting the nodes using Algorithm 1. First, using �′(L211) and �(L211) , �

′(R11) and �(R11) 
are computed. Finally, �′(R1) and �(R1) are computed using the generated values and 
�′(R12) and �(R12) . If �′(R1) is equal to the commitment value from the corresponding 
reducer and �(R1) is the same as c11 , the verifier ensures the correct contribution of c111 
in computing the result element c11.

Evaluation and analysis
In this section, we provide different types of analysis for our proposed approach. First, 
we prove the security of the approach. Then, we formally look into the detection ratio 
analysis, as well as overhead it imposes to the system. For further clarification, we define 
“cheating in a node” as cheating in the computation that its result, in the form of � value, 
is placed inside the node. 

Security analysis

In order to prove that our approach is secure, we provide the security proof for each 
stage in MapReduce, i.e., map and reduce.
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Theorem 1

(Security of element pairs multiplication - map phase). Assume that there exists mapper 
M who announces the faulty output set O′

M instead of expected set OM as its computation 
results. If the verifier chooses sample S ∈ (OM − O′

M) , the fault is detected.

Proof
According to the assumptions, consider that the verifier picks sample s ∈ (OM − O′

M) . 
Moreover, assume that reducer r is associated with the sample through the shuffler func-
tion. The verifier, sends s to the reducer and receives �s as the related proof path. In order 
to ensure the sample’s contribution in computations, the verifier needs to check

where � is defined in Eq. 5 and �′(Rr) is the hash value of the root node in the joined 
tree of reducer r (i.e., its commitment value) which its generation process consists of 
one-way collision resistant hash computations. Since reducer r is not aware of s before 
generating the commitment value �′(Rr) , s is not contributed in its generation. The only 
way for covering up the fault is to generate proof path �′s that

where Ir and I ′r are the expected and faulty input set for reducer r, respectively.

Because of H characteristics, generating the same hash value as �′(Rr) , with different set 
of inputs such that �(Ir) = �(I ′r) is computationally infeasible. In addition, since map 
tasks do not overlap with each other, no one except mapper m would produce mapping 
result set equal to Om − O′

m . Therefore, the cheat is detected upon the selection of the 
proper sample s.�  �

According to Theorem 1, since submitting the commitment occurs before the reveal-
ing of the samples, reducers cannot cover up the possible faults made by the mappers. 
Likewise, we can use the same proof when a portion of data is missing instead of being 
corrupted. Therefore, the wisest decision for mappers is to correctly compute the inter-
mediate products.

Theorem 2

(Security of intermediate product summation - reduce phase). Assume that semi-honest 
reducer r receives the correct input set Ir for its reduce task; however, instead of expected 
output set Or , it announces the faulty result O′

r , which is the result of cheating on compu-
tations of input portion ir ⊂ Ir . If the verifier chooses sample s ∈ ir , the cheat is detected.

�(s, �s)
?
=�′(Rr)

�(s, �′s) = �(I ′r) = �(Ir) = �′(Rr)
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Proof
Consider that the verifier picks sample s ∈ ir , sends it to the reducer r, and receives the 
proving path �i , which then is used to check

If the input portion ir is not correctly contributed in the computations, there is at least 
one inner node V in the reducer r’s joined tree that

Since the miscalculation is originated from input set ir and we have s ∈ ir , then Eq. 12’s 
condition would be applied to at least one of the constructed nodes in the verifier. There-
fore, for the same reason mentioned in Theorem 1, the commitment value and the hash 
value of the constructed root node would not be equal.

It is worth mentioning that there is no computationally feasible way for the reducer to 
hide the cheats it made. The reason is the construction method we use for the inner 
nodes (Eq. 11). The existence of � values of children nodes in constructing each node 
guarantees that reducer is aware of those values. Therefore, it cannot change them in 
the future, because it makes the submitted commitment value invalid, and thus, reveals 
the cheat with an appropriate sample. The only way to cover up the cheats is to make an 
equal �′ value with different inputs for the faulty node. As this operation means revers-
ing a one-way hash function, it is assumed to be computationally infeasible.�  �

Now, we can define the best place to cheat by semi-honest reducers.

Lemma 2

For a strategic semi-honest reducer, the best places to cheat are in the nodes at level H − 1 
of the computation trees, where H is the height of the tree.

Proof
If a cheating is committed at a node placed closer to the root, the node will be ancestor of 
more leaves; that means the cheating can be exposed with more samples. Assume that in 
Fig. 7, marked nodes A and E are the two candidate places for a reducer to cheat. Cheat-
ing in node A is revealed using an arbitrary sample among eight nodes (i.e., F to M). How-
ever, cheating in node E is revealed only by using N or O as the sample. �

Detection ratio analysis

To reach the overall detection probability equation, first, we need to define some nota-
tions described in Table 1. Considering Lemma 2, the worst case scenario in calculating 
detection ratio is when reducers act as semi-honest strategists.

�(s, �i)
?
=�′(Rr)

(12)�(V )  = �(Vleft)+�(Vright)
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Theorem 3

(Cheat detection probability). In a MapReduce job with N input records for reducers 
(mappers’ outputs) and assuming reducers as semi-honest strategists, cheat detection 
probability D is equal to

and the average undetected error number E is

Proof
We name the computation tree nodes at level H − 1 , as parent nodes, in their computa-
tion trees. Meanwhile, each parent node has two leaves, which we call as its child nodes. 
We look to compute the probability that no cheat is detected during the verification phase, 
denoted as D′ , whether it happened or not. It happens if the following two conditions hold 
for each parent node: 

(a)	 The reducer cheats in a parent node, yet its children are not selected as samples. In 
this case, the probability is 

(b)	 The reducer does not cheat in a parent node. However, its child nodes may be faulty 
since those are mappers’ output and mappers can cheat in their outputs as well. 
Therefore, the probability is equal to 

(13)D = 1−
(

C(1− S)2 + (1− C)(1− SC)2
)Np

(14)
E =NpC(1− S)

(

C(1− S)2 + (1− C)(1− SC)2
)Np−1

.
(

(1− S)(1+ 2C)+ 2(1− SC)(1− C)(1− SC)2
)

p = C(1− S)2

Fig. 7  Example of different places to cheat in a reduce task
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Where P(j, 2) is the number of 2-permutations of j objects. Reminding that Np = N/2 
nodes are placed in H − 1 level, we have:

Using binomial theorem, we have:

Therefore, cheat detection probability D is

Now, we want to find the average number of errors (mathematic expectation) that is not 
detected in the verification process. To do so, we examine cases that were assumed in 
the beginning.

If case a) happens, it means that the parent node is faulty. Also, its children can be faulty 
as well since they are not samples, and therefore, the cheats will not be detected. In this 
case, The expectation for the number of faulty children is 2C. Therefore, if case a) hap-
pens, (1+ 2C)i cheats are not detected. Moreover, each time case b) happens, in average, 

q = (1− C)

2
∑

j=0

P(j, 2)

= (1− C)

2
∑

j=0

(

2
j

)

(C(1− S))j(1− C)2−j

= (1− C)(1− S.C)2

D′ =

Np
∑

i=0

P(i,Np)

=

Np
∑

i=0

(

Np

i

)

piqNp−i

=

Np
∑

i=0

(

Np

i

)

(

C(1− S)2
)i(

(1− C)(1− S.C)2
)Np−i

D′ =
(

C(1− S)2 + (1− C)(1− S.C)2
)Np

D = 1− D′

= 1−
(

C(1− S)2 + (1− C)(1− S.C)2
)Np

Table 1  Notations used in the evaluation and analysis discussions

Notation Description

H The height of computation trees in reducers

N The total number of input records for all reduce jobs.

Np The total number of nodes in level H − 1 of each joined tree (=N/2).

S The ratio of randomly selecting reduce input records

C The cheating probability during the map and reduce phase

Ts Total number of samples used for the verification process



Page 22 of 30Bagheri et al. J Big Data            (2020) 7:86 

mappers can inject 2C(1− S)(1− S.C) (mathematic expectation of probability q) faulty 
computations into the reducer’s inputs without being noticed by the verifier. Therefore, If 
case a) and b) happens i and Np − i times, respectively, 3i + (Np − i)2C(1− S)(1− S.C) 
faulty nodes can be existed in a computation tree without being detected. Hence, aver-
age number of undetected errors, denoted as E, can be computed as:

All the multipliers except i can come out of the summation. Therefore, the equation is 
simplified to (we use p and q from cases a and b to save space):

On the other hand, we have:

Thus, after simplifications and factoring operations, we end up with:

� �

Figure 8 depicts D and E in case of different cheat rate values using single values for 
Np and S. In case of detection rate, our approach and MtMR [33] are the same even 
though MtMR need to use double number of samples to achieve the same detection rate 
(pre-reduce and reduce phase). However, the results show that the average number of 
undetected errors in our approach is less than half of the MtMR’s. Since pre-reduce and 
reduce phases in MtMR are two distinct phases, the average number of errors in each 
phase are aggregated together to be comparable with our approach.

Complexity analysis

In this section, the proposed approach overhead is analyzed in terms of time and space 
complexity. The results of the analysis are listed in Table 2. The notations used in this 
table are derived from Table 1.

In the initialization phase, reducers built the tree structures on N input records (i.e., 
intermediate products). Therefore, 2N nodes are built in total, which makes the space 

E =

Np
∑

i=0

(

i(1+ 2C)+
(

Np − i
)

2C(1− S)(1− S.C)
)

(

Np

i

)

.

(

C(1− S)2
)i(

(1− C)(1− S.C)2
)Np−i

E =(1+ 2C − 2C(1− S)(1− S.C))

Np
∑

i=0

i

(

Np

i

)

piqNp−i

+ Np2C(1− S)(1− S.C)

Np
∑

i=0

(

Np

i

)

piqNp−i

Np
∑

i=0

i

(

Np

i

)

piqNp−i = Npp(p+ q)Np−1

E =NpC(1− S)
(

C(1− S)2 + (1− C)(1− S.C)2
)Np−1

.
(

(1− S)(1+ 2C)+ 2(1− S.C)(1− C)(1− S.C)2
)



Page 23 of 30Bagheri et al. J Big Data            (2020) 7:86 	

complexity for this phase equal to O(N). Moreover, each reducer sends its commit-
ment value to the verifier which results in the space complexity of O(1). During the tree 
construction, �′ and � values are calculated for each node. Thus, 4N calculations are 
required, which results in the time complexity of O(N).

In the sampling phase, the verifier prepares Ts input records and sends them to the 
reducers. Therefore, the time and space complexities for the calculations and transmis-
sion are O(Ts).

In the proof construction phase, the reducers generate proving paths for the given 
samples. Each generation process needs looping over logN  nodes in the corresponding 
tree. Totally, the time complexity of computing proving paths is O(Ts logN ) . The space 
complexity of the transmission is also O(Ts logN ).

Finally, in the proof verification phase, Ts proving paths are used to partially verify the 
computations. Each proving path needs 2 logN  calculations (for computing � and �′ 
values for each node) to produce the expected commitment value. Therefore, the time 
complexity is O(Ts logN ).

Results and discussion

Since we were curious to measure the expected performance improvements, we imple-
mented our approach on a custom MapReduce system using Python as the main pro-
gramming language. Experiments are conducted on Intel Core i7-10510U and 16 
GB DDR3 SDRAM. To gain the highest computation power during experiments, we 
enforced the serial task processing, meaning that only one task is get processed at any 
moment. For running the MapReduce jobs in the system, we deployed 25 mappers, 10 
reducers, and a verifier. Input matrices are generated randomly for each experiment. 
Moreover, we executed each test scenario 20 times to increase the accuracy.

We evaluated our approach in three parts: Setup, where the required structures are 
built in reducers’ side, Proof Construction, where the reducers generate the proofs 
required for given verification samples, and Proof Verification, where the generated 
proofs are verified. In each phase, we compare our results with the ones reported for the 
state-of-the-art technique for this purpose, i.e. MtMR [33]. In MtMR, the verification 
process is performed in two separate phases (e.g., pre-reduce and reduce). In order to 
reach a fair comparison, we represent the related performance results in MtMR as the 
aggregation.

The verification process for each sample is independent of the others. In other words, 
variation in the sampling ratio has a linear effect on the result. Therefore, we fixed the 
sampling ratio to 1% of intermediate products in all tests. Also, we realized that the most 
important parameter is the size of input matrices. Thus, we used matrices in the range 
of 10x10 to 300x300 as the input. Finally, since we are measuring the worst case perfor-
mance, the cheating probability is not considered in workers.

Figure 9 shows the results in setup phase; by growing the input size, the required setup 
time and storage space grow as well. The setup time for our approach and MtMR is 
roughly the same; however, as the size of the inputs grows, the required storage space 
in our approach becomes slightly bigger than MtMR. That makes sense, since we record 
extra information in each Merkle tree node.
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Fig. 8  Comparison of our approach with MtMR [33] in terms of cheat detection probability and average 
number of undetected errors

Table 2  Time and space complexity analysis for the proposed approach

Stage Storage Public cloud 
computations

Private cloud 
computations

Data transmissions

Initialization O(N) O(N) – O(1)

Sampling O(Ts) – O(Ts) O(Ts)

Proof construction – O(Ts logN) – O(Ts logN)

Proof verification – – O(Ts logN) –
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For the proof construction phase, we measured the time and space that a reducer 
needs to construct the proof for given samples. The results are shown in Fig. 10. Here 
we can see tangible differences between the two approaches. In terms of proof construc-
tion time, our approach is much faster than MtMR since we provide only logN node 
information per sample, where N is the number of reduce intermediate products for 
each reducer; however, MtMR needs to prepare the full input records (i.e., N) per each 
sample. For the same reason, the size of the proof increases with the number of given 
samples.

The evaluation results for the proof verification phase, where we measured the 
required time to verify the proofs received from the reducers, are represented in Fig. 11. 
In our approach, the verifier only needs to do logN  hashes to rebuild the targeted 
reducer’s commitment value. That being said, in MtMR, the verifier needs to do an extra 
reduce task. Hence, compared to MtMR, we can check many more samples in the same 
period of time.

Conclusion
In this paper, we proposed an approach for efficient result verification in systems where 
parallel processing techniques, such as MapReduce, are utilized. There exists several 
solutions for this purpose that can be divided into four categories: log-based, watermark-
based, hardware-based, and replication-based. Each solution has its own merits and 
demerits; log-based methods are vulnerable against mimicry attacks, hardware-based 
methods impose fundamental modification to the system, watermark-based methods 
suffer from false-positive detection and lack of efficient generator, and replication-based 
methods waste lots of computation power. Also, verification-based methods, which is 
grouped in the previous category, benefit from trusted nodes, which are expensive to 
have.

Utilizing Merkle tree structure, we aimed to mitigate verification-based disad-
vantages by efficiently using verifier entities. To better illustrate our work, we chose 
matrix multiplication, since it is one of the most popular applications in the MapRe-
duce and its computations fits nicely into the model. The novelty of our work is 
derived from the fact that fine-grained computation results are contributed to pro-
duce a commitment value. In our approach, each reducer constructs a Merkle tree 
using map phase output data, and submits the hash value of the root node to the veri-
fier as the commitment value. In the tree construction phase, we insert extra informa-
tion in node, which helps to make the commitment value more powerful against the 
attempts to deceive the verification mechanism.

To reveal the cheating behavior, a proportion of input data is selected as the sam-
ples and used in the verification process. During the process, each sample is sent to 
the corresponding reducer to generate proving paths. per each sample and its prov-
ing path, the verifier rebuild the hash value of the root node and compare it with the 
commitment value in order to find probable inconsistencies. More cheating behavior 
performed by the workers, higher probability of detecting the errors.

Although our approach work for both types of malicious and semi-honest workers, 
we do not recommend using it for detecting the former type of workers, because of 
the overhead it imposes to the system (i.e., high sampling ratio). In fact, malicious 
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workers do not have cost-effectiveness motivations. Therefore, they do not risk 
increasing the cheating probability while they can sabotage the system with a mini-
mum number of miscalculations. Moreover, our approach can detect faulty results 
in two types of computation in matrix multiplication: multiplying element pairs, and 
summing intermediate products.

Evaluation results show significant improvements over the state-of-the-art tech-
nique. For example, in case of multiplying two 300x300 sized matrices, we achieved 
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86% reduction in the average generated proof size, 90% reduction in the overall proof 
construction time, and 98% reduction in the verification time.

it is worth mentioning that not only does the proposed approach suit the matrix 
multiplication application well, but also it is compatible with the applications that 
their computations on the inputs can be modeled using a Merkle tree.
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