
DHPV: a distributed algorithm for large‑scale
graph partitioning
Wilfried Yves Hamilton Adoni1*  , Tarik Nahhal1, Moez Krichen2,3, Abdeltif El byed1 and Ismail Assayad4

Introduction
Graphs are ubiquitous [1] in engineering sciences because they prove to be a flexible
model in the modeling of various complex phenomena emanating from various disci-
plines [2]: biological, sociological, economic, physical and technological. A great deal of
research was dedicated to improving methods of analysis for these networks [3, 4]. Nev-
ertheless, the effectiveness and applicability of these methods are still limited to small
networks because of the complexity of exhaustive analysis [3]. The analysis of a complex
network is very expansive and consumes a lot of hardware resources because of the NP-
completeness of the problem [5, 6].

Large-scale network such as social networks (e.g., Facebook and Twitter) [7, 8], road
networks [8–12], brain networks [2], etc. with their heterogeneity allow to analyze a cha-
otic dynamics or represent a complex phenomenon. They represent numerous exciting

Abstract 

Big graphs are part of the movement of “Not Only SQL” databases (also called NoSQL)
focusing on the relationships between data, rather than the values themselves. The
data is stored in vertices while the edges model the interactions or relationships
between these data. They offer flexibility in handling data that is strongly connected
to each other. The analysis of a big graph generally involves exploring all of its vertices.
Thus, this operation is costly in time and resources because big graphs are generally
composed of millions of vertices connected through billions of edges. Consequently,
the graph algorithms are expansive compared to the size of the big graph, and are
therefore ineffective for data exploration. Thus, partitioning the graph stands out as
an efficient and less expensive alternative for exploring a big graph. This technique
consists in partitioning the graph into a set of k sub-graphs in order to reduce the
complexity of the queries. Nevertheless, it presents many challenges because it is an
NP-complete problem. In this article, we present DPHV (Distributed Placement of Hub-
Vertices) an efficient parallel and distributed heuristic for large-scale graph partition-
ing. An application on a real-world graphs demonstrates the feasibility and reliability
of our method. The experiments carried on a 10-nodes Spark cluster proved that the
proposed methodology achieves significant gain in term of time and outperforms JA-
BE-JA, Greedy, DFEP.

Keywords:  Big graph, Large-scale networks, k-Partition, Graph partitioning algorithms,
Distributed computing, GraphX

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

METHODOLOGY

Adoni et al. J Big Data (2020) 7:76
https://doi.org/10.1186/s40537-020-00357-y

*Correspondence:
adoniwilfried@gmail.com
1 LIMSAD Laboratory,
Faculty of sciences, Hassan
II University of Casablanca,
Casablanca, Morocco
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-1445-8018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00357-y&domain=pdf

Page 2 of 25Adoni et al. J Big Data (2020) 7:76

challenges related to high performance computing problems, where data scalability, pro-
gram complexity and robustness hardware configurations play an important role [13].
Solving these problems can contribute to efficiently manage the new trend technologies
such as big data (e.g., dataViz), distributed systems (e.g., Hadoop [14] and Spark [15])
or future communication networks (e.g., 5G or IoT). Network analysis is widely used
in various domains where experimenting relies on large-scale dataset structured as
graph data and each information is stored in a vertex an the edges modelize interactions
between vertices [8].

The analysis of a large-scale network consists of exploring the properties associated
with the edges and vertices of a graph. Given a large-scale network, the time complexity
of the graph algorithms increases exponentially compared to the number of vertices [1].
Thus, to speed up the performance of graph algorithms, it’s recommended to use distrib-
uted system to speed up analytical tasks [16]. This technique is widely used in NoSQL
databases. It is effective because compared to the CAP theorem [17], it ensures the
consistency and availability of data. Graph-oriented databases cannot guarantee all of
the properties of the CAP theorem [18]. Figure 1 shows that the partitioning of a graph
ensures only the properties CP and CA of the CAP theorem:

•	 Consistency and Availability (CA) Since the graph data is stored on a distributed sys-
tem, we cannot guarantee the availability and the consistency of the dataset across
the cluster at each moment.

•	 Consistency and Partition (CP) Eventually the data stored on each partition must be
consistent.

•	 Availability and Partition (AP) To ensure fault tolerance, the vertices and/or edges
must be replicated on the nodes of the cluster.

On the other hand, for a complex network it becomes expensive to maintain the analy-
sis requests on a single node because of the time latency and hardware requirement.
To cope with this problem, the divide-and-conquer technique (divide-and-conquer) [19]
can provide promising solutions. This technique consists in partitioning the graph into
a set of sub-graphs and assigning them to the nodes of the cluster [18]. The first chal-
lenge of graph partitioning consists of finding a partition which minimizes the cut-edges
between two subgraphs. It makes it possible to reduce the communication costs in the
case of a high-performance computing [20]. The second challenge is the balancing of k

Fig. 1  CAP theorem

Page 3 of 25Adoni et al. J Big Data (2020) 7:76 	

partitions, it consists of having sub-graphs whose weights are closer. For k = 2 , it is a
bi-partition of the graph. For large-scale graphs, this problem gets NP-complete [5, 6].
Once we seek to break the graph into k ≥ 3 subgraphs, in polynomial time there will be
no algorithm that can resolve the problem, and there is no exact solution. If we try to
partition the graph into k > 2 subgraphs, there is no algorithm that can solve this prob-
lem in polynomial time and there is no exact solution [5, 6].

Partitioning means either partitioning edges or vertices [8, 21]. In general, a k-parti-
tion corresponds to vertices partitioning [8]. Figure 2 illustrates examples of a 3-parti-
tion. The colors of vertices allow to identify the classes of the partition to which they
belong. A distinct color is used for each distinct class. Colored edges represent the edges
connecting pairs of vertices belonging to the same subgraph and gray edges represent
the cut-edges between partitions [22]. We note respectively that the partitioning in
Fig. 2a is poor compared to that of Fig. 2b. Note that each node stores a given parti-
tion, the cut-edges will be used for communication between nodes. Thus, a partitioning
technique which minimizes the cut-edges and keeps the weight of the partitions almost
equitably will thus allow to reduce the communication costs and will promote the load
balancing between nodes [18].

Contributions

We present a comparative analysis of existing methods for graph partitioning. Then,
we present DPHV (Distributed Placement of Hub-Vertices) a distributed algorithm for
large-scale graph partitioning which meets requirements load balancing and network
bandwidth of the cluster nodes [4]. The experimental results performed on a multi-
nodes cluster on real-world graphs show that our methodology is efficient and presents
conclusive results compared to current distributed graphs partitioning algorithms such
as Greedy [23], DFED [21] and JA-BE-JA [24].

Fig. 2  Illustration of an example of partitioning : a the partitioning is shoddy, the vertices are assigned
randomly, there are more cut-edges between partitions; b the partitioning is almost optimal, the highly
connected vertices reside in the same partition, there is less cut-edges [22]

Page 4 of 25Adoni et al. J Big Data (2020) 7:76

Organization

The rest of this article is arranged as follows. We provide some required background
knowledge and explain the problem formulation in "Model and formalism" section. Fur-
thermore, in "Related works" section, we address current methods of graph partitioning
and provide a comparative analysis. Then in "Methodology" section, we introduce our
graph partitioning methodology. In "Results and discussions" section, we evaluate the
behavior and the performances of our method by experimental achievements. Finally, we
conclude this paper with open challenges and future directions in "Discussions" section.

Model and formalism
In this section, we provide some basic notions related to the graph partitioning problem.
Then, we present a formalism of the k-partition problem.

Definitions and notations

Definition 1  (Graph) A graph Gr = (Vr,Ed) is a structure made of a set of vertices Vr
and a set of edges Ed = {(v1, v2)|v1, v2 ∈ Vr} , which connects pairs of vertices from Vr.

Let |Vr| denote the number of vertices and |Ed| the number of edges of the graph.
In some situations, it may be useful to assign a weight w to each edge of the graph. A

“weighted graph” is a graph Gr = (Vr,Ed,W) with a weighting function W : Ed−→R asso-
ciated with the set of edges.

It is worth noting that the graphs may have various topologies regarding the edge char-
acteristics. Figure 3 proposes a comparison of different types of weighted graphs. First,
we may distinguish directed and undirected graphs. A graph is said to be undirected if
the edge (v1, v2) from vertex v1 to v2 corresponds to the edge from v2 to v1 . If a pair of ver-
tices are connected by more than two edges then the graph is said to be a “multigraph”.
This form of graphs is more suitable for complex networks and is commonly used in

Fig. 3  Various types of graphs: a undirected graph; b directed graph; c multi-graph; d hyper-graph

Page 5 of 25Adoni et al. J Big Data (2020) 7:76 	

NoSQL databases. An other special case of graphs is “hypergraphs”, which are graphs
with hyper edges connecting more than two vertices at the same time [8].

Definition 2  (Sub-graph) Let Gr = (Vr,Ed) be a graph, Gr′ = (Vr′,Ed′) is a sub-
graph of Gr if and only if Vr′ is a subset of Vr and Ed′ is a subset of Ed. In other words,
we obtain Gr′ by removing one or more vertices of Gr, as well as all the edges incident to
these vertices.

In Fig. 4b, the graph Gr′ = (Vr′,Ed′) is a sub-graph of Gr = (Vr,Ed) because
Vr′ ⊂ Vr and Ed′ ⊂ Ed . We obtain Gr′ by removing from Gr the vertex 4 and these
adjacent edges (1, 4), (3, 4) et (4, 5).

Definition 3  (Partition) Let Gr be a nonempty set and k is a natural integer greater
than or equal to 2. We say that Pk = {Gr1,Gr2, . . . ,Grk} is a k-partition of Gr if:

•	 ∀i ∈ �1; k� , Gri = ∅
•	 ∀i, j ∈ �1; k� such as i = j , we have Gri ∩ Grj=∅
•	

k
⋃

i=1

Gri = Gr

That is, the elements of Pk are non-empty and pairwise disjoint.

Formalism

Consider a data set given in the form of a big graph Gr = (Vr,Ed) whose information
is stored in Vr and Ed such that n = |Vr| and m = |Ed|.

A partition Pk = {Gr′1,Gr′2 . . . ,Gr′k} of the graph Gr = (Vr,Ed) must highlight two
fundamental properties:

•	 Balancing of sub-graphs Gr′i ∀i ∈ �1; k�.
•	 Minimization of cuts cut(Gr′i ,Gr

′
j) between two sub-graphs Gr′i and Gr′j .

Let w(Gr′i) = |Ed′i | be the weight of the ith sub-graph of Gr, of average weight wavg such
that :

Fig. 4  a Graph Gr = (Vr , Ed) ; b sub-graph Gr′ = (Vr′ , Ed′)

Page 6 of 25Adoni et al. J Big Data (2020) 7:76

The load balancing B(Pk) of k partitions consists of calculating a k-partition
Pk = {Gr′1,Gr′2, . . . ,Gr′k} of Gr such as the weight of each sub-graph Gr′i , ∀i ∈ �1; k� con-
tains at most (1+ ǫ).n

k vertices.
A partition Pk is balanced if the constraint B(Pk) ≤ (1+ ǫ) holds, that means the size of

the sub-graphs are proportionally uniform with respect to a deviation error ǫ.
A better way to measure if the weights of the sub-graphs are uniformly balanced is to use

the standard deviation. It is a metric that measures the dispersion of the weights of the sub-
graphs. It is defined as the quadratic mean of the deviations from the mean partition. It is
calculated as follows :

Lemma (Dispersion of partition weights) Given a k-partition of a graph, the constraint
of load balancing B(Pk) is not respected if for all sub-graphs Gr′1, . . . ,Gr

′
k , . . .Gr

′
k of

respective weight w(Gr′1), . . . ,w(Gr
′
k), . . .w(Gr

′
k) , there is a sub-graph Gr′i whose weight

causes the imbalance of B(Pk) such that ∀i, j ∈ �1; k� , we have:

Proof  In the case of a dispersion of the partition weights we have B(Pk) > 1+ ǫ

The second constraint is that of cut-edges, it consists of computing a partition Pk which
allows to minimize the cut-edges between two partitions Gr′i and Gr′j . Moreover, it allows
to reduce the communication costs in the case of a high-performance computation. It is
calculated as follows:

where (si, sj) corresponds to the cut between the sub-graphs Gr′i and Gr′j . In this case, the
overall cost of cut-edges the k sub-graphs is calculated as follows:

The mathematical model of the k-partition problem with constraints could be encoded
using the following system [8]:

(1)wavg =
∑k

i=1 w(Gr
′
i)

k

(2)
B(Pk) =

√

√

√

√

∑k
i=1

(

w(Gr′i)
|Ed|/k − 1

)2

k

(3)w(Gr′i) > |Ed|(
√
k

k
(1+ ǫ)+ 1)−

k
∑

j �=i

w(Gr′j)

(4)
cut(Gr′i ,Gr

′
j) =

∑

si∈Gr′i ,sj∈Gr
′
j

(si, sj)

(5)cut(Pk) =
∑

i,j≤k

cut(Gr′i ,Gr
′
j)

Page 7 of 25Adoni et al. J Big Data (2020) 7:76 	

� �

Related works
For some time now, the graph partitioning problem has aroused more interest because
of NP-completeness [5] of the problem. Thus, numerous algorithms appeared [3]. In
a survey paper, Adoni et al. [8] presented two search techniques: “local” or “global”.
Local search algorithms begin with an arbitrarily chosen preliminary partition to pro-
gress towards a global graph partitioning (“vertex-centric” and “edge-centric”) [21]. The
downside of this strategy is that the initial choice influences the quality of the obtained
results [8]. In comparison, the global search approaches are based on the entire graph
(“partition-centric” [21]).

The performance of graph partitioning algorithms is based on the time complexity or
the result quality [5]. There are extremely fast algorithms whose solution is not optimal
and slow algorithms which provide solutions close to the optimal. Adoni et al. [8] classi-
fied graph analysis algorithms into different categories as shown in Fig. 5.

The first category concerns classical methods, there are three mains: “vertex-par-
tition”, “edge-partition” and “hypergraph-partition” [8, 21]. Vertex-partition consists
of partitioning the set of vertices Vr [5]. The cut-edges between subgraphs are used as
communication channels between cluster nodes. On the other hand, edge-partition par-
titions the set Ed of edges of the graph. So, the frontier vertices are used for informa-
tion exchange across the cluster [21]. Vertex-partition method allows to have balanced
partition B(Pk) while edge-partition minimizes the cut-edges. An extended version of

(6)











































min cut(Pk)
subjects to: B(Pk) ≤ (1+ ǫ)

Gr′i ∩ Gr′j = ∅
k
�

i=1

Gr′i = Pk

Gr′i ,Gr
′
j �= ∅

i �= j ∈ �1; k�

Fig. 5  Roadmap of graph partitioning algorithms

Page 8 of 25Adoni et al. J Big Data (2020) 7:76

edge-centric called hypergraph-partition concerns the partitioning of hypergraphs [21].
This algorithm works as edge-partition but used the hyper-edges as cut-edges [8].

The second one concerns the spectral clustering methods [25, 26]. Given a set of
points {x1, x2, . . . , xn} ∈ R

n , we consider an “affinity graph” Gr = (Vr,Ed) such as the
vertex si ∈ Vr corresponds to the points xi ∈ R

n . The set of edges denotes the affinities
between points and the weights related to each edge (si, sj) ∈ Ed encodes similarity val-
ues between xi and xj . Spectral algorithm consists of steps. In the first step, we com-
pute an affinity matrix A. Then, we compute the Laplacian matrix from A. Afterward, we
extract the eigenvectors of L. Finally, we use these vectors for structural clustering.

Other algorithms [21, 27, 28] are based on partition via exchange. These algorithms
are based on the optimization function. The choice of the initial solution influences the
optimality of the result. Consequently, we may possibly fall into a local minima. Ker-
nighan [27] used this concept to exchange the set of vertices of a given graph between
k-partition while minimizing the cut-edges. Then we repeat the same task until, there
are no exchanges that optimize the cut-edges function. Similarly, Fiduccia [28] presented
an adapted version of “Kernighan algorithm” [27] for hypergraphs partitioning. Com-
pared to Kernighan algorithm, it optimizes the hyper-edges function of the k-partition.

In another related works, the authors introduced [27, 29–32] multilevel partitioning
methodology which may be adopted for partitioning the graph into subgraphs at each
level. Karypis [30] follows this concept and proposed Metis. It is made of three steps:
“coarsening” step, “partitioning” step and “refinement” step. Similarly, the authors pro-
posed hMetis [31], an extended version of Metis [30] for multilevel partition of hyper-
graphs. Then, they introduced a parallel version of Metis that runs on multi-core
processor [32].

Other graph partitioning algorithms are based on heuristic methods [8, 15, 33]. They
are fast solving approaches but the result quality is not guaranteed to be optimal. As rep-
resentative examples, we present EdgePartition1D and EdgePartition2D implemented
in GraphX [15, 33]. These algorithms are fast and improved version of edge-partition
which optimizes cut-edges using a hash function for edges partitioning. The partitioning
strategy of this heuristic is the de-randomization of edge-partition which minimizes the
cut-edges between subgraphs [8].

In addition to graph algorithms, some authors [23, 34, 35] introduced streaming algo-
rithms [36] designed for partitioning dynamic graphs. Generally, dynamic graphs [36]
are subject to frequent CRUD operations over the set of vertices and edges. Unfortu-
nately, only a few number of methods [8, 23, 34, 35] are dedicated to dynamic graphs.
Aggarwal et al. [35] proposed a clustering method for graph streams. They introduced a
hash function based on the compression of new edges to improve the graph clustering.
In the same way, Charalampos et al [34] proposed “Fennel”, a streaming graph partition-
ing algorithm. Fennel is founded on the optimization of an objective function which bal-
ances the weights of the subgraphs. Likewise, Joseph et al [23] presented a streaming
algorithm based on power-law degree of distribution [8, 36]. The proposed strategy con-
sists of giving priority to hub-vertices.

In the end, the last category concerns distributed partitioning algorithms [21, 22, 24,
37, 38]. Distributed algorithms are more effective for large-scale graphs because parti-
tioning tasks are spread over cluster nodes. JA-BE-JA [22, 24] is a successful example of

Page 9 of 25Adoni et al. J Big Data (2020) 7:76 	

distributed algorithm and its implements a local search method that is based on simu-
lated annealing [39]. It is fully decentralized, this allows the algorithm to be easily imple-
mented into a distributed master-slaves architecture. The experimental results showed
that JA-BE-JA is fast and the partition is balanced with less cut-edges. In spite of the
performance of JA-BE-JA, it requires several hundred of iterations to converge towards
an optimal partitioning. Therefore, it evolves costly communication overhead across the
cluster nodes. To deal with this issue, Alessio [21] introduced DFEP, a distributed fund-
ing-edge partitioning algorithm. DFEP strategy consists of funding each subgraph by
buying the edges of the graph at each iteration. DFEP requires less iterations to converge
as compared to JA-BE-JA [24].

Methodology
As presented in the previous section, there are several graph partitioning techniques.
Some algorithms are fast but ineffective for use cases where the result optimality is more
important than the time complexity. Likewise, there are very slow algorithms which pro-
vide almost optimal results. Until then, the partitioning techniques not yet studied are
the parallel and distributed approaches [40]. For the moment, JA-BE-JA [22, 24] is the
best big graph partitioning technique but its approach based on simulated annealing is
much more iterative [39]. In some cases, it will be necessary to wait several hundred
iterations in order to obtain a result within the limits of satisfaction constraints. Which
can be very costly on time and consumes a lot of hardware resources.

In this section, we introduce DPHV (Distributed Placement of Hub-Vertices), a dis-
tributed and parallel heuristic suited for partitioning of large-scale graph according to
vertex-centric paradigm and uses a monitoring agent which ensures that the weight
constraints of each partitions is within normal limits. DPHV is scalable, designated for
intensive computation. The partitions are strongly connected inside. In addition, it can
also be implemented according to the partition-centric paradigm [40].

The proposed algorithm is parallel and distributed in a multi-nodes cluster. DPHV is
based on the placement of hub-vertices. The objective of this approach is to propose
partitioning according to the following criteria [3]:

Partition balancing [41] the partition weights must be as close as possible. This
makes it possible to have the same computational loads on each node.
Communication costs [38, 42]: the exchange of information between two partitions
is done through cut-edges. Each partition cut increases communication costs, which
risks causing a network bottleneck in the event of a high number of cuts. Our goal is
to minimize these cuts.
Connectivity [37]: the sub-graphs induced in each partition must remain connected
as much as possible as well as the clicks. This condition is not a necessity but it allows
to preserve the topology of the original graph.

The balancing of the weights of the partitions can be done simply by a random place-
ment of the vertices so as to have partitions of weight close to |Ed|k [8]. However, this
will involve serious communication costs between partitions and not guarantee that
the topology of the graph will be preserved [13]. The proposed approach takes these

Page 10 of 25Adoni et al. J Big Data (2020) 7:76

two compromises into account. Since the partitioning problem is considered as an
NP-complete problem because of the fact that there is no exact resolution method in
polynomial time. The applicability of this problem in the case of a large-scale graph is
expensive and the computation time is considered impractical [5]. Generally, it takes
several iterations to converge towards a quasi-optimal solution [21]. It is also impor-
tant to emphasize that the choice of the initial solution can lead to a local optimal
problem. For example, partitions that start near the center of the graph will tend to
explore more space than partitions that start at the edges of the graph.

To face these challenges, we introduced DPHV, an algorithm based on the place-
ment of hub vertices, that is to say the vertices which have a great impact on the
weight and the topology of the graph [8]. DPHV is based on vertex-partition method
and implemented according to vertex-centric paradigm [24]. It is an iterative algo-
rithm which at each iteration places k vertices on k partitions. DPHV is completely
decentralized, each slave node is responsible for placing the vertex which will cause
fewer cut-edges, while the master node is responsible for coordinating and monitor-
ing the partitioning so as to have partitions of almost similar weight [13]. The ver-
tices are sorted according to the order of their degree in the pre-processing phase,
this allows derandomization of the placement and avoids local optimum problems.
The hub-vertices that is to say having a high degree are placed as a priority. This
also allows to change the graph exploration strategy. Unlike other partitioning algo-
rithms that explore from boundaries to the center of the graph, DPHV explores in
the direction of the hub vertices towards the vertices less impacting on the topol-
ogy of the original graph [13]. This allows in some cases to preserve the topology of
the graph in a distributed way and the connectivity between the vertices residing in
the same partition. DPHV is designed to run on master-slaves architectures, as illus-
trated in Fig. 6. DPHV algorithm is composed of two parts: coordinator() and
partitioner().

Fig. 6  Overview of the DPHV execution framework

Page 11 of 25Adoni et al. J Big Data (2020) 7:76 	

The parameters used in the DPHV heuristic pseudo-code are :

•	 G = (Vr,Ed) : graph composed of set of vertex Vr and edge Ed such that n = |Vr| and
m = |Ed|.

•	 k: number of sub-graphs of the graph Gr such that k > 2 . It is a hyperparameter which
impacts the execution time and the result optimality.

•	 Gr′i : sub-graph i, such as i ∈ �1; k� the weight of each partition is defined by w(Gr′i).
•	 slave[i]: slave node which hosts the partition Gr′i.
•	 si : vertex assigned to the partition Gr′i , such as si ∈ Vr . We denote Vr(si) the set of these

adjacent vertices such that d(si) is its degree.
•	 M: contains all the vertices that have been assigned to one of the k partitions.
•	 Cutsi(Gr

′
i) : number of cut-edges generated by the assignment of the vertex si in the par-

tition Gr′i.
•	 Insi(Gr

′
i) : number of induced edges generated by the assignment of si to the sub-graph

Gr′i.
•	 fR(Gr

′
i , si) : ratio function of the number of induced edges compared to the number of

cut-edges generated by the assignment of si to Gri . It is calculated as follows:

 such as Cutsi(Gr′i) = 1 if there is no cut-edge generated by the assignment of the
vertex si to the sub-graph Gr′i . Moreover, if no edge is generated inside the subgraph
Gr′i , then Insi(Gr′i) = 1.

The load balancer

The coordinator() program is centralized on the master node, it is responsible of mon-
itoring the state of the slave nodes and ensures that the weight of the partitions is equitably
balanced across the cluster.

Algorithm 1 describes the process of coordinator(). Initially all nodes into the
cluster are in the active state. So, at each iteration, the coordinator evaluates the value of
the partition balance B(Pk) . If the balance constraints of the partition with respect to the
acceptance error ǫ are not respected (see section 2) then, the coordinator checks at each
iteration whether the weight w(Gr′i) of a subgraph Gr′i is not far from the average or is not
too high compared to the other subgraphs. Then the coordinator puts it in inactive state via
the haltNode(true, slave[i]) method.

When the subgraphs weights are balanced by comparison with the partition weight Gr′i
then the coordinator puts the node slave[i] in active state. Once all the vertices of the graph
have been placed or marked, the coordinator deactivates all the slave nodes of the cluster
and signals the end of the partitioning job.

(7)fR(Gr
′
i , si) =

Insi(Gr
′
i)

Cutsi(Gr
′
i)

Page 12 of 25Adoni et al. J Big Data (2020) 7:76

The distributed partitioning strategy

Unlike the coordinator() which is centralized on the master node, parti-
tioner() is decentralized on all the slave nodes of the cluster.
partitioner() processes and assigns each vertex before proceeding to the next

one, it keeps in memory the current weight of its partition. In the event of q compro-
mise, the following rules are used in the placement decision:

•	 If the majority of the neighbors of the current vertex are already in a subgraph Gr′i ,
then the vertex will be added to this partition;

•	 If it has no subgraph in common, the subgraph with the most edges associated with
this vertex will be chosen;

•	 If the vertex assignment generates the same placement ratio for all sub-
graphs, then the vertex will be assigned to the smallest subgraph Gr′i such that
w(Gr′i) = min{w(Gr′1),w(Gr′2), . . . ,w(Gr′k)};

•	 Otherwise the vertex will be randomly assigned to one of the k subgraphs.

It is important to emphasize that the graph provided as input is supported by the dis-
tributed storage system of Hadoop HDFS but without physically partitioning the graph.
In this case, the size of the block file plays an important role because it defines the size
of the sub-blocks making up each piece of data stored on the nodes of the cluster. This
allows each node to have a global view on each block of the original graph and to ensure
better information exchange between nodes. The data format of the graph supplied to

Page 13 of 25Adoni et al. J Big Data (2020) 7:76 	

enter is based upon the “Extended Property Graph Model” (EPGM) [43] model. Long
before the partitioning phase, the vertices of the graph are ordered in ascending order of
the degree of each vertex. This is done via a quick sorting by insertion operation whose
execution time complexity is O(nlog(n)) et O(n2) in the worst case.

Algorithm 2 presents the pseudo-code of partitioner() program. Initially, each
partition Gr′i is empty as well as the associated weight w(Gr′i) and the node slave[i]
receives a message from the master node notifying the start of the partitioning task.
At each iteration, as long as the node slave[i] does not receive a message signaling the
end of the job, then for each k unmarked vertices, we evaluate the ratio fR(Gr′i , si) of the
number of induced edges generated by the placement of this vertex si in the partition
Gr′i compared to the number of cut-edges generated by the placement of the vertex si .
Then the vertex s∗i having the maximum value of fR(Gr′i , s

∗
i) is chosen. If two slave nodes

slave[i] and slave[j] whose vertices s∗i and s∗j are promising and if w(Gr′j) ≥ w(Gr′i) then
the vertex s∗i will be placed in the partition Gr′i while the vertex s∗j will be replaced by
the vertex sj−1 and placed in the partition Gr′j . Each of the k vertices placed is marked.
Subsequently we add all incident edges to vertex si as well as the cut-edges generated by
the assignment of si . Finally, the slave node slave[i] communicates by message the new
value of the weight of its partition to the master node. It is important to emphasize that
the partition task is parallelized according to BSP (Bulk Synchronous Parallel) paradigm
[41]. So when a node finishes placing a vertex, it waits until the rest of nodes finish their
job. Thus, the time complexity of each node is O(

|Vr(si)|n2
k

log(k)).

Page 14 of 25Adoni et al. J Big Data (2020) 7:76

Results and discussions
Illustration of DPHV algorithm

We highlight a simple illustration of DPHV algorithm for k = 2 . Let Gr = (Vr,Ed) be
a graph composed of 7 vertices and 10 edges which we want to partition into 2 sets
Gr′1 and Gr′2 . It is assumed that the cluster used is set up of 2 slave nodes which per-
form the partitioning task while the master node supervises the DPHV job (Table 1,
Fig. 7).

The pre‑processing phase

This phase consists of ordering the 7 vertices of the graph in descending order of their
respective degrees. Table 2 presents the vertices as well as the degree of each vertex. Ini-
tially the two partitions are empty and their respective weights are w(Gr′1) = w(Gr′2) = 0.

The partitioning phase

Iteration 1: initially each slave node randomly selects the first k = 2 vertices {s1, s3}
not marked. In this example, vertex s1 is assigned to the partition Gr′1 while vertex s3 is
assigned to the partition Gr′2 . Then the internal edges and cut-edges are added. Once this
task is completed, the two vertices will be marked (Fig. 8).

Iteration 2: then the other two unmarked vertices {s2, s4} are selected. Thus, in parallel
the two slave nodes evaluate the following operations:
s2

move−−−→slave[1] =⇒ fR(Gr
′
1, s2) = 1 (Cuts2(Gr′1) = 1, Ins2(Gr

′
1) = 1)

s4
move−−−→slave[1] =⇒ fR(Gr

′
1, s4) = 1 , (Cuts4 (Gr′1) = 1, Ins4 (Gr

′
1) = 1)

s2
move−−−→slave[2] =⇒ fR(Gr

′
2, s2) = 1 , (Cuts2(Gr′2) = 1, Ins2(Gr

′
2) = 1)

s4
move−−−→slave[2] =⇒ fR(Gr

′
2, s4) = 1 (Cuts4 (Gr′2) = 1, Ins4 (Gr

′
2) = 1)

The vertices s2 and s4 are marked and placed respectively in the partitions Gr′1 and Gr′2
(Fig. 9).

Iteration 3: We repeat the same operations again by selecting the k = 2 unmarked ver-
tices {s5, s7} . Each slave node then evaluates the best placement:
s7

move−−−→slave[1] =⇒ fR(Gr
′
1, s7) = 1 (Cuts7(Gr′1) = 1, Ins7(Gr

′
1) = 1)

Fig. 7  Graph Gr = (Vr , Ed) such as |Vr| = 7 et|Ed| = 10

Table 1  Degree of vertices of the graph

si 1 3 2 4 7 5 6

d(si) 5 4 3 3 3 2 2

Page 15 of 25Adoni et al. J Big Data (2020) 7:76 	

s5
move−−−→slave[1] =⇒ fR(Gr

′
1, s5) = 2 (Cuts5(Gr′1) = 1, Ins5(Gr

′
1) = 2)

s7
move−−−→slave[2] =⇒ fR(Gr

′
2, s7) = 1 (Cuts7(Gr′2) = 1, Ins7(Gr

′
2) = 1)

s5
move−−−→slave[2] =⇒ fR(Gr

′
2, s5) = 1 (Cuts5(Gr′2) = 1, Ins5(Gr

′
2) = 1)

The vertices s5 and s7 are marked and placed respectively in the partitions Gr′1 and Gr′2
(Fig. 10).

Iteration 4: Finally, in the last part, the last unmarked vertex s6 is evaluated in paral-
lel to determine the placement which generates less cut-edges:
s6

move−−−→slave[1] =⇒ fR(Gr
′
1, s6) = 1 (Cut6(Gr′1) = 2, Ins6(Gr

′
1) = 0)

s6
move−−−→slave[2] =⇒ fR(Gr

′
2, s6) = 2 (Cuts6(Gr′2) = 1, Ins6(Gr

′
2) = 2)

The vertex s6 is placed in the partition Gr′2 because it generates less cut-edges. The
algorithm stops because all vertices are marked. The solution obtained is one of the
solutions that DPHV can generate. Another solution would be to place the vertex
s4 in the partition Gr′1 , this will reduce the number of cut-edges to w(Gr′1,Gr

′
2) = 3

(Fig. 11).
The main drawback of DPHV is that it does not optimize the solution obtained in

order to get as close as possible to the optimal. On the other hand, it allows the place-
ment of a dynamic graph according to the same paradigm. DPHV is even faster when
the number of partitions is small. When the number of partitions increases, the mas-
ter node performs more operations because it will be necessary to regulate the weight
of each partition so as to remain within the limits of acceptance constraints. When
for example l slave nodes go into inactive state, the problem of k-partition automati-
cally switches to a problem of k ′-partition with k ′ = k − l . In addition, unlike other
partitioning strategies which perform random placement of vertices or edges, DPHV
is completely de-randomized, which means that regardless of the topology of the
graph, the algorithm cannot fall into a local optimal.

Fig. 8  Iteration 1 of DPHV execution

Page 16 of 25Adoni et al. J Big Data (2020) 7:76

Test environment and dataset

The experimental tests were carried out on the Grid’50001 an open platform for cloud
computing. It is dedicated exclusively to experimental tests involving high performance
computations on parallel and distributed systems. This platform already incorporates
big data platforms like Spark [15], GraphX [33] and Hadoop [14]. The cluster allocated
for the tests contains 10 nodes configured in a homogeneous manner (see Fig. 12). The
experimental tests were also carried out by changing the number of nodes. Each node is
equipped with 240 GB SSD + 480 GB SSD + 4.0 TB HDD, 140 GB of RAM, 10 Gbps +

Fig. 9  Iteration 2 of DPHV execution

Fig. 10  Iteration 3 of DPHV execution

1  https​://www.grid5​000.fr

https://www.grid5000.fr

Page 17 of 25Adoni et al. J Big Data (2020) 7:76 	

100 Gbps of Omni-Path Ethernet cables and a 2 x Intel Xeon Gold 6130 (16 cores/ CPU).
We adopted Ganglia [42] for monitoring the cluster’s performance.

We used benchmark data extracted from SNAP2 a large network dataset collection. To
highlight the applicability and the performances of our heuristic, we used two categories
of datasets. The first category represents deterministic finite automata with explosion of
states. These data were extracted from the set of different conformance test models of
various complex systems3. These datasets correspond to the finite behavioral models of
the test tools piloted by formal verification models for the performance of conventional
test tasks: selection of test cases, prioritization, mutation tests, etc. The second category
of datasets used represents the road network of Morocco collected from the Open-
StreetMap (OSM) spatial database4. It contains points, different types of roads and lanes
between two points of interest. Each entity of the road network contains tags nested in
each of these objects. The graph of the road network covers all types of road, including
local roads. It contains directed and weighted edges to estimate distances/time of travel.

Table 2 presents the characteristics of the graphs extracted from the datasets. For each
dataset, we present the number of vertices |Vr|, the number of edges |Ed|, the diameter
of the graph D and the clustering coefficient ACC​.

Complexity of graph partitioning algorithms

Vertex-partition [5], Edge-partition [21], Spectral [25], Kernighan-Lin [27], Metis [30]
and Greedy [23] methods were implemented in python 3.4. DFED [21] method was
implemented in Java 8.2 for MapReduce [14] version and Scala 2.12 for Spark in-mem-
ory version [44]. JA-BE-JA [24] method was also written in Scala 2.12. Each network is
partitioned under k = 25 partitions. The algorithms have been executed ten times to get

Fig. 11  Iteration 4 of DPHV execution

2  https​://snap.stanf​ord.edu/

4  http://downl​oad.geofa​brik.de/

3  https​://proje​cts.info.unamu​r.be/vibes​/mutan​ts-equiv​.html

https://snap.stanford.edu/
http://download.geofabrik.de/
https://projects.info.unamur.be/vibes/mutants-equiv.html

Page 18 of 25Adoni et al. J Big Data (2020) 7:76

an average parameter values: the runtime, the cost communication and the load balanc-
ing. A partitioning method is considered effective if it is both fast and results in bal-
anced partitions with fewer cut-edges. Figure 13 illustrates the performance of different
techniques according to the hyper parameters. The methods that can satisfy these three
constraints are: Vertex-partition [5], Edge-partition [21], Spectral [25], Metis [30], Ker-
nighan-Lin [27] and Fennel [34]. The performances of JA-BE-JA [24], DFED [21], Greedy
[23] vary according to the graph topology. For example, Greedy [23] is very fast in terms
of velocity but generates a large number of cut-edges and the partition is not balanced.

Figure 14 introduces for the constraints satisfaction rate of each graph partitioning
method. The performance of each algorithm is the result of crossing the three evaluation
parameters. The rate of the maximum performance obtained varies from 1 to 100%. A
rate close to 100% means that all of the constraints are satisfied.

Fig. 12  Test environment [14, 15]

Table 2  Datasets

Designation Type |Vr| |Ed| ACC​ D

Biosnap Undirected 1018524 24735503 0.42 15

Twitter Directed 81306 1768149 0.5653 7

Usroad Directed 126146 161950 0.0145 617

Email Undirected 36692 183831 0.4970 11

Astro Undirected 18772 198110 0.6306 14

ageRRN Directed 860000 2360000 56 0.4970

cptTRM Directed 1070000 6000000 70 0.6235

elsaRR Directed 1508000 9000000 92 0.5653

osmMA Directed 4526700 12670000 412 0.0136

Page 19 of 25Adoni et al. J Big Data (2020) 7:76 	

We observe that Fennel [34], Metis [30], Kernighan-Lin [27] and Spectral [25] have a
satisfaction rate that ranges between 94% and approximately 100%. This highlights the
previous results analysis. DFED [21] and Greedy [23] have a lower constraints satisfac-
tion rate. However, it is important to emphasize that this rate can vary depending on
the graph topology and the cluster configuration. A performance rate below the average
does not necessarily imply that the method is ineffective. There are a number of trade
offs in choosing an appropriate graph partitioning method [8]. This involves in-depth
reflection in the pre-processing phase.

Computational complexity of DPHV

The study of the complexity of DPHV was carried out on osmMA dataset in order to
better understand its complexity of our algorithm. We opted for this dataset because
it is a complex network which puts all the evaluation parameters of our approach into
competition. We also analyze the behavior of DPHV with respect to the variation in
the number of partitions k. Then we make a comparison with benchmark models of
existing distributed partitioning algorithms. The evaluation parameters highlighted
are 1) the time complexity; 2) communication costs of the cluster, 3) the load balance
and 4) the connectivity of the sub-graphs induced in each partition [5, 6]. DPHV pro-
gram was written in Java and the different Jobs run on JVM 1.8.

Figure 15 shows the behavior of DPHV compared to the number of partitions. Note
that the variation of the number of partitions has a great impact on the behavior of
DPHV. When the number of partitions increases, the algorithm tends to run slowly,
which is quite logical since the time taken to partition a graph into (k + 1) partitions
is significant than that of a k partitions. In addition, for a high k, DPHV will spend
more time evaluating a large number of vertices at each iteration. This greatly influ-
ences the time complexity but allows obtaining a better partition which minimizes
cut-edges. We also note that whatever the variation of the number of partitions, the
percentage of cut-edges varies between 20% and 30%. This is remarkable because it
demonstrates that DPHV manages to stabilize the evolution of cut-edges, thus mak-
ing it possible to reduce or control the costs of communication.

Fig. 13  Computational complexity of graph partitioning methods

Page 20 of 25Adoni et al. J Big Data (2020) 7:76

The standard deviation in Figure 15c oscillates between 0.9 and 0.98, this value is
very close to 1 whatever the number of partitions. We can conclude that DPHV bal-
ances the partition weights so that the constraint B(Pk) ≤ (1+ ǫ) is respected. This
aspect is very important because it ensures good parallelism [8, 40] with workloads
distributed evenly on each node of the cluster. This reduces the latency the time spent
in synchronization tasks.

Figure 15d shows that the standard deviation oscillates between 0.6 and 0.8, this
means that the connectivity of each subgraphs induced in each partition remains close
from that of the original graph. In addition, our heuristic is the first to propose partitions
whose vertices induced in each partition are strongly connected.

DPHV is able to partition large-scale graphs in a parallel and distributed architecture,
all while preserving the graph topology as much as possible. While optimizing the num-
ber of cut-edges in order to minimize the communication costs. In addition, DPHV is
scalable and supports the large-scale graph.

We compare our approach with others parallel and distributed algorithms: DFEP [21],
JA-BE-JA [24] and Greedy [23]. Figure 16 shows the experimental results of graph algo-
rithms on the datasets. In terms of velocity, Greedy [23] and DFED [21] outperform the
performance of our algorithm. But DPHV presents better results of cut-edges compared
to Greedy and DFED. The cut-edges with JA-BE-JA [24] are much better than ours.

Fig. 14  Constraints satisfaction rate

Page 21 of 25Adoni et al. J Big Data (2020) 7:76 	

In terms of partition balancing, our approach presents the best results compared to
other algorithms. Also, our algorithm presents partitions whose sub-graphs induced in
each partition are strongly connected.

Table 3 shows the gain ratio of our partitioning method compared to other partition-
ing techniques.

In terms of velocity, DPHV is 1.2 times slower than Greedy and 1.5 times slower than
DFEP [21]. But it is 2.53 times faster than JA-BE-JA [24]. The communication costs (cut-
edges) proposed by our approach are 1.74 times reduced compared to that of Greedy
[23] and 1.15 times reduced compared to DFEP [21]. On the other hand, the cut-edges
of JA-BE-JA [24] optimize these cuts by 0.86 times than that of our algorithm. In terms
of load balancing, our results are remarkable compared to the others. Our technique
offers partitions whose weights are 7 times more balanced compared to Greedy [23] and
3 times more balanced compared to DFEP [21]. Similarly, in terms of connectivity, the
partitions proposed by DPHV are strongly connected, this means that we maintain the
topology of the original graph.

Besides, our algorithm outperforms all the distributed algorithms in terms of connec-
tivity of the induced sub-graphs and offers the best performance. Our results are almost
5 times better than those of Greedy [23], 2 times better than those proposed by DFEP
[21] and finally 1.13 times better than the connectivity of the induced sub-graphs result-
ing from the partitioning of JA-BE-JA [24].

Discussions

Despite the fact that DPHV is efficient compared to other distributed algorithms [21, 23,
24], there are some limitations regarding the conceptual model, the programming para-
digm and the applicability:

Fig. 15  DPHV behavior based on the number of partition k 

Page 22 of 25Adoni et al. J Big Data (2020) 7:76

1.	 Node storage capacity [15]: DPHV is based on the Spark architecture and makes
extensive use of certain functions of the Spark API. These functions are optimized
for in-memory computations. In the case of big graphs, it becomes expensive to store
the graph on RAM memory. So to maintain a good performance of our algorithm,
we will have to allocate additional RAM memory.

2.	 Hardware failure [45]: DPHV partitioning task is completely decentralized to the
slave nodes of the cluster. In the conceptual model of DPHV, when a node fails or is
unavailable, the partitioning switches from a k-partition to a (k − k ′)-partition where
k ′ is the number of unavailable nodes. This therefore affects the weight of the sub-
graphs contained in the unavailable nodes. Therefore, balancing the weights of the
partitions cannot be guaranteed. Also, the cut-edges will be affected, resulting in a
considerable communication cost.

3.	 Physical partitioning of graphs [14]: The partitioning logic of DPHV is based on the
degree of the vertices in order to have balanced partitions. In the definition of a big
graph, the vertices and edges store a large amount of data. Unfortunately, this is not
taken into account in the DPHV partitioning logic. Therefore, despite the fact that
the weights of the sub-graphs are balanced, they do not store the same amount of
information.

Fig. 16  Comparison between DPHV, DFEP [21], JA-BE-JA [24] and Greedy [23] (k=100)

Table 3  DPHV performance ratio compared to DFEP [21], JA-BE-JA [24] and Greedy [23]

DPHV vs. Greedy [23] DPHV vs. DFEP [21] DPHV vs. JA-BE-JA [24]

Time − 1.2 − 1.5 + 2.53

Cut-edges + 1.74 + 1.15 − 0.86

Balance + 7.08 + 2.98 + 1.08

Connectivity + 4.85 + 2.1 + 1.13

Page 23 of 25Adoni et al. J Big Data (2020) 7:76 	

In terms of complexity, our approach has advantages over DFEP [21]. Because in each
iteration, it exchanges fewer vertices than DFEP [21]. As a result, DPHV optimizes the
use of hardware resources such as ram memory, CPU and network processor.

Compared to our approach, JA-BE-JA [24] provides more optimal partitions because it
is based on simulated annealing [39]. But very expensive in terms of time complexity and
hardware resources.

Similarly, Greedy [23] outperforms our algorithm, but it is adapted for high-perfor-
mance computing with single machine. This is very expensive in terms of hardware
resources because it requires a very costly supercomputer [5].

Conclusion and future work
In this paper, we have proposed a concrete formalism of the k-partition problem on big
graphs. Moreover, we proposed a comparative study and a roadmap of partitioning algo-
rithms. We introduced DPHV, a distributed k-partition algorithm based on a master-
slaves architecture. In terms of velocity, DPHV is very fast and efficiently partitions a big
graph into k sub-graphs of nearly similar weight while optimizing the number of cut-
edges of the partition. DPHV also retains the topology of the original graph in a distrib-
uted architecture. The conceptual model of our framework is based on a coordinator
and a set of partitioners. Experimental results have shown that our partitioning tech-
nique guarantees two fundamental properties : (1) the balancing of partition weights and
(2) the preservation of the original graph topology in a distributed environment.

For future work, we are interested in expanding the scope of this work in the fight
against covid-19. In particular by applying DPHV for the partitioning of large-scale com-
munity network, we can perform the propagation analysis and prediction of the COVID-
19 by using all-shortest paths algorithms[4]. In addition, we are interested in proposing
an extended version of the DPHV algorithm which sorts the vertices of the graph in such
a way that the data contained in the vertices are consistent when Hadoop [45] physically
splits the graph file.

Abbreviations
DPHV: Distributed placement of hub-vertices; DFEP: Distributed funding-edge partitioning; IoT: Internet of things; CAP:
Consistency availability partition; EPGM: Extended property graph model; CRUD: Create read update delete; NoSQL: Not
only SQL; HDFS: Hadoop distributed file system; SNAP: Stanford network analysis platform; BSP: Bulk synchronous paral-
lel; JOSM: Java open street map; OSM: Open street map.

Acknowledgements
Not applicable.

Author Contributions
All mentioned authors contribute in the elaboration of the article. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The data used for this study are available at : https​://snap.stanf​ord.edu/data/index​.html https​://proje​cts.info.unamu​r.be/
vibes​/mutan​ts-equiv​.html http://downl​oad.geofa​brik.de/

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://snap.stanford.edu/data/index.html
https://projects.info.unamur.be/vibes/mutants-equiv.html
https://projects.info.unamur.be/vibes/mutants-equiv.html
http://download.geofabrik.de/

Page 24 of 25Adoni et al. J Big Data (2020) 7:76

Competing interests
The authors declare that they have no competing interests

Author details
1 LIMSAD Laboratory, Faculty of sciences, Hassan II University of Casablanca, Casablanca, Morocco. 2 Faculty of CSIT,
Albaha University, Al Bahah, Saudi Arabia. 3 ReDCAD Laboratory, University of Sfax, Sfax, Tunisia. 4 LIMSAD Laboratory,
ENSEM, Hassan II University of Casablanca, Casablanca, Morocco.

Received: 19 May 2020 Accepted: 3 September 2020

References
	1.	 Danai K, Christos F. Individual and collective graph mining: principles, algorithms, and applications. Synth Lect Data

Mining Knowl Discov. 2017;9:2.
	2.	 Yoon B, Kim S, Kim S. Use of graph database for the integration of heterogeneous biological data. Genomics Inf.

2017;15(1):19–27.
	3.	 Aridhi S, Nguifo EM. Big graph mining: frameworks and techniques. Big Data Res. 2016;6:1–10.
	4.	 Jiang M, Cui P, Beutel A, Faloutsos C, Yang S. Catching synchronized behaviors in large networks: a graph mining

approach. ACM Trans Knowl Discov Data. 2016;10(4):1–27.
	5.	 Alekseev VE, Boliac R, Korobitsyn DV, Lozin VV. NP-hard graph problems and boundary classes of graphs. Theor

Comput Sci. 2007;389(1):219–36.
	6.	 Cameron K, Eschen EM, Hoáng CT, Sritharan R. The complexity of the list partition problem for graphs. SIAM J Dis-

crete Math. 2008;21(4):900–29.
	7.	 Cohen J. Graph twiddling in a MapReduce world. Comput Sci Eng. 2009;11:29–41.
	8.	 Adoni HWY, Nahhal T, Krichen M, Aghezzaf B, Elbyed A. A survey of current challenges in partitioning and processing

of graph-structured data in parallel and distributed systems. Distrib Parall Datab. 2020;38(2):495–530.
	9.	 Aridhi S, Lacomme P, Ren L, Vincent B. A mapreduce-based approach for shortest path problem in large-scale

networks. Eng Appl Artif Intellig. 2015;41:151–65.
	10.	 Cherkassky BV, Goldberg AV, Radzik T. Shortest paths algorithms: theory and experimental evaluation. Math Pro-

gramm. 1993;73:129–74.
	11.	 Adoni Wilfried YH, Nahhal T, Aghezzaf B, Elbyed A. MRA*: Parallel and distributed path in large-scale graph using

mapReduce-A* based approach. In: Ubiquitous networking, lecture notes in computer science. Springer, Cham,
May 2017, pp. 390–401.

	12.	 Adoni Wilfried YH, Nahhal T, Aghezzaf B, Elbyed A. The MapReduce-based approach to improve the shortest path
computation in large-scale road networks. In: The case of A* algorithm. Journal of Big Data, 5, 2018.

	13.	 Aridhi S, Montresor A, Velegrakis Y. BLADYG: a graph processing framework for large dynamic graphs. Big Data Res.
2017;9:9–17.

	14.	 Vavilapalli VK, Seth S, Saha B, Curino C, O’Malley O, Radia S, Reed B, Baldeschwieler E, Murthy AC, Douglas C, Agarwal
S, Konar M, Evans R, Graves T, Lowe J, Shah H. Apache hadoop YARN: yet another resource negotiator. In: Proceed-
ings of the 4th Annual Symposium on Cloud Computing, pp. 1–16, Santa Clara, California, 2013. ACM Press.

	15.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. HotCloud.
2010;10(10–10):95.

	16.	 Hammou BA, Lahcen AA, Mouline S. APRA: an approximate parallel recommendation algorithm for Big Data. Knowl
Based Syst. 2018;157:10–9.

	17.	 Brewer E. Pushing the CAP: strategies for consistency and availability. Computer. 2012;45(2):23–9.
	18.	 Appel AP, Moyano LG. Link and graph mining in the big data era. In: Zomaya AY, Sakr S, editors. Handbook of big

data technologies. Cham: Springer; 2017. p. 583–616.
	19.	 Bentley JL. Multidimensional divide-and-conquer. Commun ACM. 1980;23(4):214–29.
	20.	 Shin K, Eliassi-Rad T, Faloutsos C. CoreScope: graph mining using k-core analysis patterns, anomalies and algorithms.

In: 2016 IEEE 16th international conference on data mining (ICDM), pp. 469–478, December 2016. ISSN: 2374-8486.
	21.	 Guerrieri A. Distributed computing for large-scale graphs. Ph.D. thesis, University of Trento, 2015.
	22.	 Rahimian F, Payberah AH, Girdzijauskas S, Jelasity M, Haridi S. A distributed algorithm for large-scale graph partition-

ing. ACM Trans Autonom Adapt Syst. 2015;10(2):1–24.
	23.	 Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. PowerGraph: distributed graph-parallel computation on natural

graphs. In: Proceedings of the 10th USENIX conference on operating systems design and implementation, OSDI’12,
pages 17–30, Berkeley, CA, USA, 2012. USENIX Association.

	24.	 Rahimian F, Payberah AH, Girdzijauskas S, Haridi S. Distributed vertex-cut partitioning. In: IFIP international confer-
ence on distributed applications and interoperable systems. Springer, 2014, p 186–200.

	25.	 Yan D, Huang L, Jordan MI. Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, KDD ’09, New York; 2009. ACM, p 907–916.

	26.	 Martin Charles H. and Ph.D. Spectral clustering: a quick overview, 2012.
	27.	 Kernighan BW, Lin S. An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J. 1970;49(2):291–307.
	28.	 Fiduccia CM, Mattheyses RM. A Linear-time Heuristic for Improving Network Partitions. In: Proceedings of the 19th

Design Automation Conference, DAC ’82. Piscataway: IEEE Press; 1982, p 175–181.
	29.	 Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput.

1998;20:359–92.
	30.	 Karypis G, Kumar V. Multilevel algorithms for multi-constraint graph partitioning. In: Proceedings of the 1998 ACM/

IEEE conference on supercomputing, SC ’98. Washington: IEEE Computer Society; 1998, p 1–13.

Page 25 of 25Adoni et al. J Big Data (2020) 7:76 	

	31.	 Karypis G, Kumar V. Multilevel K-way hypergraph partitioning. In: Proceedings of the 36th annual ACM/IEEE design
automation conference, DAC ’99, New York: ACM; 1999, p 343–348.

	32.	 Schloegel K, Karypis G, Kumar V. Parallel multilevel algorithms for multi-constraint graph partitioning. In: Euro-par
2000 parallel processing, lecture notes in computer science. Berlin: Springer; 2000, p 296–310.

	33.	 Kyrola A, Blelloch G, Guestrin C. GraphChi: large-scale graph computation on just a PC. In: Proceedings of the 10th
USENIX conference on operating systems design and implementation, OSDI’12. Berkeley: USENIX Association; 2012.
, p 31–46.

	34.	 Tsourakakis C, Gkantsidis C, Radunovic B, Vojnovic M. FENNEL: streaming graph partitioning for massive scale
graphs. In: Proceedings of the 7th ACM international conference on web search and data mining, WSDM ’14. New
York: ACM; 2014, p 333–342.

	35.	 Aggarwal CC, Zhao Y, Philip SY. A framework for clustering massive graph streams. Stat Anal Data Mining.
2010;3(6):399–416.

	36.	 Kao E, Gadepally V, Hurley M, Jones M, Kepner J, Mohindra S, Monticciolo P, Reuther A, Samsi S, Song W, Staheli D,
Smith S. Streaming graph challenge: stochastic block partition. In: 2017 IEEE High performance extreme computing
conference (HPEC). 2017, p 1–12.

	37.	 Stanton I, Kliot G. Streaming graph partitioning for large distributed graphs. In: Proceedings of the 18th ACM
SIGKDD international conference on knowledge discovery and data mining, KDD ’12. New York: ACM; 2012, p
1222–1230.

	38.	 Tashkova K, Koros̆ec P, S̆ilc J. A distributed multilevel ant-colony algorithm for the multi-way graph partitioning. Int J
Bio-Inspired Comput. 2011;3(5):286–96.

	39.	 Ushijima-Mwesigwa H, Negre CFA, Mniszewski SM. Graph partitioning using quantum annealing on the D-wave sys-
tem. In: Proceedings of the second international workshop on post moores era supercomputing, PMES’17. Denver:
Association for Computing Machinery; 2017, p 22–29.

	40.	 Meyerhenke H, Sanders P, Schulz C. Parallel graph partitioning for complex networks. IEEE Trans Parallel Distrib Syst.
2017;28(9):2625–38.

	41.	 Valiant LG. A bridging model for parallel computation. Commun ACM. 1990;33(8):103–11.
	42.	 Massie ML, Chun BN, Culler DE. The ganglia distributed monitoring system: design, implementation, and experi-

ence. Parallel Comput. 2004;30(7):817–40.
	43.	 Junghanns M, Petermann A, Teichmann N, Gomez K, Rahm E. Analyzing extended property graphs with Apache

Flink. In: Proceedings of the 1st ACM SIGMOD workshop on network data analytics—NDA ’16. San Francisco: ACM
Press; 2016, p 1–8.

	44.	 Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I. Graphx: graph processing in a distributed dataflow
framework. In: 11th $$USENIX$$ symposium on operating systems design and implementation ($$OSDI$$ 14).
2014, p 599–613.

	45.	 Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: Proceedings of the 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST). IEEE Computer Society, 2010, p 1–10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	DHPV: a distributed algorithm for large-scale graph partitioning
	Abstract
	Introduction
	Contributions
	Organization

	Model and formalism
	Definitions and notations
	Formalism

	Related works
	Methodology
	The load balancer
	The distributed partitioning strategy

	Results and discussions
	Illustration of DPHV algorithm
	The pre-processing phase
	The partitioning phase

	Test environment and dataset
	Complexity of graph partitioning algorithms
	Computational complexity of DPHV
	Discussions

	Conclusion and future work
	Acknowledgements
	References

