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Introduction
Security has been an essential factor in this cyber age. It is because the internet connec-
tion, which initially may be designed without much worrying about bad users, has been 
suffering from various types of attacks [1, 2]. Among the security properties that should 
be protected, confidentiality is often the primary target. Once these confidential data 
have been compromised, the attacker may disclose them, breaching the users privacy 
[2–4]. Nevertheless, it does not mean that other properties like integrity, availability, or 
non-repudiation are safe from disruption. It is even possible that an attack is launched 
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to compromise some properties at once, such as in [5], where several security properties 
are illegally taken over. Moreover, advanced technology has made limited devices more 
popular than ever [6], which may attract attackers to access it [1].

In many cases, a system comprising big data has been targeted for attack, which may 
devastate their availability and integrity [2, 5, 7]. Various methods have been introduced 
to protect those security properties, specifically the confidentiality. For example, cryp-
tography and steganography, which is also called data hiding, are widely implemented. In 
this paper, the terms steganography and data hiding are used interchangeably. Although 
the purpose of cryptography and steganography are the same, those two schemes have 
different characteristics. In the application level, they can be implemented in a system, 
such as in [8–13]. However, this combination affects its performance [14]. On its pro-
gress, it is also possible to use data hiding for forensics [15] or secret sharing [16]. In 
general, the concept of data or information hiding can be depicted in Fig. 1, where the 
secret (payload) is hidden in a cover (carrier) to produce a stego file.

The types of cover vary. It can be an image, video, or audio, where the last is less popu-
lar than those two other types [17]. Recently, the text has also been investigated [18] 
to complement the previous media. In fact, audio has unique characteristics to explore 
further. The algorithms being applied can be extensions and variations of either image- 
or video-based methods, such as Echo Data Hiding (EDH) [19] and Histogram Shifting 
(HS) [20, 21] which is then extended in [22] by applying a statistical histogram. Other 
examples are Prediction Error Expansion (PEE) [23], Noncausal Prediction (NP) [24], 
and Difference Expansion (DE) along with its variations, such as Reduced Difference 

Fig. 1  The overall concept of audio-based data hiding
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Expansion (RDE) [25, 26]. An extended method has been developed by implementing 
machine learning, which is claimed to be suitable for smart devices [27].

Some recent algorithms have been introduced to get effective results. For example, 
Jung and Yoo [28, 29] propose the use of an interpolation algorithm for the embedding 
space. Next, Ahmad and Fiqar [30] explore the quality of the stego audio, which is then 
further refined in [31]. Previously, Andra et al. [32] focused on the protection of medical 
data, also by using audio, while Bobeica et al. [33] extended the concept of PEE.

Nevertheless, those existing methods still have challenging problems: the capacity of 
the secret, the quality of the stego, and the reversibility of both the secret and the cover. 
Capacity refers to the size of the data or the number of bits that can be accommodated 
by the cover. Data hiding methods may have different capacities when they are imple-
mented to the same cover. Quality refers to the similarity level between the cover and 
the stego data. Like the capacity factor, the higher the quality, the better the method. 
As predicted, however, those two factors are typically inversely proportional. In this 
research, we work on these issues by designing an extended embedding and smoothing 
approaches in the audio environment. Here, an audio signal is first sampled and normal-
ized before being embedded by the segmented secret. Next, the stego is smoothed to 
make it as similar to the cover as possible.

The remaining parts of the paper are organized as follows. In “Audio-based data hid-
ing techniques” section, we present the earlier research on data hiding techniques. “The 
design of reversible data hiding” section describes how the proposed reversible data 
hiding method works. The experimental results and the corresponding analysis are pro-
vided in “Experimental results” section. Moreover, this proposed method is compared 
with related methods to evaluate its performance. Next, the discussion is presented in 
“Discussion” section. Lastly, the conclusion of this research is drawn in “Conclusions” 
section.

Audio‑based data hiding techniques
As previously described, audio is not as popular as other media for carrying the secret 
[17]. Nevertheless, it has unique characteristics, which have the potential to be explored. 
Some state-of-the-art audio-based research can be described as below.

Depending on its specific purpose, data hiding is designed by considering the basic 
requirements of security, including its reversibility. In case only the secret can be 
extracted from the stego, the method is called irreversible; on the other hand, if both the 
secret and the cover can be reconstructed the same as their initial data, then the method 
is reversible data hiding (RDH). In most cases, RDH is crucial for fulfilling confidential-
ity and authentication requirements [34].

The size of the secret can be embedded in a cover is one of the challenges faced by 
RDH and also represents the possible types of data to protect. Therefore, most RDH 
methods take it as an essential consideration. To meet this requirement, [28, 29] imple-
ment Neighbor Mean Interpolation (NMI) to expand the space. On the other hand, 
[29] takes various numbers of the bit to hide, while [28] sets it as a fixed number. Next, 
this feature is adopted in [30] and [31], where respectively Newton’s Divided Difference 
Interpolation (NDDI) and linear interpolation methods are implemented.
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The research in [28, 29] pays more attention to the capacity of the secret. Therefore, 
the method does not do much to improve quality. Nevertheless, its stego quality is rela-
tively good enough that ordinary users may not be able to distinguish noise from the 
original file. Andra et al. [32] refine this possible quality problem by modifying the intel-
ligent partitioning method before the embedding stage. In this case, a 2D array of data 
is developed based on the sampled signal. It is done by arranging the audio samples in 
a particular order. This approach is different from the others, where the audio signal is 
treated as 1D. For the embedding, [32] employs improved RDE. Their experiment is per-
formed by embedding several sizes of secret medical data into various audio covers. It is 
shown that their scheme works well.

Similar to [32], the research in [33] does not implement interpolation. Instead, it 
reserves some audio samples to carry the specific data, where the cross and dot areas are 
defined at the beginning. It needs to find appropriate threshold values, which are used 
for the embedding. This stage, however, may not be simple since those values depend on 
some other factors. Furthermore, as [32], the number of bits to conceal in each sample is 
static. The experiment shows that their stego quality is relatively stable.

Considering the stego quality, Ahmad and Fiqar [30] introduce the smoothing stage to 
reduce the difference between the stego and the cover. It is claimed that this scheme is 
able to work on it, which is proven in their experimental results. Nevertheless, its per-
formance relies on the genre of the audio cover. It can also be an advantage, considering 
that a user may have a unique preference. In the next research, the noise in the stego 
audio is decreased by applying multiple-smoothing [31]. Furthermore, an additional step 
is also implemented, called a reducing step. In most conditions, this method generates a 
better stego audio.

Generally, this previous research is to be the base of our proposed method. Some 
stages are taken and refined to get better results. Initially, the NMI and NDDI interpola-
tion algorithms, which are implemented in [28, 29, 30], respectively, have inspired us 
to use them. Nevertheless, the linear method employed in [31] potentially delivers an 
equivalent result. Therefore, we take this simpler algorithm in our design. Moreover, [32, 
33], which do not take the interpolation at all, may have a relatively lower capacity. Each 
sample’s payload size in [32, 33] is static, which is different from that of [30, 31]. So, the 
payload’s dynamic (non-static) size and the smoothing step have also been our focus in 
this research. Unlike [31, 32], we integrate it with the reducing step. Briefly, we take a 
simple interpolation algorithm, improve each sample’s dynamic capacity, and design the 
smoothing to include the reducing step. Accordingly, the extraction and reconstruction 
follow this embedding. More details of the proposed algorithm and its comparison with 
the baseline methods are given in “The design of reversible data hiding” section.

The design of reversible data hiding
As shown in Fig. 1, the secret data protection is carried out in two stages: embedding 
and reconstruction / extraction. These processes can be described as follows.

Embedding stage

In this study, the pre-processing of both the audio cover and the secret is carried out 
in parallel. Once those data are ready, the embedding stage is performed, followed by 
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post-processing. This pre-processing step includes binarization and segmentation of 
the secret and providing an embedding space in each sample, while post-processing 
includes smoothing and combining samples for preparing the stego audio. Optionally, 
data compression can be applied to reduce its size. In more detail, this embedding 
process is depicted in Fig. 2, where its stages can be described as follows. 

Fig. 2  Process of embedding the secret in the audio cover
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1.	 Sampling and normalization. A continue audio signal is discretized to have audio 
samples, represented by a 16-bit signed integer. Each of these frames is then normal-
ized to an unsigned integer.

2.	 Interpolation. Let the vector of samples be so = (y1, y2, ..., yn) , where yn is the num-
ber of samples. The linear interpolation is applied to so to get a vector of interpo-
lated samples si by using (1), where yj  is the interpolating sample resulted from 
i th and (i + 1) th samples, where i and j are the index of original and interpo-
lating samples, respectively. The yj  is to be a pivoting point where the embed-
ding in the next step will be done. After the interpolation, the vector of samples is 
sT = (y1, y2, y3, y4, ..., yn−2, yn−1, yn) , whose illustration is depicted in Fig.  3. It is 
shown that the index of both the original and the interpolating audio samples are 
shifted. 

3.	 Calculating sampling space. The number of bits that can be protected by each sam-
ple may not be the same. It depends on the characteristics of the cover as well as 
the sample itself. Based on the vector sT , firstly, we need to find the average of the 
difference between two consecutive samples of the original cover ( so ) before being 
interpolated by using (2). It is worth noting that now there is a sample yi between 
y(i−1) and y(i+1) . Next, the multiplication factor, m, is determined by using (3), where 
b is the bit-depth of the sample, obtaining from the sampling process in step 1, which 
in this research is 16. Finally, the sampling space of each sample is found by designing 
(4), where ci is the space (maximum capacity) of the interpolating sample yi , gener-
ated based on the original samples y(i−1) and y(i+1) . 

(1)yj =
⌊yi + y(i+1)

2

⌋

(2)x =

⌊
∑n−1

i=1 |y(2i−1) − y(2i+1)|

n− 1

⌋

(3)m =
2b

(x)

(4)ci =m× |y(i−1) − y(i+1)|

Fig. 3  Illustration of developing an audio vector comprising original and interpolating samples
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 To find the position of where the embedding should be carried out, it needs to locate 
the position of the sampling space of each corresponding sample, whether it is above 
or below the magnitude of the pivoting point. For this purpose, we define pi and 
recalculate ci whenever needed, by designing Algorithm 1.

4.	 Segmenting payload. Each sample may not fully take the maximum number of pay-
loads. Some factors should be considered, such as the distribution across those inter-
polating samples, which affects the quality of the generated stego audio file [35]. For 
this reason, ci is further processed using (5), where Ni is the number of bits hidden in 
the corresponding sample. 

 At this stage, the binary payload is segmented according to Ni of i th sample. In case 
it is bigger than the payload to hide, then it is likely that the remaining interpolating 
samples are not used. Thus, each sample may hold different numbers of bits, which 
are then converted to decimal ( di).

5.	 Embedding. The embedding is performed by adding or subtracting the payload from 
the interpolating sample, relying on the embedding space’s position pi . This process 
is depicted in (6). It can be seen that there is a difference between yi and y′i , which 
is resulted from this embedding process. In case the value of di is relatively large, the 
quality of the audio dramatically drops. 

6.	 Smoothing. This step aims to reduce the difference caused by the embedding. To 
make the difference in the sample value between before and after embedding as small 
as possible, we design a smoothing step which can be formulated in (7), where y′′(i,j) is 
the interpolating sample after the j th smoothing is applied to the embedded sample.

	 The smoothing coefficient (e) and the maximum number of smoothing instances (h) 
should be defined. A larger e means that less h is required to achieve the specified 
quality; consequently, less computation should be done, which is good. However, it 
needs more numbers to store for extraction purposes. 

 Along with reducing of the noise, a remainder (r) is taken by using (8). This value is 
then required for extraction. It is shown that its value relies on e. It needs to find its 
appropriate value, which is neither too low nor too high. 

(5)Ni =

{

⌊log2(ci)⌋ if ci �= 0
0 if ci = 0

(6)y′i =

{

yi + di if pi = 1
yi − di if pi = 0

(7)y′′(i,j) =























�

(2e−1)×y′′(i,j−1)+y′i
2e

�

if pi = 1

�

(2e−1)×y′′(i,j−1)+y′i
2e

�

if pi = 0

(8)r(i,j) =
(

(2e − 1)× y′′(i,j) + y′i
)

mod 2e
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7.	 Combining samples. The smoothed-embedded sample y′′
(i,h) is then put in s′′

T
 . There-

fore, the vector of samples is s′′
T
= (y1, y

′′
(2,h), y3, y

′′
(4,h), ..., yn−2, y

′′
(n−1,h), yn) , which 

is then de-normalized to make it in the original range value. Its frame rate is now 
88.2kHz.

Algorithm 1: Finding the position of the sampling space and up-
dating its capacity
Input: yi, ci
Output: pi, ci

1 MAX=65535 /* The maximum value of samples */
2 MIN=0 /* The minimum value of samples */
3 if (yi + ci) ≤MAX then
4 pi = 1

5 else if (yi − ci) ≥ MIN then
6 pi = 0

7 else if (MAX−yi) ≥ (yi− MIN) then
8 pi = 1
9 ci = MAX − yi

10 else
11 pi = 0
12 ci = yi −MIN

Let the binary secret be 1010000111. An example of this embedding stage can be given 
as follows. Here, the smoothing is only performed once for simplicity (h = 1) ; to achieve 
better quality, this smoothing step can be done several times. The embedding is applied 
to the first interpolating sample because its maximum capacity is higher than the num-
ber of bits.

•	 Original samples: so = (80, 86, 90, 90, 85, 90)

•	 Interpolating samples: si = (83, 88, 90, 87, 87)

•	 Combined samples: sT = (80, 83, 86, 88, 90, 90, 90, 87, 85, 87, 90)

•	 Multiplication factor: m = 16384

•	 Initial embedding spaces: 
c2 = 98304 c4 = 65536, c6 = 0 c8 = 81920, c10 = 81920

•	 Updated embedding spaces: 
c2 = 65452 c4 = 65447, c6 = 16384 c8 = 65448, c10 = 65448

•	 Position: p2 = 1, p4 = 1, p6 = 1, p8 = 1, p10 = 1

•	 Number of bits: N2 = 15, N4 = 15, N6 = 13, N8 = 15, p10 = 15

•	 Segmented payload in decimal: d2 = 647, c4 = 0, c6 = 0, c8 = 0, c10 = 0

•	 Embedded samples: y′2 = 730, y′4 = 88, y′6 = 90, y′8 = 87, y′10 = 87

•	 Resulted vector (before smoothing): s′
T
= (80, 730, 86, 88, 90, 90, 90, 87, 85, 87, 90)

•	 Smoothing embedded samples (with 
h = 1) : y′′2 = 163, y′′4 = 88, y′′6 = 90, y′′8 = 87, y′′10 = 87

•	 Remainder: r2 = 7, r4 = −, r6 = −, r8 = −, r10 = −

•	 Final stego samples (after smoothing): s′′
T
= (80, 163, 86, 88, 90, 90, 90, 87, 85, 87, 90)
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Extraction stage

This stage aims to extract the payload and to reconstruct the cover as the proposed method 
is designed to be reversible. Parameter values are directly generated from the stego file, such 
as the sampling space obtained after the original samples have been split from the interpo-
lating ones. This general process is presented in Fig. 4.

Based on the received values, the reverse smoothing is performed by using (9). This pro-
cess is done as many times as the number of smoothing instances in the embedding stage. 
Therefore, in the last iteration we have y′′(i,j) = y′i , which is a non-smoothing embedded 
sample.

The hidden payload of i th sample is obtained by using (10). Along with other pay-
loads, this decimal value is then converted into binary, the number of digits of which is 

(9)y′′(i,j−1) =

{

(2e × y′′(i,j))−
(

(2e − 1)× y′i
)

+ r(i,j) if pi = 1

(2e × y′′(i,j))−
(

(2e − 1)× y′i
)

− r(i,j) if pi = 0

Fig. 4  Process of extracting the secret and reconstructing the cover from the stego audio
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determined by the respective Ni . In the previous embedding step, it has been shown that 
this number may differ for each sample.

Reconstruction of the audio cover is performed after the odd-indexed samples have been 
de-normalized back to the original range values. The reconstructed audio is in *.WAV 
file whose sampling rate is 44.1 kHz. In general, the comparison between the proposed 
and other methods is summarized in Table 1.

Experimental results
As in other research, such as [29–33], the proposed method is evaluated based on the fol-
lowing factors. The first is the level of similarity between the cover and the generated stego 
files. As previously described, this is to be the quality of the produced stego audio meas-
ured by the Peak Signal-to-Noise Ratio (PSNR) that is represented in dB. It is calculated by 
using (11), whose Mean Squared Error (MSE) value is taken from (12). The constant MAX 
is specified by the maximum possible value of the sample. It is worth to note that audio 
samples are 1D, which is different from either image or video. So, the variables m and n are 
adjusted.

Overall, this PSNR value is likely to be affected by the second evaluation factor (i.e., the 
size of the secret message represented in bits). Therefore, those two factors should be calcu-
lated concurrently.

(10)di = |y′i − yi|

(11)PSNR =10× log10

(

MAX2

MSE

)

(12)MSE =
1

m× n

m−1
∑

i=0

n−1
∑

j=0

[y(i, j)− y′′(i, j)]2

Table 1  Summary of  the  data hiding techniques in  [28–33] and  the  proposed method 
(inspired by [30, 31])

Evaluation 
factor

Research 
in [28, 29]

Research in [30] Research 
in [32]

Research 
in [33]

Method 
of [31]

Proposed 
method

Cover (carrier) Image Audio Audio Audio Audio Audio

Interpolation NMI NDDI None None Linear Linear

Payload size Dynamic static Dynamic Static Static Dynamic Dynamic

Embedding yij
′ = yij + b 
yij

′ = yTj − yTij  
mod 2k + b′l yn

′ =



























yn − b′i ,
ifyn−1 > yn

yn + b′i ,
ifyn−1 < yn

yn ,
ifyn−1 = yn

Improved RDE y′i = yi 
ei + b

y′j = yj + pn_i See (6)

Reducing No No No No Yes No

Smoothing No Yes No No Yes See (7)
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For this measurement, we obtain a public data set of audio files from [36, 37]. It com-
prises 15 files, consisting of 3 genres, each of which is made up of 5 instruments, as 
shown in Table 2. For the secret, we generate 11 files with various sizes, starting from 
1 to 100 kb, whose detail is provided in Table 3. We believe that these numbers of bits 
reflect the actual need in the real environment. Furthermore, we implement those exper-
imental data to other research [29–33], such that the comparison can be performed as 
fairly as possible.

Multiplier

As previously described in “Embedding stage” section, the embedding result is influ-
enced by the multiplier m, whose value is dynamically determined by (3). According 
to the experimental results, we find that smaller m means a higher quality of the 
stego data. Therefore, in the next experiment, we set m statically. For this second 

Table 2  Various instruments and  genres of  the  audio cover for  evaluating the  methods 
[36, 37]

Cover (carrier) Genre_Instrument

A-1 Country-Folk_Cello

A-2 Classical_Cello

A-3 Pop-Rock_Cello

A-4 Country-Folk_Acoustic-guitar

A-5 Classical_Acoustic-guitar

A-6 Pop-Rock_Acoustic-guitar

A-7 Country-Folk_Piano

A-8 Classical_Piano

A-9 Pop-Rock_Piano

A-10 Country-Folk_Saxophone

A-11 Classical_Saxophone

A-12 Pop-Rock_Saxophone

A-13 Country-Folk_Voice

A-14 Classical_Voice

A-15 Pop-Rock_Voice

Table 3  Size of secret (payload) for the experiment

Payload Size (kbits)

1 1

2 10

3 20

4 30

5 40

6 50

7 60

8 70

9 80

10 90

11 100



Page 12 of 19Ahmad and Samudra ﻿J Big Data            (2020) 7:80 

type of m, we take m ∈ {1, 2, 3, 4, 5, 6} , whose experimental result is given in Fig.  5 
where e = 3 and h = 1 . In Fig. 5, it is depicted that by setting m = 1 , the generated 
stego data are the best; on the contrary, m = 6 produces the lowest PSNR. On the 
other hand, the capacity of the secret that can be embedded is lower. This pattern 
also works on other values of e and h. In evaluating the effect of this multiplier, we 
take e = 3 and h = 1 because those values produce the minimum quality of the stego. 
It means that it is very likely to obtain a better stego quality than what has been 
achieved in this subsection (see the next analysis in “Smoothing coefficient and 
smoothing level” section).

On average, the PSNR is provided in Fig. 6. It describes that each audio genre has 
the same effects on the quality of the stego. The Audio3 (pop-rock_cello) should not 

Fig. 5  The effect of multiplier (m) on the quality of the stego files, where m ∈ {1, 2, 3, 4, 5, 6} , e = 3 and h = 1

Fig. 6  The average of stego quality, where m ∈ {1, 2, 3, 4, 5, 6} , e = 3 and h = 1
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be used if the quality is to be the concern, while Audio2 (classical_cello), Audio11 
(classical_saxophone), Audio5 (classical_acoustic-guitar), Audio13 (country-folk_
voice) and Audio8 (classical_piano) are more appropriate to use. It is found that, in 
general, the classical genre produces better stego quality than the others. Neverthe-
less, as previously predicted, there is a trade-off between the quality and the capac-
ity. That is, Audio3 is the best choice if relatively bigger data are to be protected. 
This trend also works on Audio12, Audio15, and Audio9, whose genre is pop-rock. 
The other genres may be applicable if a balance between the quality and the capacity 
is required.

In more detail, the experiment also shows that lower m causes more space to hold 
the secret in each sample. Consequently, embedding mainly occurs in fewer samples. 
It is different from higher m, which provides fewer spaces in each sample; this condi-
tion has caused the secret to be widely spread amongst samples. It can be inferred 
that the number of embedded samples affects the quality of the stego file. An exam-
ple of this condition is illustrated in Fig. 7, which plots the maximum number of bits 
that can be embedded and the respective number of sampling spaces. This figure 
shows this characteristic that the capacity is inversely proportional to the number of 
spaces. On the contrary, the quality is proportional to the number of spaces.

Smoothing coefficient and smoothing level

The smoothing coefficient (e) is designed to be used in (7) in the embedding process. 
From the experiment, we find that the higher the e, the higher the PSNR. Nevertheless, 
as described in the previous section, it is inversely proportional to the capacity. For this 
reason, in the experiment, we determine the smoothing coefficient of e ∈ {1, 2, 3, 4, 5} , 
whose result is plotted in Fig. 8, where m = 1 and h = 1.

It is also depicted in that figure that for e = 4 and e = 5 , the PSNR of stego file 
generated from Audio13 is infinite when the payload is 1 kb. It means that it is the 
same as its original cover, which is an ideal condition. When the smoothing is per-
formed three times ( h = 3 ) with e = 5 , the PSNR value of all stego files is infinite. 
It is shown that, at this point, increasing the e is useless because the best quality 

Fig. 7  The average of the maximum number of bits that can be held by the audio cover along with its 
average of sampling space. Here, C_m and S_m represent respectively the capacity and the number of 
sampling space with multiplier m, where m ∈ {1, 2, 3, 4, 5, 6} , e = 3 and h = 1
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has been achieved. This ideal condition is also reached by e = 3 and e = 4 when 
the smoothing is implemented five and four times, respectively. For the number of 
smoothing less than those, only specific covers obtain the infinite value: Audio2, 
Audio11, Audio5, Audio13. It is consistent with the results, which have been dis-
cussed in “Multiplier” section.

It can be inferred that higher e takes fewer steps to reach the best condition, which 
is good. At a certain level, raising that value does not affect the quality. Therefore, 
finding an appropriate e is essential. It is also shown that increasing h instead of e 
can also improve quality. Some considerations of which parameter should be taken 
among them have been discussed in “The design of reversible data hiding” section. 
Next, the capacity of the embedding should also be a consideration. Furthermore, as 
predicted, the value of h is proportional to the PSNR, regardless of m and e, where a 
smoothing step may increase around 20–30 dB of PSNR.

Research comparison

For comparing with other research, we take some methods proposed by Bobeica et al. 
[33], Ahmad and Fiqar [30], Andra et al. [32], Ahmad et al. [31], and Jung and Yoo [29]. 
To make the comparison as fair as possible, we implement them such that we can evalu-
ate the methods by using the same data, whose results are provided in Figs. 9, 10, and 11. 
In those figures, the smoothing is applied 1, 3, and 4 times, respectively, depending on 
their characteristics. Furthermore, in each graph, we show the performance of the pro-
posed technique, which is evaluated without using the smoothing step, considering that 
not all compared algorithms are designed with the smoothing step.

It is provided in Fig. 9 that without the smoothing, the proposed method is lower than 
[29], even though it is still higher than the rest of the methods. By implementing one-
time smoothing ( h = 1 ), the proposed method is excellent. In this environment, [29] is 

Fig. 8  The quality of the stego file generated by the proposed technique by using various smoothing 
coefficients, where e ∈ {1, 2, 3, 4, 5} , m = 1 and h = 1
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gently lower than the proposed algorithm. When the smoothing step is carried out three 
times (see Fig. 10), the proposed method is still higher than the others. Furthermore, the 
algorithms in [29, 32, 33] do not have the smoothing step; therefore, their PSNR does 
not change. It is different from this proposed method, which has flexibility in achieving 
the required level of the stego file. Finally, by doing smoothing four times (see Fig. 11), 
almost all PSNR values of the proposed method are infinite. This condition is shown in 

Fig. 9  The quality of the stego file generated by Jung and Yoo [29], Ahmad and Fiqar [30], Andra et al. [32], 
Bobeica et al. [33], Ahmad et al. [31], and the proposed technique with e = 3 , m = 1 , h = 0 and h = 1

Fig. 10  The quality of the stego file generated by Jung and Yoo [29], Ahmad and Fiqar [30], Andra et al. [32], 
Bobeica et al. [33], Ahmad et al. [31], and the proposed technique with e = 3 , m = 1 , h = 0 and h = 3
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Figs. 10 and 11, where the proposed technique is mostly out of those figures since its 
value is infinite. Please note that here, e = 3 and m = 1 are the standard in the evalu-
ation. As described in Section 4.2, the performance of the proposed technique is even 
better than that of others for a higher e.

Discussion
According to the experimental results that have been provided in the previous section, 
we can determine that the proposed technique outdoes the others. One of the advan-
tages is its flexibility, which can be used to specify the level of the stego file’s quality and 
the size of the secret to protect. Moreover, the reversibility requirement has also been 
met.

Despite this superiority, it has factors to refine. For the smoothing purpose, the 
method produces an auxiliary file containing the required information. Considering the 
security, we may just implement an existing cryptographic algorithm, such as Advanced 
Encryption Standard (AES), which is out of this data hiding research. Another factor to 
consider is the size of this auxiliary file, which should be as small as possible. In the case 
that compression is implemented, it can be performed according to Figs. 2 and 4 for the 
embedding and extraction, respectively. It is depicted that those two processes are inde-
pendent of the main data hiding research. Therefore, any algorithm may be suitable to 
implement.

Considering that research on data hiding is growing fast, any stage of this proposed 
method may be combined with other research to produce better results. For this pur-
pose, the stages can be grouped in blocks independently, as depicted in Figs. 2 and 4, for 
embedding and extraction, respectively. On the other hand, attackers may try to detect 

Fig. 11  The quality of the stego file generated by Jung and Yoo [29], Ahmad and Fiqar [30], Andra et al. [32], 
Bobeica et al. [33], Ahmad et al. [31], and the proposed technique with e = 3 , m = 1 , h = 0 and h = 4
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the existence of hidden information in the stego audio [38, 39]. Although it is out of the 
scope of this investigation, this possible attack should be anticipated.

Conclusions
In this research, we have proposed a reversible data hiding technique to protect sensi-
tive data in the audio environment. It is carried out by interpolating the audio samples, 
which have been obtained from the sampling process. The proposed method is flexible 
in that it can be applied to meet the required performance. Regarding the quality, clas-
sical audio is more appropriate to use, combining it with either cello, saxophone, acous-
tic guitar, or piano. Besides, the quality is proportional to the number of spaces in each 
sample. If the capacity is the concern, then pop-rock is better to use than others. The 
implementation itself can focus on either quality or capacity. Moreover, this proposed 
method has satisfied the reversibility requirement.

The experimental results also signify that the proposed technique is of higher qual-
ity than the others in almost all conditions. By applying a one-time smoothing, the 
method achieves the best results. Moreover, most existing methods even do not have 
this smoothing stage, which makes their quality static.

In the future, we would like to work on additional factors that do not directly relate to 
the performance of the proposed technique, which includes reducing the size of the aux-
iliary file. We believe that it should be as small as possible. An algorithm to protect this 
file can also be considered, although existing cryptographic algorithms are applicable. 
Furthermore, the multiplier and the coefficient should be dynamically defined to find a 
possible value that can deliver better results. This value can be adaptive, considering the 
characteristics of each cover.
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