
Real‑time monitoring of traffic parameters
Kirill Khazukov, Vladimir Shepelev*  , Tatiana Karpeta, Salavat Shabiev, Ivan Slobodin, Irakli Charbadze
and Irina Alferova

Introduction
Urbanization leads to a significant growth of the population density and road traffic con-
centration in large cities. This increased the likelihood of traffic accidents, road conges-
tion, and led to increased vehicle emissions. In the conditions of urban infrastructural
constraints, the tasks of ensuring an adequate population mobility can no longer be
solved through the use of non-optimal heuristics based on a small amount of statistical
information. Intelligent transport systems (ITS) of cities should ensure the maximum
capacity of the road network and instantly respond to any traffic incidents to prevent
road congestion. Currently, cities experience a rapid growth of video surveillance sys-
tems, which include video cameras with different resolutions and fixed frame rates with
different resolutions and mounting points [1]. Continuous monitoring of quantitative

Abstract 

This study deals with the problem of rea-time obtaining quality data on the road traffic
parameters based on the static street video surveillance camera data. The existing road
traffic monitoring solutions are based on the use of traffic cameras located directly
above the carriageways, which allows one to obtain fragmentary data on the speed
and movement pattern of vehicles. The purpose of the study is to develop a system
of high-quality and complete collection of real-time data, such as traffic flow intensity,
driving directions, and average vehicle speed. At the same time, the data is collected
within the entire functional area of intersections and adjacent road sections, which
fall within the street video surveillance camera angle. Our solution is based on the use
of the YOLOv3 neural network architecture and SORT open-source tracker. To train
the neural network, we marked 6000 images and performed augmentation, which
allowed us to form a dataset of 4.3 million vehicles. The basic performance of YOLO was
improved using an additional mask branch and optimizing the shape of anchors. To
determine the vehicle speed, we used a method of perspective transformation of coor-
dinates from the original image to geographical coordinates. Testing of the system at
night and in the daytime at six intersections showed the absolute percentage accuracy
of vehicle counting, of no less than 92%. The error in determining the vehicle speed
by the projection method, taking into account the camera calibration, did not exceed
1.5 km/h.

Keywords:  Neural network, YOLO v3, Data for training the neural network (Dataset),
Traffic flow assessment, Vehicle detection, Vehicle classification, Vehicle speed, Traffic
monitoring

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Khazukov et al. J Big Data (2020) 7:84
https://doi.org/10.1186/s40537-020-00358-x

*Correspondence:
shepelevvd@susu.ru
South Ural State University,
Chelyabinsk 454080, Russia

http://orcid.org/0000-0002-1143-2031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00358-x&domain=pdf

Page 2 of 20Khazukov et al. J Big Data (2020) 7:84

and qualitative road traffic parameters from fixed cameras will allow us to use vehicles
as indicators of the transport system performance. The most reported issues when pro-
cessing real-time data from street cameras are low counting accuracy, classification of a
limited number of vehicle types, tracking an object with determining the speed and the
driving direction in all sections when crossing the functional zone of the intersection.
Despite the obvious advantages of developing such systems, there are few studies aimed
at collecting and analyzing the speed and movement pattern of traffic flows through the
use of survey street cameras [2]. Artificial neural networks have proven themselves to be
good in the tasks of collecting, interpreting, and analyzing big data coming from video
cameras [3].

Some studies [4] and [5] use low-resolution video surveillance system data and deep
neural networks to count vehicles on the road and estimated traffic density. Examples of
using conventional machine vision methods are systems developed in [6, 7], which ana-
lyzed the problems of freight traffic. To detect a vehicle, most modern works discuss the
adaptation and improvement of modern detection systems, such as Faster R-CNN [8],
YOLO [9], and SSD [10]. This includes architectural innovations solving the problems of
scale sensitivity [11], vehicle classification [12–14], and increasing the speed and accu-
racy of the detection methods [15, 16]. Improving the detection rate [17], temporary
information is also used for joint detection and tracking of objects [3, 18, 19].

The existing solutions in the problems of real-time vehicle detection and classification
require large computing capabilities and place strict requirements for the installation
location and camera performance.

Related work
Object detection

Neural network architectures can be conditionally divided into single-stage (RetinaNet,
YOLO, SSD) and double-stage (R-CNN, Faster R-CNN, etc.) [20]. The main difference
in these approaches is that the two-stage models generate regions at the first stage and
classify at the second stage. This approach gives higher accuracy at the cost of the image
processing speed. The single-stage approach generates and classifies at one stage, which
provides a high image processing speed but lower accuracy. One of the main factors in
this work is the image processing speed; therefore, to solve this problem, we considered
single-stage networks.

To solve the problem of real-time object recognition, we considered the following
neural networks: SSD, YOLO v3, RetinaNet, etc. After studying the performance tests
[21, 22], we came to the conclusion that YOLO v3 shows the best result processing one
image in 51 ms at a resolution of 608 × 608, which allows us to process 19 frames per
second. Based on the real-time object detection task, the YOLO v3 neural network is
capable to process the maximum number of frames per second, while it does not lose
much in accuracy (Fig. 1).

An important feature of this architecture is that convolution layers are applied to the
image once, unlike such architectures as R-CNN [23–25] and Faster R-CNN [8], which
provides a multiple increase in the image processing speed without significant losses in
accuracy: one image is processed 1000 times faster using YOLO than R-CNN, and 100
times faster than Fast R-CNN [24].

Page 3 of 20Khazukov et al. J Big Data (2020) 7:84 	

Speed detection

The complexity of the task of determining the speed of vehicles on the video stream is
caused by a large number of possible movement patterns, as well as the direction of the
camera view center, which is not perpendicular to the movement patterns of vehicles.
Several existing solutions are based on the use of traffic cameras located directly above
the carriageway or on the side of it [26, 27]. In [28], the authors manually marked the
measurement zone in the camera image. It is a rectangular area perpendicular to the
traffic flow. In each frame, the Liang–Barsky algorithm checks the intersection of a vehi-
cle with the measurement zone and counts the number of frames, over which the vehicle
passed the measurement zone. Thus, the speed is defined as a ratio of the distance trave-
led to the travel time. In [29], the authors define the vehicle contour. Using the devel-
oped optical flow method, they determine the movement speed of the contour pixels.
By adjusting the focal distance, angle, and height of the camera installation, the authors
highlight the area of interest in the image so that it is equal to the width of the image.
Thus, the vehicle speed (km/h) is calculated from the ratio between the image pixels and
the road width.

The considered methods are focused on measuring the speed in preset zones with
the known dimensions and traffic cameras located above the road and at a low height,
which does not allow us to use them to collect data over the entire functional area of
road junctions.

We propose a method to determine the average speed based on the coordinate map-
ping from the camera image to the space of geographic coordinates using a perspective
transformation.

Methodology
The purpose of this work is to develop an autonomous approach able to assess the
quantitative and qualitative parameters of road traffic, such as the amount, speed and
movement pattern of vehicles. To this end, we divide the problem into four sub-tasks:
detection and classification, tracking, counting and determining the average vehicle
speed. This naturally leads to a modular and easily testable architecture consisting of
indicator detection, tracking, and calculation modules. In the following sections, we
will describe in detail each module together with the data collected for training and

Fig. 1  Performance tests of neural networks on COCO dataset

Page 4 of 20Khazukov et al. J Big Data (2020) 7:84

assessment. Figure 2 shows an algorithm of obtaining the data on the driving directions
and average speeds of vehicles.

The first module receives every third frame of the video stream and receives object
predictions using YOLOv3. Upon receipt of the bounding boxes to find the average
speed and determine the driving directions, the objects should be identified by com-
parison with the data from previous frames. To train the neural network, we collected a
dataset from street surveillance cameras in Chelyabinsk. To track vehicles, we used the
SORT tracker because it has a good compromise between speed and accuracy [30].

Detection of vehicles

Our approach is based on the use of static cameras with a viewing angle, which provides
visibility of the entire physical territory of the intersection and adjacent roads. The cam-
era angle was chosen with the condition of visibility of the entire physical territory of the
intersection.

We used several freely accessed cameras of Intersvyaz company in the cities of Chely-
abinsk [31] and Tyumen. We chose the cameras with a viewing angle providing visibil-
ity of the entire functional area of the intersection and adjacent roads. The cameras are
located at a height of 14–40 m, with an elevation angle of 30–60° to the horizon. The
video streams of these cameras provide a stable transmission of 25 frames per second,
supporting a resolution of 1920 × 1080 pixels. At the same time, the video stream is not
perfect due to compression artifacts, blurring, bad weather conditions, and hardware
errors, which prevents the detection and classification of vehicles, as well as the determi-
nation of speed indicators using the existing methods.

We collected and tagged frames of video streams from 7 cameras of various road junc-
tions as the data for training the neural network. As a result, we obtained about 6000
thousand images highlighting over 430,000 vehicle objects (Fig. 3).

The indexation of the classes and their corresponding colors further used to display
the detection results are presented in Table 1.

Fig. 2  An algorithm for determining the average speed and direction of vehicles

Page 5 of 20Khazukov et al. J Big Data (2020) 7:84 	

The input data are presented as follows: a JPG or PNG image and a text file with
marking:

In Fig. 4. i is the object number; n is the number of objects in the image; Ci is the
index of the class of the i-th object; Xi, Yi are the coordinates of the center of the rec-
tangle containing the object; Wi, Hi are the width and height of the rectangle contain-
ing the object.

The parameters Xi, Yi, Wi, Hi are recorded in relative values of the image size
( XiYiWiHi ∈ [0; 1]).

For better training of the neural network, we expanded the dataset by applying aug-
mentation, which increased the dataset by 10 times. For augmentation, we applied

Fig. 3  Examples of an input image

Table 1  Indexation of the classes and their corresponding colors

Index Class Color

0 Car Yellow

1 Mini_bus Blue

2 Bus Brown

3 Truck Red

4 Tram Pink

5 Trolleybus Green

Fig. 4  The input data

Page 6 of 20Khazukov et al. J Big Data (2020) 7:84

the following transformations in various combinations: horizontal display; affine and
perspective transformations; noise overlay; color distortion (Fig. 5).

The final dataset amounted to 4.3 million objects. The distribution of objects of each
class in the training sample is presented in Table 2.

We divided the dataset into training and validation samples in the ratio of 80/20% and
started training for 50,000 iterations with an increment of 0.001. The batch size per one
iteration was 64 images, which was divided into 16 units during training to run several
images at once.

Training of YOLOv3

The architecture of the YOLOv3 neural network consists of 106 layers (Fig. 6) and is
a modification of the Darknet-53 neural network, which includes 53 layers (Fig. 7).
Besides, it includes 53 more layers with two N-dimensional output layers, which allows
us to make detections at three different scales. This modification contributes to a more
accurate recognition of objects of various sizes. As input data, YOLOv3 accepts an image
presented as a three-dimensional tensor of h ×  × 3, where h, are the height and length
of the input image. The dimensionality of the output layers is determined by reducing
the size of the input image by 32, 16, and 8 times, respectively (Fig. 6).

Fig. 5  Augmented images

Table 2  Distribution of vehicle classes in the training sample

Class Number of objects Relation
to the total
number %

Car 3,518,370 81.8

Mini_bus 228,810 5.3

Bus 163,430 3.8

Truck 184,520 4.2

Tram 91,540 2.1

Trolleybus 112,690 2.6

Page 7 of 20Khazukov et al. J Big Data (2020) 7:84 	

In addition to the use of ultra-precise layers, its architecture YOLOv3 also contains
residual levels [25], layers with increased discretization and passed connections. CNN
takes the image as input data and returns a tensor (Fig. 8), which represents:

•	 coordinates and positions of the predicted bounding boxes, which should contain the
objects;

•	 the probability that each bounding box contains an object;

Fig. 6  The architecture of YOLO v3 [21]

Fig. 7  The architecture of Darknet-53 [21]

Page 8 of 20Khazukov et al. J Big Data (2020) 7:84

•	 the probability that each object within its bounding box belongs to a certain class.

To train the YOLOv3 neural network, we used the backpropagation method with a
gradient descent. This method is based on the use of the output error of a neural net-
work to calculate the correction values for the weights of neurons in its hidden lay-
ers. The algorithm is iterative and uses the principle of training “by epochs”, when the
weights are changed after several instances of the training set are supplied to the neural
network input, and the error is averaged for all the instances.

We improved the basic performance of YOLO with an additional mask branch and
optimizing the shape of the anchors. An additional regression of the masks for each
instance improves the precision in the corresponding regression problem of the bound-
ing box. Consequently, the first optimization we applied was an additional mask branch.
This branch runs in parallel with the existing branches and tends to regress the mask
for each area of interest. For simplicity, we approximated the exact pixel masks of the
instance using coarse polygonal masks from the collected dataset.

The results of training the neural network

The Average Precision (AP) is a popular indicator for measuring the precision of object
detectors, such as Faster R-CNN, SSD, YOLOv3, etc. The calculate it, the AP values are
used for each detected vehicle class, as shown in Fig. 9.

To obtain the “average precision” (mAP) for all classes, we average the AP values for
each class. The average precision (mAP) of the system is 0.85.

Vehicle tracking

A comparison of the detected objects in the current frame with objects from the previ-
ous frames is a very difficult task. Vehicles detected in the previous frame may not be
detected in the next frame for various reasons. For example, due to poor lighting con-
ditions or occlusions, when one object is overlapped with another one. We solved the
problem of multiple tracking of objects using the freely available SORT tracker. This is
a simple and fast tracker operating in real time, which is very important in our task.
It is based on two methods: the Kalman filter [32] and the Hungarian algorithm [33].
The linear speed is calculated for each object and the position of the object in the next

Fig. 8  Output tensor

Page 9 of 20Khazukov et al. J Big Data (2020) 7:84 	

frame is predicted. Based on the data received from YOLO, we calculated the shortest
distance from each detected object to all the predicted ones. The Hungarian detection
algorithm is used for the optimal matching of the predicted objects. Based on this data,
the Kalman filter corrects the state of the object. The tracker assigns a unique identifier
to each object (Fig. 10).

Each vehicle has its own identifier. To save memory and improve the tracking qual-
ity, the tracker takes into account an object only if it was detected at least in min_hits
frames. If the object is not detected during max_age frames, it is deleted. In [34], the
authors made a comparison using various metrics of several trackers operating in real
time (RMOT, TDAM, MDP, etc.). As a result of the comparison, SORT showed the best
ratio of speed and quality of operation: better or rather high indicators in the metrics of
MOTA, MOTP, FP, FN, etc. at a frame rate of 260 on one Intel i7 2.5 GHz processor core
and 16 GB of memory.

The video stream frequency of the camera is 25 frames per second. To increase the oper-
ating speed of the system, we skip every two frames and process only every third one. How-
ever, at some intersections, cars can drive at a high speed, abruptly change their movement
pattern, and cannot be detected by the neural network in each frame due to poor lighting
conditions, small size, or overlapping with tree branches. In such situations, the tracker may

Fig. 9  Average precision values for classes

Fig. 10  The result of the tracker operation

Page 10 of 20Khazukov et al. J Big Data (2020) 7:84

not match all the new objects with the objects from the previous frames and assigns a new
identifier to them. Therefore, we use a different number of passed frames for each inter-
section. Thus, between the frames, where the object was not detected, there will appear
another frame, in which it can be detected. This allowed us to reduce errors at complex
intersections, but at the same time increased the operating time.

Elimination of the camera distortion

Modern cameras are imperfect–they distort the image, changing the size, shape, and dis-
tances of objects. In our case, the image transmitted from the camera is subject to distor-
tion. To determine accurately the coordinates of objects, we should eliminate the distortion
by calibrating the camera. The easiest method of calibration is to use a spatial test object,
such as a checkerboard [35], as shown in Fig. 11.

Figure 12 shows the source images and the images after applying the calibration.

Calculation of the distance

To calculate distance traveled, we must find the change in the latitude and longitude of the
vehicle’s location over a certain time interval using the change of coordinates in the camera
image. To solve this problem, we calculated the perspective transformation matrix (Fig. 3)
by selecting four reference points in the map and comparing the corresponding points in
the image (Fig. 13).

To calculate the perspective transformation matrix A= (cij)3 × 3 we need to derive the
coefficients cij from the following linear equations describing the dependence between the
coordinates in the image and the geographic coordinates:

(1)ui =
c00xi + c01yi + c02

c20xi + c21yi + c22

Fig. 11  Demonstration of correcting the image distortion through the use of a checkerboard

Page 11 of 20Khazukov et al. J Big Data (2020) 7:84 	

where ui,vi are geographic coordinates; cij are elements of the matrix A, c22 = 1; xi, yi are
the coordinates from the image, i = 1.4.

As a result of the calculation, we solve the following matrix equation
(aij)8 × 8 * (cij)8 × 1 = (xij)8 × 1 described in detail in Fig. 14.
After finding the matrix coefficients, we can perform transformation by multiplying

the perspective transformation matrix by the coordinate vector from the image.

where A is the transformation matrix; xi, yi are the pixel coordinates in the image; x’i, y’i
are the latitude and longitude of the point.

(2)vi =
c10xi + c11yi + c12

c20xi + c21yi + c22

(3)A×





xi
yi
1



 =





x
′

i

y
′

i
ti





Fig. 12  Source and corrected camera images

Fig. 13  Reference points in the image

Page 12 of 20Khazukov et al. J Big Data (2020) 7:84

To calculate the distance between two points, we find the distance between the two
points on the sphere using the inverse haversine (4). The haversine in Eq. (4) is ℎ = 2(Ө/2).
This method of determining the speed is universal for any movement pattern and does
not require additional preliminary marking of the intersection and finding any reference
distances.

where d is the measured distance; φ1, φ2, λ1, λ2 are the latitude and longitude of the i-th
point; r is the radius of the earth (r = 6371 km).

Now, to calculate the average speed, we apply the following formula:

where t1, t2 are the time of the beginning and end of movement at a distance.
To analyze the average speed of vehicles in real time, we record the time when
the vehicle appeared, as well as at each i-th step of receiving a frame from the video

stream, we calculate the accumulated distance di used to find the average speed. The
described algorithm is schematically shown in Fig. 15.

(4)d = rhav−1(hav(φ2 − φ1)+ cos (φ2) cos (φ1)hav(�2 − �1))

(6)v =
d

t2 − t1

Fig. 14  The matrix form of the solved equations

Fig. 15  The process for determining the distance and speed

Page 13 of 20Khazukov et al. J Big Data (2020) 7:84 	

In Fig. 15: is the perspective transformation matrix, ai are the coordinates of a specific
vehicle, di is the distance between two points, ti is the time between frames, vi is the
vehicle speed at the section di, V is the average speed.

Updating the data on the average vehicle speed when processing each frame of the
video stream allows us to use the proposed method in real time.

Experimental results and discussions
Counting the vehicles

To assess the counting quality, we took the video content from CCTV cameras lasting
from 1 to 2 h. We performed preliminary preparation for each intersection: marking the
driving direction, a mask hiding parking spaces and the adjacent territory (Fig. 16).

Table 3 shows the values of the programmed and manual vehicle counting at the inter-
sections of the city of Chelyabinsk.

Fig. 16  Overview of intersections from CCTV cameras

Table 3  Counting of vehicles at four intersections

Data Time Intersections Class

Car Mini Bus Bus Truk Tram Trolley-bus

18.03.20 7:00–9:00 Komarova-Salyutnaya st. 5835/5896 315/313 22/25 21/20 0/0 0/0

18.03.20 17:00–19:00 Komarova-Salyutnaya st. 6912/6767 218/227 18/19 11/11 0/0 0/0

17.03.20 7:00–9:00 Pobedy-Molodogvardeit-
sev st.

6587/6677 382/364 19/21 23/23 49/48 0/0

17.03.20 17:00–18:00 Chicherina-Pobedy st. 6210/6178 259/246 48/47 13/12 50/52 9/9

18.03.20 7:00–9:00 Pobedy-Krasnoznamen-
naya st.

4501/4554 228/239 41/40 57/54 73/73 0/0

18.03.20 17:00–19:00 Komsomolskiy-Sverdlovskiy
st.

9865/9501 601/602 43/41 6/6 0/0 109/102

Page 14 of 20Khazukov et al. J Big Data (2020) 7:84

Table 4 shows the percentage of the counting error for each class. After analyzing
the data of manual and programmed vehicle counting, we found out that the mean
counting error for all the classes is 5.5% of the total number of vehicles.

An additional study of typical errors showed that most of them result from strong
and prolonged occlusions between vehicles in queuing traffic. For example, while a
trolleybus or a truck is moving, one or two lanes are partially blocked. Many cars are
overlapped when turning, waiting in the center of the intersection for a free window.
This problem can be solved by improving the tracking module using special meth-
ods for instance re-identification based on appearance tips. However, as it has been
mentioned above, the existing approaches have a high computation load and are not
applicable to real systems. The development of efficient algorithms for re-identifica-
tion of vehicles remains an open question.

Average vehicle speed

We conducted comparative testing to check the accuracy of the proposed system.
To this end, we made manual calculations of the average vehicle speed. Namely, the
travel time of the vehicle was measured on movement patterns with a priori known
distances (Fig. 17).

This video was processed by the program, a comparison with the program calcula-
tion result is presented in Table 5.

As a result of analyzing the obtained data, we revealed the maximum speed
determination error of 1.5 km/h, the mean error for all the movement patterns is
0.57 km/h.

Table 4  Counting errors

Error (%) Car Mini bus Bus Truck Tram Trolley-bus

Mean 1.6 3.2 13.6 2.9 2.0 3.2

Max 3.6 5.0 6.4 7.6 4.0 6.4

Fig. 17  Measured movement patterns and their lengths

Page 15 of 20Khazukov et al. J Big Data (2020) 7:84 	

Time complexity

So that the proposed method for determining the speed and number of vehicles could
work in real time, it is necessary that the time complexity for processing each frame
did not exceed 1/q, where q is the number of frames per second. For the test intersec-
tion, we used every third frame of the video stream; therefore, the upper estimate of
the time complexity of processing one frame will be 1/25 × 3=0.12.

Figures 18, 19 show the time complexities for the vehicle detection and speed calcu-
lation processes.

The tests were made on a PC with the following specifications: CPU: i9 9900 k, GPU:
GeForce RTX 2080TI, RAM: 64 GB. The maximum time spent on vehicle detection
for one frame was 0.066 s, the maximum time for calculating the speed and counting
was 0.009 s. In addition to the main processes implementing the above methodology,
the software solution consists of many auxiliary processes responsible for data trans-
fer, aggregation, and storage. Figure 20 shows a diagram of the time spent to complete
all the processes and obtain the final data for the tested intersection.

Table 5  The experimental results of the speed detection system

Vehicles Direction 1 yellow Direction 2 red Direction 3 blue Direction 4 green

Real Detection Real Detection Real Detection Real Detection

1 48.7 48.1 59.1 60.2 34.4 35.7 31.9 31.7

2 31.8 32.3 43.6 44.2 34.2 34.0 34.7 35.1

3 53.4 53.1 44.8 44.4 29.2 28.5 27.9 27.6

4 40.3 41.0 40.4 40.6 40.2 40.4 40.4 40.0

5 63.7 64.3 55.3 55.3 33.1 32.9 30.0 31.5

6 53.4 53.5 38.5 39.7 35.3 36.4 36.4 37.3

Max 0.7 1.2 1.3 1.5

Mean 0.46 0.58 0.62 0.62

Fig. 18  The time spent on vehicle detection for one frame

Page 16 of 20Khazukov et al. J Big Data (2020) 7:84

After analyzing the data, we can conclude that the upper estimate of the time com-
plexity of processing one frame is 0.08 s, which fits into the above limitations and allows
us to use the presented method to determine the speed and monitor traffic in real time.

Software solution

The system includes the following sequence of processes (Fig. 21):

•	 frames reading (Process 1);
•	 detection and classification of vehicles from the current frame (Process 2);
•	 vehicle tracking and counting in all directions of the road junction (Process 3);
•	 calculation of the latitude and longitude of the vehicle location (Process 4);
•	 calculation of vehicle speeds (Process 5);

Fig. 19  The time spent for calculating the speed and number of vehicles for all the directions

Fig. 20  The time of complete processing of one frame

Page 17 of 20Khazukov et al. J Big Data (2020) 7:84 	

•	 calculation of metrics related to the amount of harmful substances emitted by each
vehicle (Process 6).

Used technologies

We used the following technologies for the software implementation of the presented
architecture:

1.	 OpenCV is an open-source library designed to work with computer vision algo-
rithms, image processing and general-purpose numerical algorithms. We used this
library to perform the following tasks:

a.	 Resizing an image and applying a mask to it;
b.	 Setting and displaying of entry and exit areas, as well as determining the pres-

ence of vehicles in said areas;
c.	 Camera calibration and elimination of distortion;
d.	 Use of the perspective transformation matrix and determining the length of the

distance;
e.	 Data visualization.

2.	 Sort is an open-source library for 2D tracking of several objects in video sequences
based on the elementary data association and state estimation methods. We used it
to track vehicles in the video stream.

3.	 Redis is a resident open-source NoSQL-class database management system. We used
it to store intermediate results of the modules.

4.	 RabbitMQ is a software message broker based on the AMQP standard. We used it to
organize a data queue for transferring to a web page.

Fig. 21  System workflow

Page 18 of 20Khazukov et al. J Big Data (2020) 7:84

5.	 PostgreSQL is a free object-relational database management system. To compile sta-
tistics and calculate various metrics, such as KPI and daily flow structure, we aggre-
gate and save the received data in a database every hour.

Conclusion
In this study, we focused on the problem of obtaining the data on the speed and driving
direction of vehicles based on the video stream from street surveillance cameras. The
complexity of the task is caused by the following factors: different viewing angle, remote-
ness from the intersection, overlapping of objects. We added an additional mask branch
in the YOLO v3 neural network architecture and optimized the shapes of anchors to
improve the accuracy of detection and classification of objects of different sizes to
improve the quality of object tracking. To determine the speed in real time, we presented
a method based on the application of a perspective transformation of the coordinates of
vehicles in the image to geographic coordinates.

The proposed system was tested at night and in the daytime at six intersections in the
city of Chelyabinsk, showing a mean vehicle counting error of 5.5%. The error in deter-
mining the vehicle speed by the projection method, taking into account the camera cali-
bration at the tested intersection, did not exceed 1.5 m/s. The presented methodology
allows us to generate complete and high-quality data for real-time traffic control and
significantly reduce the requirements to peripheral equipment. Within the framework
of this study, we did not consider the solution of many problems, such as overlapping of
objects, a more detailed classification of vehicles, the definition of accidents and block-
ing objects. We consider our solution as a basis for our future research aimed at solving
these problems.

Abbreviations
ITS: Intelligent transport systems; CNN: Convolutional neural networks; AP: Average precision; CCTV: Closed-circuit
television.

Acknowledgements
Not applicable.

Authors’ contributions
VS and KH designed research, performed research, analyzed the data, and wrote the paper. IS and TC designed research
and was a major contributor in writing the manuscript. IC, IA and SS gathered data and wrote the paper. All authors
suggested related works, discussed the structure of the paper and results. All authors read and approved the final
manuscript.

Funding
The work was supported by Act 211 Government of the Russian Federation, contract No. 02.A03.21.0011.

Availability of data and materials
https​://githu​b.com/Readi​x/Traff​icMon​itori​ng

Competing interests
The authors declare that they have no competing interests.

Received: 7 May 2020 Accepted: 11 September 2020

References
	1.	 Peppa MV, Bell D, Komar T, Xiao W. Urban traffic flow analysis based on deep learning car detection from cctv

image series. Int Arch Photogramm Remote Sens Spat Inf Sci. 2018;42(4):565–72. https​://doi.org/10.5194/isprs​
-archi​ves-XLII-4-499-2018.

https://github.com/Readix/TrafficMonitoring
https://doi.org/10.5194/isprs-archives-XLII-4-499-2018
https://doi.org/10.5194/isprs-archives-XLII-4-499-2018

Page 19 of 20Khazukov et al. J Big Data (2020) 7:84 	

	2.	 Fedorov A, Nikolskaia K, Ivanov S, Shepelev V, Minbaleev A. Traffic flow estimation with data from a video surveil-
lance camera. J Big Data. 2019. https​://doi.org/10.1186/s4053​7-019-0234-z.

	3.	 Li C, Dobler G, Feng X, Wang Y. TrackNet: simultaneous object detection and tracking and its application in traf-
fic video analysis. 2019; pp. 1–10. arxiv.org/pdf/1902.01466.pdf.

	4.	 Zhang F, Li C, Yang F. Vehicle detection in urban traffic surveillance images based on convolutional neural net-
works with feature concatenation. Sensors. 2019;19(3):594. https​://doi.org/10.3390/s1903​0594.

	5.	 Zhang S, Wu G, Costeira JP, Moura JM. FCN-rLSTM: Deep spatio-temporal neural networks for vehicle count-
ing in city cameras. In: Proceedings of the IEEE international conference on computer vision. 2017. https​://doi.
org/10.1109/iccv.2017.396.

	6.	 Rathore MM, Son H, Ahmad A, Paul A. Real-time video processing for traffic control in smart city using Hadoop
ecosystem with GPUs. Soft Comput. 2018;22(5):1533–44. https​://doi.org/10.1007/s0050​0-017-2942-7.

	7.	 Sun X, Ding J, Dalla Chiara G, Cheah L, Cheung NM. A generic framework for monitoring local freight traffic
movements using computer vision-based techniques. In: 5th IEEE international conference on models and tech-
nologies for intelligent transportation systems (MT-ITS). 2017. p. 63–8. https​://doi.org/10.1109/mtits​.2017.80055​
92.

	8.	 Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks.
IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137–49. https​://doi.org/10.1109/TPAMI​.2016.25770​31.

	9.	 Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE
conference on computer vision and pattern recognition (CVPR). 2016. https​://doi.org/10.1109/cvpr.2016.91.

	10.	 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. SSD: single shot multibox detector. Lect Notes
Comput Sci. 2016;9905:21–37. https​://doi.org/10.1007/978-3-319-46448​-0_2.

	11.	 Hu X, Xu X, Xiao Y, Chen H, He S, Qin J, Heng PA. SINet: a scale-insensitive convolutional neural network for fast
vehicle detection. IEEE Trans Intell Transp Syst. 2019;20(3):1010. https​://doi.org/10.1109/TITS.2018.28381​32.

	12.	 Jung H, Choi MK, Jung J, Lee JH, Kwon S, Jung WY. ResNet-based vehicle classification and localization in traffic
surveillance systems. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW).
2017. 934–40. https​://doi.org/10.1109/cvprw​.2017.129.

	13.	 Li S, Lin J, Li G, Bai T, Wang H, Pang Y. Vehicle type detection based on deep learning in traffic scene. Procedia
Comput Sci. 2018;131:564–72. https​://doi.org/10.1016/j.procs​.2018.04.281.

	14.	 Sommer L, Acatay O, Schumann A, Beyerer J. Ensemble of two-stage regression based detectors for accurate
vehicle detection in traffic surveillance data. 2019. p. 1–6. https​://doi.org/10.1109/avss.2018.86391​49.

	15.	 Wang L, Lu Y, Wang H, Zheng Y, Ye H, Xue X. Evolving boxes for fast vehicle detection. In: 2017 IEEE international
conference on multimedia and Expo (IC-ME). 2017. p. 1135–40. https​://doi.org/10.1109/icme.2017.80194​61.

	16.	 Zhu F, Lu Y, Ying N, Giakos G. Fast vehicle detection based on evolving convolutional neural network. In: 2017
IEEE international conference on imaging systems and techniques (IST). 2017. p. 1–4. https​://doi.org/10.1109/
ist.2017.82615​05.

	17.	 Anisimov D, Khanova T. Towards lightweight convolutional neural networks for object detection. In: 2017 14th
IEEE international conference on advanced video and signal based surveillance (AVSS). 2017; 1–8. https​://doi.
org/10.1109/avss.2017.80785​00.

	18.	 Li S. 3D-DETNet: a single stage video-based vehicle detector. 2018. arxiv.org/ftp/arxiv/papers/1801/1801.01769.
pdf.

	19.	 Luo W, Yang B, Urtasun R. Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting
with a single convolutional net. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018;
3569–77. https​://doi.org/10.1109/cvpr.2018.00376​.

	20.	 Wu Y, Jiang S, Xu Z, Zhu S, Cao D. Lens distortion correction based on one chessboard pattern image. Front
Optoelectron. 2015;8(3):319–28. https​://doi.org/10.1007/s1220​0-015-0453-7.

	21.	 Redmon, J., Farhadi, A. YOLOv3: An Incremental Improvement. 2018. arxiv​.org/pdf/1804.02767​.pdf
	22.	 Lin T-Y, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. 2017. arxiv​.org/pdf/1708.02002​

.pdf
	23.	 He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: 2017 IEEE international conference on computer vision

(ICCV). vol. 2017: 2017; 2980–8. https​://doi.org/10.1109/iccv.2017.322.
	24.	 Shreyas Dixit KG, Chadaga MG, Savalgimath SS, Ragavendra Rakshith G, Naveen Kumar MR. Evaluation and

evolution of object detection techniques YOLO and R-CNN. Int J Recent Technol Eng. 2019;8(3):824–9. https​://
doi.org/10.35940​/ijrte​.B1154​.0782S​319.

	25.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2016. 770–8. https​://arxiv​.org/pdf/1512.03385​.pdf.

	26.	 Javadi S, Dahl M, Pettersson MI. Vehicle speed measurement model for video-based systems. Comput Electr Eng.
2019;76:238–48. https​://doi.org/10.1016/j.compe​lecen​g.2019.04.001.

	27.	 Gholami A, Dehghani A, Karim M. Vehicle speed detection in video image sequences using CVS method. Int J
Phy Sci. 2010;5(17):2555–63.

	28.	 de Barth O VB, Oliveira R, de Oliveira MA, Nascimento VE. Vehicle speed monitoring using convolutional neural
networks. IEEE Latin Am Trans. 2019;17(06):1000–8. https​://doi.org/10.1109/tla.2019.88968​23.

	29.	 Lan J, Li J, Hu G, Ran B, Wang L. Vehicle speed measurement based on gray constraint optical flow algorithm.
Optik Int J Light Elect Optics. 2014;125(1):289–95. https​://doi.org/10.1016/j.ijleo​.2013.06.036.

	30.	 Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. In: 2016 IEEE international confer-
ence on image processing (ICIP). 2016: 3464–8. https​://doi.org/10.1109/icip.2016.75330​03.

	31.	 Video observation. https​://cams.is74.ru/live. Accessed 20 May 2020.
	32.	 Kalman R. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82:35–45. https​://doi.

org/10.1115/1.36625​52.
	33.	 Kuhn HW. The Hungarian method for the assignment problem. Naval Res Log Quart. 1955;2:83–97. https​://doi.

org/10.1002/nav.38000​20109​.

https://doi.org/10.1186/s40537-019-0234-z
https://doi.org/10.3390/s19030594
https://doi.org/10.1109/iccv.2017.396
https://doi.org/10.1109/iccv.2017.396
https://doi.org/10.1007/s00500-017-2942-7
https://doi.org/10.1109/mtits.2017.8005592
https://doi.org/10.1109/mtits.2017.8005592
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TITS.2018.2838132
https://doi.org/10.1109/cvprw.2017.129
https://doi.org/10.1016/j.procs.2018.04.281
https://doi.org/10.1109/avss.2018.8639149
https://doi.org/10.1109/icme.2017.8019461
https://doi.org/10.1109/ist.2017.8261505
https://doi.org/10.1109/ist.2017.8261505
https://doi.org/10.1109/avss.2017.8078500
https://doi.org/10.1109/avss.2017.8078500
https://doi.org/10.1109/cvpr.2018.00376
https://doi.org/10.1007/s12200-015-0453-7
http://arxiv.org/pdf/1804.02767.pdf
http://arxiv.org/pdf/1708.02002.pdf
http://arxiv.org/pdf/1708.02002.pdf
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.35940/ijrte.B1154.0782S319
https://doi.org/10.35940/ijrte.B1154.0782S319
https://arxiv.org/pdf/1512.03385.pdf
https://doi.org/10.1016/j.compeleceng.2019.04.001
https://doi.org/10.1109/tla.2019.8896823
https://doi.org/10.1016/j.ijleo.2013.06.036
https://doi.org/10.1109/icip.2016.7533003
https://cams.is74.ru/live
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109

Page 20 of 20Khazukov et al. J Big Data (2020) 7:84

	34.	 Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. In: 2016 IEEE International Con-
ference on Image Processing (ICIP). 2016. 3464–8. https​://doi.org/10.1109/icip.2016.75330​03.

	35.	 Wu W, Wu L, Li J, Wang S, Zheng G, He X. RetinaNet-based visual inspection of flexible materials. In: 2019 IEEE
International Conference on Smart Internet of Things (SmartIoT). 2019; 432–5. https​://doi.org/10.1109/smart​
iot.2019.00077​.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1109/smartiot.2019.00077
https://doi.org/10.1109/smartiot.2019.00077

	Real-time monitoring of traffic parameters
	Abstract
	Introduction
	Related work
	Object detection
	Speed detection

	Methodology
	Detection of vehicles
	Training of YOLOv3
	The results of training the neural network
	Vehicle tracking
	Elimination of the camera distortion
	Calculation of the distance

	Experimental results and discussions
	Counting the vehicles
	Average vehicle speed
	Time complexity
	Software solution
	Used technologies

	Conclusion
	Acknowledgements
	References

